Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac-Volkov solutions
In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum el...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Vol. 79; no. 2 Pt 2; p. 026707 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-02-2009
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations. |
---|---|
AbstractList | In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations. |
ArticleNumber | 026707 |
Author | Jentschura, Ulrich D Lötstedt, Erik |
Author_xml | – sequence: 1 givenname: Erik surname: Lötstedt fullname: Lötstedt, Erik email: erik.loetstedt@mpi-hd.mpg.de organization: Max-Planck-Institut für Kernphysik, Postfach 10 39 80, 69029 Heidelberg, Germany. erik.loetstedt@mpi-hd.mpg.de – sequence: 2 givenname: Ulrich D surname: Jentschura fullname: Jentschura, Ulrich D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19391874$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkMtOwzAQRS1UBLTwAyyQV-xS7DqOY3a8QUKAELCNJs4YUpy42Eml8vUEWonVXGnOvYszJqPWt0jIIWdTzpk4WXysYsAlTpWeslmmmNoie1xKlsyEyka_WehEKCl3yTjGOWNiJvJ0h-xyLTTPVbpH5s9o-hDrJVJw7z7U3UdDrQ8UQoBVpN7Sd2wxgKu_saLnGCM6avvWdLVv4yl96BsMtQFHwZjhSztPL-sAJnnz7tMvafSu_2P3ybYFF_Fgcyfk9frq5eI2uX-8ubs4u09MynmXoBK8UhyrkrPSYs7TsrTcSswloKkANNg018C0tCUqAJnpNDNcloqhFlZMyPF6dxH8V4-xK5o6GnQOWvR9LDLFlZaZHMDZGjTBx8GkLRahbiCsCs6KX8PF02D4GZdXhdLF2vBQOtqs92WD1X9lo1T8ABqzfmA |
CitedBy_id | crossref_primary_10_1016_j_physrep_2023_01_003 crossref_primary_10_1142_S0217751X23501877 crossref_primary_10_1142_S0217984918500586 crossref_primary_10_1088_0953_4075_49_14_145601 crossref_primary_10_1063_1_4725190 crossref_primary_10_1103_PhysRevD_106_013010 crossref_primary_10_1007_s11467_018_0765_3 crossref_primary_10_1103_PhysRevD_107_096004 crossref_primary_10_1016_j_cpc_2011_11_010 crossref_primary_10_1088_0741_3335_57_2_025013 crossref_primary_10_1088_1612_202X_acaea3 crossref_primary_10_1103_PhysRevA_91_033402 crossref_primary_10_1103_PhysRevA_80_053419 crossref_primary_10_3390_photonics8060182 crossref_primary_10_1063_5_0159963 crossref_primary_10_1103_PhysRevA_85_013402 crossref_primary_10_1103_PhysRevLett_107_260401 crossref_primary_10_1139_P10_092 crossref_primary_10_1016_j_physletb_2022_137620 crossref_primary_10_1103_PhysRevD_105_056018 crossref_primary_10_1016_j_physleta_2010_01_052 crossref_primary_10_1088_1674_1056_ad24d8 crossref_primary_10_3390_sym13020159 crossref_primary_10_1103_PhysRevA_80_063407 |
Cites_doi | 10.1088/1751-8113/40/10/006 10.1007/BF02726105 10.1016/0010-4655(93)90062-H 10.1016/0010-4655(93)90153-4 10.1103/PhysRevA.75.063403 10.2307/2005879 10.1103/PhysRevD.1.2738 10.1088/1367-2630/11/1/013054 10.1016/S0010-4655(97)00087-8 10.1103/PhysRevA.23.2877 10.1103/PhysRevA.75.053412 10.1007/BF01399009 10.1103/PhysRevA.61.063407 10.2307/2333783 10.1103/PhysRevE.48.3030 10.1088/0953-4075/33/10/304 10.1103/PhysRevLett.81.1833 10.1007/BF02723125 10.1103/PhysRevA.65.033408 10.1007/BF02166688 10.1007/BF02161370 10.1016/0898-1221(95)00130-Q 10.1007/BF01934397 10.1016/0003-4916(74)90399-6 10.2307/2003406 10.1137/050636814 10.1103/PhysRevA.65.022712 10.1007/BF02162423 10.1016/j.physletb.2007.11.002 10.1088/0305-4470/36/20/313 10.1103/PhysRev.133.A705 10.1016/S0898-1221(98)00050-9 10.1103/PhysRevA.35.4624 10.1088/0305-4470/39/48/008 10.1007/BF01060832 10.1103/PhysRevA.70.023412 10.1201/9781439864548 10.1016/j.physrep.2003.10.001 10.1103/PhysRevA.77.033413 10.1006/acha.1993.1009 10.1088/0953-4075/36/11/310 10.1103/PhysRevLett.98.043002 10.1103/PhysRevA.73.053409 10.1007/BF01331022 10.1137/1009002 10.1063/1.1703787 10.1103/PhysRevA.22.1786 10.1103/PhysRevA.78.033408 10.1103/PhysRevD.3.621 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1103/physreve.79.026707 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1550-2376 |
EndPage | 026707 |
ExternalDocumentID | 10_1103_PhysRevE_79_026707 19391874 |
Genre | Journal Article |
GroupedDBID | --- -~X 123 2-P 29O 3MX 6TJ 8NH ACGFO AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS AUAIK CS3 DU5 EBS EJD F5P MVM NPBMV NPM OHT P2P RNS S7W TN5 WH7 XJT YNT ZPR AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c411t-e731d71edb10bfe814bbf1f5e85aecdaa9af489a095fbe7aa56946c15b70e93f3 |
IEDL.DBID | ZPR |
ISSN | 1539-3755 |
IngestDate | Fri Oct 25 05:33:34 EDT 2024 Fri Aug 23 00:44:20 EDT 2024 Sat Sep 28 07:44:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 Pt 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-e731d71edb10bfe814bbf1f5e85aecdaa9af489a095fbe7aa56946c15b70e93f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://arxiv.org/pdf/0902.1099 |
PMID | 19391874 |
PQID | 67179565 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_67179565 crossref_primary_10_1103_PhysRevE_79_026707 pubmed_primary_19391874 |
PublicationCentury | 2000 |
PublicationDate | 2009-02-01 |
PublicationDateYYYYMMDD | 2009-02-01 |
PublicationDate_xml | – month: 02 year: 2009 text: 2009-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review. E, Statistical, nonlinear, and soft matter physics |
PublicationTitleAlternate | Phys Rev E Stat Nonlin Soft Matter Phys |
PublicationYear | 2009 |
References | C. Jordan (PhysRevE.79.026707Cc41R1) 1960 PhysRevE.79.026707Cc27R1 PhysRevE.79.026707Cc29R1 PhysRevE.79.026707Cc51R1 PhysRevE.79.026707Cc13R1 PhysRevE.79.026707Cc36R1 PhysRevE.79.026707Cc15R1 PhysRevE.79.026707Cc30R1 PhysRevE.79.026707Cc55R1 PhysRevE.79.026707Cc11R1 PhysRevE.79.026707Cc32R1 G. N. Watson (PhysRevE.79.026707Cc43R1) 1962 J. Wimp (PhysRevE.79.026707Cc39R1) 1984 PhysRevE.79.026707Cc16R1 PhysRevE.79.026707Cc18R1 PhysRevE.79.026707Cc7R1 D. Huybrechs (PhysRevE.79.026707Cc52R1) 2006; 44 PhysRevE.79.026707Cc5R1 V. B. Berestetskii (PhysRevE.79.026707Cc53R1) 1982 PhysRevE.79.026707Cc9R1 PhysRevE.79.026707Cc23R1 PhysRevE.79.026707Cc48R1 S. P. Roshchupkin (PhysRevE.79.026707Cc10R2) 1985; 41 PhysRevE.79.026707Cc25R1 PhysRevE.79.026707Cc46R1 PhysRevE.79.026707Cc44R1 PhysRevE.79.026707Cc1R1 PhysRevE.79.026707Cc21R1 PhysRevE.79.026707Cc42R1 PhysRevE.79.026707Cc28R1 PhysRevE.79.026707Cc49R1 PhysRevE.79.026707Cc50R1 A. I. Nikishov (PhysRevE.79.026707Cc3R1) 1964; 46 S. P. Roshchupkin (PhysRevE.79.026707Cc10R1) 1985; 41 PhysRevE.79.026707Cc12R1 PhysRevE.79.026707Cc37R1 A. I. Nikishov (PhysRevE.79.026707Cc3R2) 1964; 19 PhysRevE.79.026707Cc14R1 PhysRevE.79.026707Cc35R1 PhysRevE.79.026707Cc31R1 PhysRevE.79.026707Cc54R1 W. G. Bickley (PhysRevE.79.026707Cc34R1) 1960 PhysRevE.79.026707Cc33R1 PhysRevE.79.026707Cc17R1 PhysRevE.79.026707Cc19R1 PhysRevE.79.026707Cc38R1 PhysRevE.79.026707Cc8R1 F. W. J. Olver (PhysRevE.79.026707Cc40R1) 1997 PhysRevE.79.026707Cc6R1 PhysRevE.79.026707Cc24R1 PhysRevE.79.026707Cc47R1 PhysRevE.79.026707Cc26R1 PhysRevE.79.026707Cc45R1 PhysRevE.79.026707Cc20R1 PhysRevE.79.026707Cc4R1 PhysRevE.79.026707Cc22R1 PhysRevE.79.026707Cc2R1 |
References_xml | – ident: PhysRevE.79.026707Cc31R1 doi: 10.1088/1751-8113/40/10/006 – ident: PhysRevE.79.026707Cc25R1 doi: 10.1007/BF02726105 – ident: PhysRevE.79.026707Cc48R1 doi: 10.1016/0010-4655(93)90062-H – ident: PhysRevE.79.026707Cc49R1 doi: 10.1016/0010-4655(93)90153-4 – volume-title: A Treatise on the Theory of Bessel Functions year: 1962 ident: PhysRevE.79.026707Cc43R1 contributor: fullname: G. N. Watson – ident: PhysRevE.79.026707Cc21R1 doi: 10.1103/PhysRevA.75.063403 – ident: PhysRevE.79.026707Cc47R1 doi: 10.2307/2005879 – volume: 41 start-page: 796 year: 1985 ident: PhysRevE.79.026707Cc10R2 publication-title: Sov. J. Nucl. Phys. contributor: fullname: S. P. Roshchupkin – ident: PhysRevE.79.026707Cc14R1 doi: 10.1103/PhysRevD.1.2738 – ident: PhysRevE.79.026707Cc33R1 doi: 10.1088/1367-2630/11/1/013054 – volume: 46 start-page: 776 year: 1964 ident: PhysRevE.79.026707Cc3R1 publication-title: Zh. Eksp. Teor. Fiz. contributor: fullname: A. I. Nikishov – ident: PhysRevE.79.026707Cc50R1 doi: 10.1016/S0010-4655(97)00087-8 – ident: PhysRevE.79.026707Cc32R1 doi: 10.1103/PhysRevA.23.2877 – ident: PhysRevE.79.026707Cc9R1 doi: 10.1103/PhysRevA.75.053412 – ident: PhysRevE.79.026707Cc37R1 doi: 10.1007/BF01399009 – ident: PhysRevE.79.026707Cc24R1 doi: 10.1103/PhysRevA.61.063407 – volume-title: Calculus of Finite Differences year: 1960 ident: PhysRevE.79.026707Cc41R1 doi: 10.2307/2333783 contributor: fullname: C. Jordan – ident: PhysRevE.79.026707Cc13R1 doi: 10.1103/PhysRevE.48.3030 – ident: PhysRevE.79.026707Cc17R1 doi: 10.1088/0953-4075/33/10/304 – ident: PhysRevE.79.026707Cc23R1 doi: 10.1103/PhysRevLett.81.1833 – ident: PhysRevE.79.026707Cc26R1 doi: 10.1007/BF02723125 – ident: PhysRevE.79.026707Cc15R1 doi: 10.1103/PhysRevA.65.033408 – ident: PhysRevE.79.026707Cc36R1 doi: 10.1007/BF02166688 – ident: PhysRevE.79.026707Cc51R1 doi: 10.1007/BF02161370 – ident: PhysRevE.79.026707Cc28R1 doi: 10.1016/0898-1221(95)00130-Q – ident: PhysRevE.79.026707Cc38R1 doi: 10.1007/BF01934397 – ident: PhysRevE.79.026707Cc42R1 doi: 10.1016/0003-4916(74)90399-6 – ident: PhysRevE.79.026707Cc45R1 doi: 10.2307/2003406 – volume: 44 start-page: 1026 year: 2006 ident: PhysRevE.79.026707Cc52R1 publication-title: SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. doi: 10.1137/050636814 contributor: fullname: D. Huybrechs – ident: PhysRevE.79.026707Cc16R1 doi: 10.1103/PhysRevA.65.022712 – ident: PhysRevE.79.026707Cc46R1 doi: 10.1007/BF02162423 – ident: PhysRevE.79.026707Cc11R1 doi: 10.1016/j.physletb.2007.11.002 – ident: PhysRevE.79.026707Cc20R1 doi: 10.1088/0305-4470/36/20/313 – ident: PhysRevE.79.026707Cc4R1 doi: 10.1103/PhysRev.133.A705 – ident: PhysRevE.79.026707Cc29R1 doi: 10.1016/S0898-1221(98)00050-9 – ident: PhysRevE.79.026707Cc5R1 doi: 10.1103/PhysRevA.35.4624 – ident: PhysRevE.79.026707Cc30R1 doi: 10.1088/0305-4470/39/48/008 – volume: 19 start-page: 529 year: 1964 ident: PhysRevE.79.026707Cc3R2 publication-title: Sov. Phys. JETP contributor: fullname: A. I. Nikishov – ident: PhysRevE.79.026707Cc27R1 doi: 10.1007/BF01060832 – volume-title: Bessel Functions, Part II, Functions of Positive Integer Order year: 1960 ident: PhysRevE.79.026707Cc34R1 contributor: fullname: W. G. Bickley – ident: PhysRevE.79.026707Cc6R1 doi: 10.1103/PhysRevA.70.023412 – volume-title: Asymptotics and Special Functions year: 1997 ident: PhysRevE.79.026707Cc40R1 doi: 10.1201/9781439864548 contributor: fullname: F. W. J. Olver – ident: PhysRevE.79.026707Cc54R1 doi: 10.1016/j.physrep.2003.10.001 – ident: PhysRevE.79.026707Cc22R1 doi: 10.1103/PhysRevA.77.033413 – volume-title: Computation with Recurrence Relations year: 1984 ident: PhysRevE.79.026707Cc39R1 contributor: fullname: J. Wimp – ident: PhysRevE.79.026707Cc44R1 doi: 10.1006/acha.1993.1009 – ident: PhysRevE.79.026707Cc18R1 doi: 10.1088/0953-4075/36/11/310 – volume-title: Quantum Electrodynamics year: 1982 ident: PhysRevE.79.026707Cc53R1 contributor: fullname: V. B. Berestetskii – ident: PhysRevE.79.026707Cc8R1 doi: 10.1103/PhysRevLett.98.043002 – ident: PhysRevE.79.026707Cc7R1 doi: 10.1103/PhysRevA.73.053409 – volume: 41 start-page: 1244 year: 1985 ident: PhysRevE.79.026707Cc10R1 publication-title: Yad. Fiz. contributor: fullname: S. P. Roshchupkin – ident: PhysRevE.79.026707Cc1R1 doi: 10.1007/BF01331022 – ident: PhysRevE.79.026707Cc35R1 doi: 10.1137/1009002 – ident: PhysRevE.79.026707Cc2R1 doi: 10.1063/1.1703787 – ident: PhysRevE.79.026707Cc19R1 doi: 10.1103/PhysRevA.22.1786 – ident: PhysRevE.79.026707Cc12R1 doi: 10.1103/PhysRevA.78.033408 – ident: PhysRevE.79.026707Cc55R1 doi: 10.1103/PhysRevD.3.621 |
SSID | ssj0032384 |
Score | 1.768982 |
Snippet | In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 026707 |
Title | Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac-Volkov solutions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19391874 https://search.proquest.com/docview/67179565 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUACYkL-1JWH7hBSozjOObGUsSJQ1nELRpvpVAalC4SfD123ICQyoFzJMd6M_bMeJaH0KFgSZqCZVFshAgBiqQaIm0IlUBkLGRFnXDHb5-yq5Yfk3M8PYNPYnriKyHbZtxqctH0dEmhdTzjomoWadfXLnW2JwnDUYU7NYzVHTJTl_hthf5wLSsTc730v80to8WJK4nPg-xX0Izpr6L5qqRTDdbQS9s_pfvqdAy9TlF2h89v2LmoGMoSPga4sLgTZk53P43GF36IeA97O1ep4hm-HYVsTg9DxaqIhwV2NySo6LHovRZj_K226-jhunV_eRNNmBUilRAyjAynRHNitCSxtCYjiZSWWGYyBkZpAAE2yQQ4_8tKwwFYKpJUESa5kym1dAPN9Yu-2ULYnmpwLhDPlMPfQSCJUlmmgKvEfdHQQEc10vl7GKCRV4FHTPMavZyLPKDXQAe1MHKn5z55AX1TjAZ56uJOF8uxBtoMMvpZTVDhmQW3__WnHbQQEkO-MmUXzQ3LkdlDswM92q_06gsMmswv |
link.rule.ids | 315,782,786,2879,27933,27934 |
linkProvider | American Physical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+algorithm+for+arrays+of+generalized+Bessel+functions%3A+Numerical+access+to+Dirac-Volkov+solutions&rft.jtitle=Physical+review.+E%2C+Statistical%2C+nonlinear%2C+and+soft+matter+physics&rft.au=L%C3%B6tstedt%2C+Erik&rft.au=Jentschura%2C+Ulrich+D&rft.date=2009-02-01&rft.issn=1539-3755&rft.volume=79&rft.issue=2+Pt+2&rft.spage=026707&rft.epage=026707&rft_id=info:doi/10.1103%2Fphysreve.79.026707&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-3755&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-3755&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-3755&client=summon |