In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs

Predation by grazing protists in aquatic habitats can influence prokaryotic community structure and provides a source of new, labile organic matter. Due to methodological difficulties associated with studies of deep-sea (below photic zone) microbiota, trophic interactions between eukaryotes and prok...

Full description

Saved in:
Bibliographic Details
Published in:Deep-sea research. Part II, Topical studies in oceanography Vol. 129; pp. 223 - 231
Main Authors: Pachiadaki, Maria G., Taylor, Craig, Oikonomou, Andreas, Yakimov, Michail M., Stoeck, Thorsten, Edgcomb, Virginia
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-07-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predation by grazing protists in aquatic habitats can influence prokaryotic community structure and provides a source of new, labile organic matter. Due to methodological difficulties associated with studies of deep-sea (below photic zone) microbiota, trophic interactions between eukaryotes and prokaryotes in mesopelagic and bathypelagic realms are largely obscured. Further complicating matters, examinations of trophic interactions using water samples that have been exposed to upwards of hundreds of atmospheres of pressure change prior to initiating experiments can potentially introduce significant artifacts. Here we present results of the first study of protistan grazing in water layers ranging from the euphotic zone to the bathypelagic, utilizing the Microbial Sampler-Submersible Incubation Device (MS-SID) that makes possible in situ studies of microbial activities. Protistan grazing in the mesopelagic and bathypelagic realm of the East Mediterranean Sea was quantified using fluorescently labeled prokaryotes (FLP) prepared from the naturally-occurring prokaryotic assemblages. These studies reveal daily prokaryotic removal due to grazing ranging from 31.3±5.9% at 40m depth to 0.5±0.3% at 950m. At 3540m depth, where a chemocline habitat exists with abundant and active prokaryotes above Urania basin, the daily consumption of prokaryotes by protists was 19.9±6.6% of the in situ abundance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0967-0645
1879-0100
DOI:10.1016/j.dsr2.2014.10.019