Implementation of Photosynaptic and Electrical Memory Functions in Organic Nano‐Floating‐Gate Transistors via a Perovskite‐Nanocrystal‐Based Nanocomposite Tunneling Layer
An organic nano‐floating‐gate transistor (ONFGT) with both photosynaptic and electrical memory functions is developed using a perovskite (CsPbBr 3 ) NC‐insulating polymer (polystyrene; PS) nanocomposite and CsPbBr 3 NCs as the tunneling and floating gate layers, respectively. The introduction of the...
Saved in:
Published in: | Small science Vol. 3; no. 9 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
John Wiley & Sons, Inc
01-09-2023
Wiley-VCH |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | An organic nano‐floating‐gate transistor (ONFGT) with both photosynaptic and electrical memory functions is developed using a perovskite (CsPbBr
3
) NC‐insulating polymer (polystyrene; PS) nanocomposite and CsPbBr
3
NCs as the tunneling and floating gate layers, respectively. The introduction of the CsPbBr
3
NCs–PS nanocomposite layer improves the photoresponsivity of the ONFGT under ultraviolet–visible irradiation, resulting in an increase in both the photocurrent and the light‐to‐dark current ratio by 10
−8
A and 10
4
orders of magnitude, respectively. It also exhibits high responsivity (0.804 A W
−1
) and external quantum efficiency (249.3%) under 400 nm irradiation. Furthermore, the photosynaptic characteristics of the ONFGT under visible‐light irradiation are investigated. To mimic biological nervous systems, the photocurrent of the device is dynamically modulated by varying the light intensity and duration. Notably, an increase in synaptic weight is observed under repeated photonic stimulations, as shown by changes in synaptic weight with each light pulse. Also, the ONFGT exhibits excellent nonvolatile memory characteristics in the dark, displaying a hysteresis window value of 2.9 V for a gate double sweep under ±5.0 V. Consequently, the perovskite NCs–insulating polymer nanocomposite tunneling layer is crucial for enabling photoresponsivity and memory characteristics in nano‐floating‐gate transistors, making them suitable for multifunctional electronic devices. |
---|---|
AbstractList | An organic nano-floating-gate transistor (ONFGT) with both photosynaptic and electrical memory functions is developed using a perovskite (CsPbBr3) NC-insulating polymer (polystyrene; PS) nanocomposite and CsPbBr3 NCs as the tunneling and floating gate layers, respectively. The introduction of the CsPbBr3 NCs–PS nanocomposite layer improves the photoresponsivity of the ONFGT under ultraviolet–visible irradiation, resulting in an increase in both the photocurrent and the light-to-dark current ratio by 10−8 A and 104 orders of magnitude, respectively. It also exhibits high responsivity (0.804 A W−1) and external quantum efficiency (249.3%) under 400 nm irradiation. Furthermore, the photosynaptic characteristics of the ONFGT under visible-light irradiation are investigated. To mimic biological nervous systems, the photocurrent of the device is dynamically modulated by varying the light intensity and duration. Notably, an increase in synaptic weight is observed under repeated photonic stimulations, as shown by changes in synaptic weight with each light pulse. Also, the ONFGT exhibits excellent nonvolatile memory characteristics in the dark, displaying a hysteresis window value of 2.9 V for a gate double sweep under ±5.0 V. Consequently, the perovskite NCs–insulating polymer nanocomposite tunneling layer is crucial for enabling photoresponsivity and memory characteristics in nano-floating-gate transistors, making them suitable for multifunctional electronic devices. An organic nano‐floating‐gate transistor (ONFGT) with both photosynaptic and electrical memory functions is developed using a perovskite (CsPbBr 3 ) NC‐insulating polymer (polystyrene; PS) nanocomposite and CsPbBr 3 NCs as the tunneling and floating gate layers, respectively. The introduction of the CsPbBr 3 NCs–PS nanocomposite layer improves the photoresponsivity of the ONFGT under ultraviolet–visible irradiation, resulting in an increase in both the photocurrent and the light‐to‐dark current ratio by 10 −8 A and 10 4 orders of magnitude, respectively. It also exhibits high responsivity (0.804 A W −1 ) and external quantum efficiency (249.3%) under 400 nm irradiation. Furthermore, the photosynaptic characteristics of the ONFGT under visible‐light irradiation are investigated. To mimic biological nervous systems, the photocurrent of the device is dynamically modulated by varying the light intensity and duration. Notably, an increase in synaptic weight is observed under repeated photonic stimulations, as shown by changes in synaptic weight with each light pulse. Also, the ONFGT exhibits excellent nonvolatile memory characteristics in the dark, displaying a hysteresis window value of 2.9 V for a gate double sweep under ±5.0 V. Consequently, the perovskite NCs–insulating polymer nanocomposite tunneling layer is crucial for enabling photoresponsivity and memory characteristics in nano‐floating‐gate transistors, making them suitable for multifunctional electronic devices. |
Author | Lee, Seoung-Ki Moon, Byung Joon Son, Dabin Bae, Sukang Yang, Hee Yun Kim, Tae-Wook Lee, Sang Hyun Song, Young-Seok |
Author_xml | – sequence: 1 givenname: Byung Joon surname: Moon fullname: Moon, Byung Joon organization: Functional Composite Materials Research Center Institute of Advanced Composite Materials Korea Institute of Science and Technology 92 Chudong-ro, Bongdong-eup Wanju-gun Jeollabuk-do 55324 Republic of Korea, Department of JBNU-KIST Industry-Academia Convergence Research Jeonbuk National University 567 Baekje-daero, Deokjin-gu Jeonju 54896 Republic of Korea – sequence: 2 givenname: Young-Seok surname: Song fullname: Song, Young-Seok organization: Department of Flexible and Printable Electronics LANL-JBNU Engineering Institute-Korea Jeonbuk National University 567 Baekje-daero Deokjin-gu Jeonju 54896 Republic of Korea – sequence: 3 givenname: Dabin surname: Son fullname: Son, Dabin organization: School of Chemical Engineering Chonnam National University 77 Yongbong-ro Buk-gu Gwangju 61186 Republic of Korea – sequence: 4 givenname: Hee Yun surname: Yang fullname: Yang, Hee Yun organization: Functional Composite Materials Research Center Institute of Advanced Composite Materials Korea Institute of Science and Technology 92 Chudong-ro, Bongdong-eup Wanju-gun Jeollabuk-do 55324 Republic of Korea, Department of Flexible and Printable Electronics LANL-JBNU Engineering Institute-Korea Jeonbuk National University 567 Baekje-daero Deokjin-gu Jeonju 54896 Republic of Korea – sequence: 5 givenname: Sukang surname: Bae fullname: Bae, Sukang organization: Functional Composite Materials Research Center Institute of Advanced Composite Materials Korea Institute of Science and Technology 92 Chudong-ro, Bongdong-eup Wanju-gun Jeollabuk-do 55324 Republic of Korea, Department of JBNU-KIST Industry-Academia Convergence Research Jeonbuk National University 567 Baekje-daero, Deokjin-gu Jeonju 54896 Republic of Korea – sequence: 6 givenname: Seoung-Ki surname: Lee fullname: Lee, Seoung-Ki organization: School of Materials Science and Engineering Pusan National University 2, Busandaehak-ro-63-beon-gil, Geumjeong-gu Busan 46241 Republic of Korea – sequence: 7 givenname: Sang Hyun surname: Lee fullname: Lee, Sang Hyun organization: School of Chemical Engineering Chonnam National University 77 Yongbong-ro Buk-gu Gwangju 61186 Republic of Korea – sequence: 8 givenname: Tae-Wook orcidid: 0000-0003-2157-732X surname: Kim fullname: Kim, Tae-Wook organization: Department of JBNU-KIST Industry-Academia Convergence Research Jeonbuk National University 567 Baekje-daero, Deokjin-gu Jeonju 54896 Republic of Korea, Department of Flexible and Printable Electronics LANL-JBNU Engineering Institute-Korea Jeonbuk National University 567 Baekje-daero Deokjin-gu Jeonju 54896 Republic of Korea |
BookMark | eNpNkcFu1DAQhi1UJErplbMlzrvYTuI4R6i6ZaUt7aGcrYkzWbwkdrC9lXLjEXgWHoknqdNFFSePR5-_Gfl_S86cd0jIe87WnDHxMY7RrAUTBWNMqlfkXEilViUr5dl_9RtyGeMhI6LivG7EOfmzHacBR3QJkvWO-p7ef_fJx9nBlKyh4Dp6PaBJwRoY6C2OPsx0c3Rm4SO1jt6FPbiMfgXn__76vRl8drl9Lm8gIX0I4KKNyYdIHy1QoPcY_GP8YRNmZnllwhwTDPn2GSJ2zybjx8lHuwiOzuGQjXQHM4Z35HUPQ8TLf-cF-ba5frj6strd3WyvPu1WpuQirQxvlazboq2UkojAFBpjWgl1JxBKIXjDTNWwvmMN72VZCtUiL4Tp20Yig-KCbE_ezsNBT8GOEGbtwernhg97DSF_0YC6MYiFaLFndVeaqlLQ8r5WxhQy9xuVXR9Orin4n0eMSR_8Mbi8vhZKqrKphaoztT5RJvgYA_YvUznTS8x6iVm_xFw8AVlBpeg |
CitedBy_id | crossref_primary_10_1039_D4TC00704B crossref_primary_10_1016_j_jcis_2024_04_160 |
Cites_doi | 10.1039/C9NR10745B 10.1021/acs.nanolett.1c01631 10.1016/j.optmat.2017.08.038 10.1039/C8TC05740K 10.1016/j.orgel.2017.03.018 10.1002/adfm.201907113 10.1039/DF9592700007 10.1021/acsnano.7b05442 10.1002/adfm.202202087 10.1063/1.5086726 10.1002/adom.202002030 10.1021/acs.jpclett.1c00008 10.1002/adfm.201904602 10.1063/1.5135623 10.1021/acsami.9b21666 10.1021/acsami.0c22677 10.1021/acs.chemmater.7b00478 10.1002/smll.201602366 10.1002/aenm.201502458 10.1016/j.apsusc.2019.03.300 10.1016/j.apsusc.2018.10.213 10.1021/acs.chemmater.8b01235 10.1002/adma.202002638 10.1021/acs.nanolett.5b00105 10.1038/s41377-019-0218-y 10.1038/srep00591 10.1002/admt.202201367 10.1002/adma.201802883 10.1039/C5CP00448A 10.1038/s41467-022-30894-4 10.1021/nl5048779 10.1021/acsami.0c09221 10.1021/acs.jpcc.6b00612 10.1021/acsami.0c05114 10.1021/jacs.7b11955 10.1016/j.orgel.2014.07.018 10.1002/adma.201900871 10.1002/adma.201702217 10.1002/aelm.201800772 10.1021/jacs.7b05260 10.1002/advs.202000068 10.1002/adfm.202003285 10.1038/lsa.2016.126 10.1002/smll.202205950 10.1021/acsaelm.2c00306 10.1002/adfm.201902784 10.1080/00268948908065785 10.1126/science.1243982 10.1016/j.orgel.2019.105461 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PIMPY PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1002/smsc.202300068 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2688-4046 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_9cee32bef07d4c558ab1f78cc36e3298 10_1002_smsc_202300068 |
GroupedDBID | 0R~ 1OC 24P 88I AAFWJ AAHHS AAYXX ABDBF ABUWG ACCFJ ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AZQEC BENPR CCPQU CITATION DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IAO IGS ITC M2P M~E OK1 PIMPY WIN 3V. 7XB 8FK PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c412t-c1b867b3b5886eea08ecccb6a7d2ea422190c590fd091f64428be132cfb96e0a3 |
IEDL.DBID | DOA |
ISSN | 2688-4046 |
IngestDate | Tue Oct 22 15:08:46 EDT 2024 Thu Oct 10 19:42:28 EDT 2024 Fri Nov 22 01:08:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-c1b867b3b5886eea08ecccb6a7d2ea422190c590fd091f64428be132cfb96e0a3 |
ORCID | 0000-0003-2157-732X |
OpenAccessLink | https://doaj.org/article/9cee32bef07d4c558ab1f78cc36e3298 |
PQID | 2868497287 |
PQPubID | 5068498 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cee32bef07d4c558ab1f78cc36e3298 proquest_journals_2868497287 crossref_primary_10_1002_smsc_202300068 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-00 20230901 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-00 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small science |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_12_1 doi: 10.1039/C9NR10745B – ident: e_1_2_8_44_1 doi: 10.1021/acs.nanolett.1c01631 – ident: e_1_2_8_46_1 doi: 10.1016/j.optmat.2017.08.038 – ident: e_1_2_8_5_1 doi: 10.1039/C8TC05740K – ident: e_1_2_8_18_1 doi: 10.1016/j.orgel.2017.03.018 – ident: e_1_2_8_7_1 doi: 10.1002/adfm.201907113 – ident: e_1_2_8_40_1 doi: 10.1039/DF9592700007 – ident: e_1_2_8_25_1 doi: 10.1021/acsnano.7b05442 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.202202087 – ident: e_1_2_8_14_1 doi: 10.1063/1.5086726 – ident: e_1_2_8_50_1 doi: 10.1002/adom.202002030 – ident: e_1_2_8_29_1 doi: 10.1021/acs.jpclett.1c00008 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201904602 – ident: e_1_2_8_20_1 doi: 10.1063/1.5135623 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.9b21666 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.0c22677 – ident: e_1_2_8_42_1 doi: 10.1021/acs.chemmater.7b00478 – ident: e_1_2_8_47_1 doi: 10.1002/smll.201602366 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.201502458 – ident: e_1_2_8_43_1 doi: 10.1016/j.apsusc.2019.03.300 – ident: e_1_2_8_19_1 doi: 10.1016/j.apsusc.2018.10.213 – ident: e_1_2_8_23_1 doi: 10.1021/acs.chemmater.8b01235 – ident: e_1_2_8_15_1 doi: 10.1002/adma.202002638 – ident: e_1_2_8_37_1 doi: 10.1021/acs.nanolett.5b00105 – ident: e_1_2_8_48_1 doi: 10.1038/s41377-019-0218-y – ident: e_1_2_8_22_1 doi: 10.1038/srep00591 – ident: e_1_2_8_34_1 doi: 10.1002/admt.202201367 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201802883 – ident: e_1_2_8_27_1 doi: 10.1039/C5CP00448A – ident: e_1_2_8_8_1 doi: 10.1038/s41467-022-30894-4 – ident: e_1_2_8_28_1 doi: 10.1021/nl5048779 – ident: e_1_2_8_16_1 doi: 10.1021/acsami.0c09221 – ident: e_1_2_8_45_1 doi: 10.1021/acs.jpcc.6b00612 – ident: e_1_2_8_10_1 doi: 10.1021/acsami.0c05114 – ident: e_1_2_8_30_1 doi: 10.1021/jacs.7b11955 – ident: e_1_2_8_36_1 doi: 10.1016/j.orgel.2014.07.018 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201900871 – ident: e_1_2_8_32_1 doi: 10.1002/adma.201702217 – ident: e_1_2_8_6_1 doi: 10.1002/aelm.201800772 – ident: e_1_2_8_41_1 doi: 10.1021/jacs.7b05260 – ident: e_1_2_8_39_1 doi: 10.1002/advs.202000068 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.202003285 – ident: e_1_2_8_38_1 doi: 10.1038/lsa.2016.126 – ident: e_1_2_8_31_1 doi: 10.1002/smll.202205950 – ident: e_1_2_8_13_1 doi: 10.1021/acsaelm.2c00306 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.201902784 – ident: e_1_2_8_2_1 doi: 10.1080/00268948908065785 – ident: e_1_2_8_21_1 doi: 10.1126/science.1243982 – ident: e_1_2_8_33_1 doi: 10.1016/j.orgel.2019.105461 |
SSID | ssj0002511792 |
Score | 2.2977066 |
Snippet | An organic nano‐floating‐gate transistor (ONFGT) with both photosynaptic and electrical memory functions is developed using a perovskite (CsPbBr
3
)... An organic nano-floating-gate transistor (ONFGT) with both photosynaptic and electrical memory functions is developed using a perovskite (CsPbBr3)... An organic nano‐floating‐gate transistor (ONFGT) with both photosynaptic and electrical memory functions is developed using a perovskite (CsPbBr3)... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
SubjectTerms | Electrodes Electrons Energy Light memory Nanocomposites Nanocrystals Nanomaterials organic nano-floating gate transistors photosynaptic Process controls provskite nanocrystals Thin films Transistors |
Title | Implementation of Photosynaptic and Electrical Memory Functions in Organic Nano‐Floating‐Gate Transistors via a Perovskite‐Nanocrystal‐Based Nanocomposite Tunneling Layer |
URI | https://www.proquest.com/docview/2868497287 https://doaj.org/article/9cee32bef07d4c558ab1f78cc36e3298 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBZNoJBLaNqGbpoEHQo9mdiyfo9NsksObQm0hd6MfkkgscN6N7C3PkKfpY-UJ8mM7F0SeuilN1vIstCM5kd884mQDxAVh0oaVQhXO0hQjC20ZbJw0SAbO5cpQ_4vvqmvP_X5FGlyNld9ISZsoAceFu7EgBWvmYupVIF7IbR1VVLa-1pCuxnKfEv5JJlCG4yBszJszdJYspP-tkfGQoi4sSrimRfKZP1_2eLsYGavyO4YGdJPw4z2yIvYviYvM0LT92_In8zjezuWCrW0S_Tyqlt0_aq1sO09tW2g03ypDa47_YIQ2hWdgd_KqkWvWzoUXnoKJrV7-PV7dtNZRD3DIx6i0ey3Mm1IT--vLbX0Ms67-x4PeKEPfuXnKwgnb-DtFNxfyCMhKh2hXzDAElEzMCL9bCGUf0t-zKbfzy6K8cKFwvOKLQpfOS0VCE1oLWO0pQYBeyetCixazsC6lV6YMgWIMhJEUky7COmsT87IWNp6n2y3XRvfEapMiLzyZWDWc5Mqy7k3knERkxC1CBPycS2A5m7g1WgGBmXWoKiajagm5BTls-mFfNi5AbSkGbWk-ZeWTMjhWrrNuEn7hmmpuVGQMx78j3-8Jzs46QGAdki2F_NlPCJbfVgeZ-V8BGZT8rg |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+Photosynaptic+and+Electrical+Memory+Functions+in+Organic+Nano-Floating-Gate+Transistors+via+a+Perovskite-Nanocrystal-Based+Nanocomposite+Tunneling+Layer&rft.jtitle=Small+science&rft.au=Moon%2C+Byung+Joon&rft.au=Young-Seok%2C+Song&rft.au=Son%2C+Dabin&rft.au=Hee+Yun+Yang&rft.date=2023-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2688-4046&rft.volume=3&rft.issue=9&rft_id=info:doi/10.1002%2Fsmsc.202300068&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4046&client=summon |