Electrospinning of native and anionic corn starch fibers with different amylose contents
Through starch phosphorylation and solution aging treatments, the aim of this work was to produce electrospun fibers derived from native and anionic (modified with sodium tripolyphosphate) corn starches with amylose contents of <70% (w/w). The fibers of native and anionic corn starches (regular a...
Saved in:
Published in: | Food research international Vol. 116; pp. 1318 - 1326 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Canada
Elsevier Ltd
01-02-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Through starch phosphorylation and solution aging treatments, the aim of this work was to produce electrospun fibers derived from native and anionic (modified with sodium tripolyphosphate) corn starches with amylose contents of <70% (w/w). The fibers of native and anionic corn starches (regular amylose and high amylose Hylon V/Hylon VII) were prepared by electrospinning of starch solutions dissolved in aqueous 75% formic acid (v/v) solvent. The effects of the aging (24, 48, and 72 h) on the rheology and electrical conductivity of the starch solutions, as well as the material properties (size distribution, morphology, and infrared spectrum) of the resulting electrospun fibers, were evaluated. Fibers produced from Hylon VII and Hylon V starches showed homogeneous morphologies, whereas the fibers from regular corn starches exhibited droplets and had heterogeneous morphologies, with diameter varied from 70 to 264 nm. Both native and anionic corn starches, with amylose contents of <70% (w/w), produced smooth continuous fibers. The electrospun corn starch fibers potentially can be used as carriers for the encapsulation of active components in food and packaging applications.
[Display omitted]
•Starch fibers with different amylose contents were produced by electrospinning.•The anionic modification of starch increased the viscosity of the polymer solution.•Increased aging time of the polymer solution reduced its viscosity.•Anionic Hylon V produced more homogeneous and less beaded fibers than unmodified starches. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0963-9969 1873-7145 |
DOI: | 10.1016/j.foodres.2018.10.021 |