Comparative Study on Ant Colony Optimization (ACO) and K-Means Clustering Approaches for Jobs Scheduling and Energy Optimization Model in Internet of Things (IoT)

The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on their requirement, point of view and purpose. When transmitting data in IoT envi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of interactive multimedia and artificial intelligence Vol. 6; no. 1; pp. 107 - 116
Main Authors: Kumar, Sumit, Kumar-Solanki, Vijender, Choudhary, Saket Kumar, Selamat, Ali, Gonzalez-Crespo, Rubén
Format: Journal Article
Language:English
Published: Universidad Internacional de La Rioja (UNIR) 2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on their requirement, point of view and purpose. When transmitting data in IoT environment, distribution of network traffic fluctuates frequently. If links of the network or nodes fail randomly, then automatically new nodes get added frequently. Heavy network traffic affects the response time of all system and it consumes more energy continuously. Minimization the network traffic/ by finding the shortest path from source to destination minimizes the response time of all system and also reduces the energy consumption cost. The ant colony optimization (ACO) and K-Means clustering algorithms characteristics conform to the auto-activator and optimistic response mechanism of the shortest route searching from source to destination. In this article, ACO and K-Means clustering algorithms are studied to search the shortest route path from source to destination by optimizing the Quality of Service (QoS) constraints. Resources are assumed in the active and varied IoT network atmosphere for these two algorithms. This work includes the study and comparison between ant colony optimization (ACO) and K-Means algorithms to plan a response time aware scheduling model for IoT. It is proposed to divide the IoT environment into various areas and a various number of clusters depending on the types of networks. It is noticed that this model is more efficient for the suggested routing algorithm in terms of response time, point-to-point delay, throughput and overhead of control bits.
ISSN:1989-1660
1989-1660
DOI:10.9781/ijimai.2020.01.003