Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac-Volkov solutions

In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum el...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Vol. 79; no. 2 Pt 2; p. 026707
Main Authors: Lötstedt, Erik, Jentschura, Ulrich D
Format: Journal Article
Language:English
Published: United States 01-02-2009
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.
AbstractList In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.
ArticleNumber 026707
Author Jentschura, Ulrich D
Lötstedt, Erik
Author_xml – sequence: 1
  givenname: Erik
  surname: Lötstedt
  fullname: Lötstedt, Erik
  email: erik.loetstedt@mpi-hd.mpg.de
  organization: Max-Planck-Institut für Kernphysik, Postfach 10 39 80, 69029 Heidelberg, Germany. erik.loetstedt@mpi-hd.mpg.de
– sequence: 2
  givenname: Ulrich D
  surname: Jentschura
  fullname: Jentschura, Ulrich D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19391874$$D View this record in MEDLINE/PubMed
BookMark eNpFkMtOwzAQRS1UBLTwAyyQV-xS7DqOY3a8QUKAELCNJs4YUpy42Eml8vUEWonVXGnOvYszJqPWt0jIIWdTzpk4WXysYsAlTpWeslmmmNoie1xKlsyEyka_WehEKCl3yTjGOWNiJvJ0h-xyLTTPVbpH5s9o-hDrJVJw7z7U3UdDrQ8UQoBVpN7Sd2wxgKu_saLnGCM6avvWdLVv4yl96BsMtQFHwZjhSztPL-sAJnnz7tMvafSu_2P3ybYFF_Fgcyfk9frq5eI2uX-8ubs4u09MynmXoBK8UhyrkrPSYs7TsrTcSswloKkANNg018C0tCUqAJnpNDNcloqhFlZMyPF6dxH8V4-xK5o6GnQOWvR9LDLFlZaZHMDZGjTBx8GkLRahbiCsCs6KX8PF02D4GZdXhdLF2vBQOtqs92WD1X9lo1T8ABqzfmA
CitedBy_id crossref_primary_10_1016_j_physrep_2023_01_003
crossref_primary_10_1142_S0217751X23501877
crossref_primary_10_1142_S0217984918500586
crossref_primary_10_1088_0953_4075_49_14_145601
crossref_primary_10_1063_1_4725190
crossref_primary_10_1103_PhysRevD_106_013010
crossref_primary_10_1007_s11467_018_0765_3
crossref_primary_10_1103_PhysRevD_107_096004
crossref_primary_10_1016_j_cpc_2011_11_010
crossref_primary_10_1088_0741_3335_57_2_025013
crossref_primary_10_1088_1612_202X_acaea3
crossref_primary_10_1103_PhysRevA_91_033402
crossref_primary_10_1103_PhysRevA_80_053419
crossref_primary_10_3390_photonics8060182
crossref_primary_10_1063_5_0159963
crossref_primary_10_1103_PhysRevA_85_013402
crossref_primary_10_1103_PhysRevLett_107_260401
crossref_primary_10_1139_P10_092
crossref_primary_10_1016_j_physletb_2022_137620
crossref_primary_10_1103_PhysRevD_105_056018
crossref_primary_10_1016_j_physleta_2010_01_052
crossref_primary_10_1088_1674_1056_ad24d8
crossref_primary_10_3390_sym13020159
crossref_primary_10_1103_PhysRevA_80_063407
Cites_doi 10.1088/1751-8113/40/10/006
10.1007/BF02726105
10.1016/0010-4655(93)90062-H
10.1016/0010-4655(93)90153-4
10.1103/PhysRevA.75.063403
10.2307/2005879
10.1103/PhysRevD.1.2738
10.1088/1367-2630/11/1/013054
10.1016/S0010-4655(97)00087-8
10.1103/PhysRevA.23.2877
10.1103/PhysRevA.75.053412
10.1007/BF01399009
10.1103/PhysRevA.61.063407
10.2307/2333783
10.1103/PhysRevE.48.3030
10.1088/0953-4075/33/10/304
10.1103/PhysRevLett.81.1833
10.1007/BF02723125
10.1103/PhysRevA.65.033408
10.1007/BF02166688
10.1007/BF02161370
10.1016/0898-1221(95)00130-Q
10.1007/BF01934397
10.1016/0003-4916(74)90399-6
10.2307/2003406
10.1137/050636814
10.1103/PhysRevA.65.022712
10.1007/BF02162423
10.1016/j.physletb.2007.11.002
10.1088/0305-4470/36/20/313
10.1103/PhysRev.133.A705
10.1016/S0898-1221(98)00050-9
10.1103/PhysRevA.35.4624
10.1088/0305-4470/39/48/008
10.1007/BF01060832
10.1103/PhysRevA.70.023412
10.1201/9781439864548
10.1016/j.physrep.2003.10.001
10.1103/PhysRevA.77.033413
10.1006/acha.1993.1009
10.1088/0953-4075/36/11/310
10.1103/PhysRevLett.98.043002
10.1103/PhysRevA.73.053409
10.1007/BF01331022
10.1137/1009002
10.1063/1.1703787
10.1103/PhysRevA.22.1786
10.1103/PhysRevA.78.033408
10.1103/PhysRevD.3.621
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1103/physreve.79.026707
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1550-2376
EndPage 026707
ExternalDocumentID 10_1103_PhysRevE_79_026707
19391874
Genre Journal Article
GroupedDBID ---
-~X
123
2-P
29O
3MX
6TJ
8NH
ACGFO
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CS3
DU5
EBS
EJD
F5P
MVM
NPBMV
NPM
OHT
P2P
RNS
S7W
TN5
WH7
XJT
YNT
ZPR
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c411t-e731d71edb10bfe814bbf1f5e85aecdaa9af489a095fbe7aa56946c15b70e93f3
IEDL.DBID ZPR
ISSN 1539-3755
IngestDate Fri Oct 25 05:33:34 EDT 2024
Fri Aug 23 00:44:20 EDT 2024
Sat Sep 28 07:44:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2 Pt 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-e731d71edb10bfe814bbf1f5e85aecdaa9af489a095fbe7aa56946c15b70e93f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://arxiv.org/pdf/0902.1099
PMID 19391874
PQID 67179565
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_67179565
crossref_primary_10_1103_PhysRevE_79_026707
pubmed_primary_19391874
PublicationCentury 2000
PublicationDate 2009-02-01
PublicationDateYYYYMMDD 2009-02-01
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. E, Statistical, nonlinear, and soft matter physics
PublicationTitleAlternate Phys Rev E Stat Nonlin Soft Matter Phys
PublicationYear 2009
References C. Jordan (PhysRevE.79.026707Cc41R1) 1960
PhysRevE.79.026707Cc27R1
PhysRevE.79.026707Cc29R1
PhysRevE.79.026707Cc51R1
PhysRevE.79.026707Cc13R1
PhysRevE.79.026707Cc36R1
PhysRevE.79.026707Cc15R1
PhysRevE.79.026707Cc30R1
PhysRevE.79.026707Cc55R1
PhysRevE.79.026707Cc11R1
PhysRevE.79.026707Cc32R1
G. N. Watson (PhysRevE.79.026707Cc43R1) 1962
J. Wimp (PhysRevE.79.026707Cc39R1) 1984
PhysRevE.79.026707Cc16R1
PhysRevE.79.026707Cc18R1
PhysRevE.79.026707Cc7R1
D. Huybrechs (PhysRevE.79.026707Cc52R1) 2006; 44
PhysRevE.79.026707Cc5R1
V. B. Berestetskii (PhysRevE.79.026707Cc53R1) 1982
PhysRevE.79.026707Cc9R1
PhysRevE.79.026707Cc23R1
PhysRevE.79.026707Cc48R1
S. P. Roshchupkin (PhysRevE.79.026707Cc10R2) 1985; 41
PhysRevE.79.026707Cc25R1
PhysRevE.79.026707Cc46R1
PhysRevE.79.026707Cc44R1
PhysRevE.79.026707Cc1R1
PhysRevE.79.026707Cc21R1
PhysRevE.79.026707Cc42R1
PhysRevE.79.026707Cc28R1
PhysRevE.79.026707Cc49R1
PhysRevE.79.026707Cc50R1
A. I. Nikishov (PhysRevE.79.026707Cc3R1) 1964; 46
S. P. Roshchupkin (PhysRevE.79.026707Cc10R1) 1985; 41
PhysRevE.79.026707Cc12R1
PhysRevE.79.026707Cc37R1
A. I. Nikishov (PhysRevE.79.026707Cc3R2) 1964; 19
PhysRevE.79.026707Cc14R1
PhysRevE.79.026707Cc35R1
PhysRevE.79.026707Cc31R1
PhysRevE.79.026707Cc54R1
W. G. Bickley (PhysRevE.79.026707Cc34R1) 1960
PhysRevE.79.026707Cc33R1
PhysRevE.79.026707Cc17R1
PhysRevE.79.026707Cc19R1
PhysRevE.79.026707Cc38R1
PhysRevE.79.026707Cc8R1
F. W. J. Olver (PhysRevE.79.026707Cc40R1) 1997
PhysRevE.79.026707Cc6R1
PhysRevE.79.026707Cc24R1
PhysRevE.79.026707Cc47R1
PhysRevE.79.026707Cc26R1
PhysRevE.79.026707Cc45R1
PhysRevE.79.026707Cc20R1
PhysRevE.79.026707Cc4R1
PhysRevE.79.026707Cc22R1
PhysRevE.79.026707Cc2R1
References_xml – ident: PhysRevE.79.026707Cc31R1
  doi: 10.1088/1751-8113/40/10/006
– ident: PhysRevE.79.026707Cc25R1
  doi: 10.1007/BF02726105
– ident: PhysRevE.79.026707Cc48R1
  doi: 10.1016/0010-4655(93)90062-H
– ident: PhysRevE.79.026707Cc49R1
  doi: 10.1016/0010-4655(93)90153-4
– volume-title: A Treatise on the Theory of Bessel Functions
  year: 1962
  ident: PhysRevE.79.026707Cc43R1
  contributor:
    fullname: G. N. Watson
– ident: PhysRevE.79.026707Cc21R1
  doi: 10.1103/PhysRevA.75.063403
– ident: PhysRevE.79.026707Cc47R1
  doi: 10.2307/2005879
– volume: 41
  start-page: 796
  year: 1985
  ident: PhysRevE.79.026707Cc10R2
  publication-title: Sov. J. Nucl. Phys.
  contributor:
    fullname: S. P. Roshchupkin
– ident: PhysRevE.79.026707Cc14R1
  doi: 10.1103/PhysRevD.1.2738
– ident: PhysRevE.79.026707Cc33R1
  doi: 10.1088/1367-2630/11/1/013054
– volume: 46
  start-page: 776
  year: 1964
  ident: PhysRevE.79.026707Cc3R1
  publication-title: Zh. Eksp. Teor. Fiz.
  contributor:
    fullname: A. I. Nikishov
– ident: PhysRevE.79.026707Cc50R1
  doi: 10.1016/S0010-4655(97)00087-8
– ident: PhysRevE.79.026707Cc32R1
  doi: 10.1103/PhysRevA.23.2877
– ident: PhysRevE.79.026707Cc9R1
  doi: 10.1103/PhysRevA.75.053412
– ident: PhysRevE.79.026707Cc37R1
  doi: 10.1007/BF01399009
– ident: PhysRevE.79.026707Cc24R1
  doi: 10.1103/PhysRevA.61.063407
– volume-title: Calculus of Finite Differences
  year: 1960
  ident: PhysRevE.79.026707Cc41R1
  doi: 10.2307/2333783
  contributor:
    fullname: C. Jordan
– ident: PhysRevE.79.026707Cc13R1
  doi: 10.1103/PhysRevE.48.3030
– ident: PhysRevE.79.026707Cc17R1
  doi: 10.1088/0953-4075/33/10/304
– ident: PhysRevE.79.026707Cc23R1
  doi: 10.1103/PhysRevLett.81.1833
– ident: PhysRevE.79.026707Cc26R1
  doi: 10.1007/BF02723125
– ident: PhysRevE.79.026707Cc15R1
  doi: 10.1103/PhysRevA.65.033408
– ident: PhysRevE.79.026707Cc36R1
  doi: 10.1007/BF02166688
– ident: PhysRevE.79.026707Cc51R1
  doi: 10.1007/BF02161370
– ident: PhysRevE.79.026707Cc28R1
  doi: 10.1016/0898-1221(95)00130-Q
– ident: PhysRevE.79.026707Cc38R1
  doi: 10.1007/BF01934397
– ident: PhysRevE.79.026707Cc42R1
  doi: 10.1016/0003-4916(74)90399-6
– ident: PhysRevE.79.026707Cc45R1
  doi: 10.2307/2003406
– volume: 44
  start-page: 1026
  year: 2006
  ident: PhysRevE.79.026707Cc52R1
  publication-title: SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
  doi: 10.1137/050636814
  contributor:
    fullname: D. Huybrechs
– ident: PhysRevE.79.026707Cc16R1
  doi: 10.1103/PhysRevA.65.022712
– ident: PhysRevE.79.026707Cc46R1
  doi: 10.1007/BF02162423
– ident: PhysRevE.79.026707Cc11R1
  doi: 10.1016/j.physletb.2007.11.002
– ident: PhysRevE.79.026707Cc20R1
  doi: 10.1088/0305-4470/36/20/313
– ident: PhysRevE.79.026707Cc4R1
  doi: 10.1103/PhysRev.133.A705
– ident: PhysRevE.79.026707Cc29R1
  doi: 10.1016/S0898-1221(98)00050-9
– ident: PhysRevE.79.026707Cc5R1
  doi: 10.1103/PhysRevA.35.4624
– ident: PhysRevE.79.026707Cc30R1
  doi: 10.1088/0305-4470/39/48/008
– volume: 19
  start-page: 529
  year: 1964
  ident: PhysRevE.79.026707Cc3R2
  publication-title: Sov. Phys. JETP
  contributor:
    fullname: A. I. Nikishov
– ident: PhysRevE.79.026707Cc27R1
  doi: 10.1007/BF01060832
– volume-title: Bessel Functions, Part II, Functions of Positive Integer Order
  year: 1960
  ident: PhysRevE.79.026707Cc34R1
  contributor:
    fullname: W. G. Bickley
– ident: PhysRevE.79.026707Cc6R1
  doi: 10.1103/PhysRevA.70.023412
– volume-title: Asymptotics and Special Functions
  year: 1997
  ident: PhysRevE.79.026707Cc40R1
  doi: 10.1201/9781439864548
  contributor:
    fullname: F. W. J. Olver
– ident: PhysRevE.79.026707Cc54R1
  doi: 10.1016/j.physrep.2003.10.001
– ident: PhysRevE.79.026707Cc22R1
  doi: 10.1103/PhysRevA.77.033413
– volume-title: Computation with Recurrence Relations
  year: 1984
  ident: PhysRevE.79.026707Cc39R1
  contributor:
    fullname: J. Wimp
– ident: PhysRevE.79.026707Cc44R1
  doi: 10.1006/acha.1993.1009
– ident: PhysRevE.79.026707Cc18R1
  doi: 10.1088/0953-4075/36/11/310
– volume-title: Quantum Electrodynamics
  year: 1982
  ident: PhysRevE.79.026707Cc53R1
  contributor:
    fullname: V. B. Berestetskii
– ident: PhysRevE.79.026707Cc8R1
  doi: 10.1103/PhysRevLett.98.043002
– ident: PhysRevE.79.026707Cc7R1
  doi: 10.1103/PhysRevA.73.053409
– volume: 41
  start-page: 1244
  year: 1985
  ident: PhysRevE.79.026707Cc10R1
  publication-title: Yad. Fiz.
  contributor:
    fullname: S. P. Roshchupkin
– ident: PhysRevE.79.026707Cc1R1
  doi: 10.1007/BF01331022
– ident: PhysRevE.79.026707Cc35R1
  doi: 10.1137/1009002
– ident: PhysRevE.79.026707Cc2R1
  doi: 10.1063/1.1703787
– ident: PhysRevE.79.026707Cc19R1
  doi: 10.1103/PhysRevA.22.1786
– ident: PhysRevE.79.026707Cc12R1
  doi: 10.1103/PhysRevA.78.033408
– ident: PhysRevE.79.026707Cc55R1
  doi: 10.1103/PhysRevD.3.621
SSID ssj0032384
Score 1.768982
Snippet In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 026707
Title Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac-Volkov solutions
URI https://www.ncbi.nlm.nih.gov/pubmed/19391874
https://search.proquest.com/docview/67179565
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUACYkL-1JWH7hBSozjOObGUsSJQ1nELRpvpVAalC4SfD123ICQyoFzJMd6M_bMeJaH0KFgSZqCZVFshAgBiqQaIm0IlUBkLGRFnXDHb5-yq5Yfk3M8PYNPYnriKyHbZtxqctH0dEmhdTzjomoWadfXLnW2JwnDUYU7NYzVHTJTl_hthf5wLSsTc730v80to8WJK4nPg-xX0Izpr6L5qqRTDdbQS9s_pfvqdAy9TlF2h89v2LmoGMoSPga4sLgTZk53P43GF36IeA97O1ep4hm-HYVsTg9DxaqIhwV2NySo6LHovRZj_K226-jhunV_eRNNmBUilRAyjAynRHNitCSxtCYjiZSWWGYyBkZpAAE2yQQ4_8tKwwFYKpJUESa5kym1dAPN9Yu-2ULYnmpwLhDPlMPfQSCJUlmmgKvEfdHQQEc10vl7GKCRV4FHTPMavZyLPKDXQAe1MHKn5z55AX1TjAZ56uJOF8uxBtoMMvpZTVDhmQW3__WnHbQQEkO-MmUXzQ3LkdlDswM92q_06gsMmswv
link.rule.ids 315,782,786,2879,27933,27934
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+algorithm+for+arrays+of+generalized+Bessel+functions%3A+Numerical+access+to+Dirac-Volkov+solutions&rft.jtitle=Physical+review.+E%2C+Statistical%2C+nonlinear%2C+and+soft+matter+physics&rft.au=L%C3%B6tstedt%2C+Erik&rft.au=Jentschura%2C+Ulrich+D&rft.date=2009-02-01&rft.issn=1539-3755&rft.volume=79&rft.issue=2+Pt+2&rft.spage=026707&rft.epage=026707&rft_id=info:doi/10.1103%2Fphysreve.79.026707&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-3755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-3755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-3755&client=summon