Feasibility of biohydrogen production from Gelidium amansii

The feasibility of hydrogen production from red algae was investigated. Galactose, the main sugar monomer of red algae, was readily converted to hydrogen by dark fermentation. The maximum hydrogen production rate and yield of galactose were 2.46 L H 2/g VSS/d and 2.03 mol H 2/mol galactose added, re...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 36; no. 21; pp. 13997 - 14003
Main Authors: Park, Jeong-Hoon, Yoon, Jeong-Jun, Park, Hee-Deung, Kim, Yong Jin, Lim, Dong Jung, Kim, Sang-Hyoun
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-10-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The feasibility of hydrogen production from red algae was investigated. Galactose, the main sugar monomer of red algae, was readily converted to hydrogen by dark fermentation. The maximum hydrogen production rate and yield of galactose were 2.46 L H 2/g VSS/d and 2.03 mol H 2/mol galactose added, respectively, which were higher than those for glucose (0.914 L H 2/g VSS/d and 1.48 mol H 2/mol galactose added). The distribution of soluble byproducts showed that H 2 production was the main pathway of galactose uptake. 5-HMF, the main byproduct of acid hydrolysis of red algae causes noncompetitive inhibition of H 2 fermentation. 1.37 g/L of 5-HMF decreased hydrogen production rate by 50% compared to the control. When red algae was hydrolyzed at 150 °C for 15 min and detoxified by activated carbon, 53.5 mL of H 2 was produced from 1 g of dry algae with a hydrogen production rate of 0.518 L H 2/g VSS/d. Red algae, cultivable on vast tracts of sea by sunlight without any nitrogen-based fertilizer, could be a suitable substrate for biohydrogen production. ► Red algae can be a suitable substrate for dark hydrogen fermentation. ► Galactose, the main monomer of red algae, is readily utilized for hydrogen production. ► The hydrogen production rate and yield of galactose are higher than those of glucose. ► When hydrolyzed and detoxified, 1 g of dry algae would be converted to 53.5 mL of hydrogen.
AbstractList The feasibility of hydrogen production from red algae was investigated. Galactose, the main sugar monomer of red algae, was readily converted to hydrogen by dark fermentation. The maximum hydrogen production rate and yield of galactose were 2.46 L H 2/g VSS/d and 2.03 mol H 2/mol galactose added, respectively, which were higher than those for glucose (0.914 L H 2/g VSS/d and 1.48 mol H 2/mol galactose added). The distribution of soluble byproducts showed that H 2 production was the main pathway of galactose uptake. 5-HMF, the main byproduct of acid hydrolysis of red algae causes noncompetitive inhibition of H 2 fermentation. 1.37 g/L of 5-HMF decreased hydrogen production rate by 50% compared to the control. When red algae was hydrolyzed at 150 °C for 15 min and detoxified by activated carbon, 53.5 mL of H 2 was produced from 1 g of dry algae with a hydrogen production rate of 0.518 L H 2/g VSS/d. Red algae, cultivable on vast tracts of sea by sunlight without any nitrogen-based fertilizer, could be a suitable substrate for biohydrogen production. ► Red algae can be a suitable substrate for dark hydrogen fermentation. ► Galactose, the main monomer of red algae, is readily utilized for hydrogen production. ► The hydrogen production rate and yield of galactose are higher than those of glucose. ► When hydrolyzed and detoxified, 1 g of dry algae would be converted to 53.5 mL of hydrogen.
The feasibility of hydrogen production from red algae was investigated. Galactose, the main sugar monomer of red algae, was readily converted to hydrogen by dark fermentation. The maximum hydrogen production rate and yield of galactose were 2.46 L H sub(2/g VSS/d and 2.03 mol H) sub(2)/mol galactose sub(added, respectively, which were higher than those for glucose (0.914 L H) sub(2)/g VSS/d and 1.48 mol H sub(2/mol galactose) sub(a)dded). The distribution of soluble byproducts showed that H sub(2 production was the main pathway of galactose uptake. 5-HMF, the main byproduct of acid hydrolysis of red algae causes noncompetitive inhibition of H) sub(2) fermentation. 1.37 g/L of 5-HMF decreased hydrogen production rate by 50% compared to the control. When red algae was hydrolyzed at 150 degree C for 15 min and detoxified by activated carbon, 53.5 mL of H sub(2 was produced from 1 g of dry algae with a hydrogen production rate of 0.518 L H) sub(2)/g VSS/d. Red algae, cultivable on vast tracts of sea by sunlight without any nitrogen-based fertilizer, could be a suitable substrate for biohydrogen production.
Author Lim, Dong Jung
Kim, Yong Jin
Park, Hee-Deung
Park, Jeong-Hoon
Yoon, Jeong-Jun
Kim, Sang-Hyoun
Author_xml – sequence: 1
  givenname: Jeong-Hoon
  surname: Park
  fullname: Park, Jeong-Hoon
  organization: Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-714, South Korea
– sequence: 2
  givenname: Jeong-Jun
  surname: Yoon
  fullname: Yoon, Jeong-Jun
  organization: Eco Technology Center, Korea Institute of Industrial Technology, 35-3 Hongchon-ri, Ipjang-myun, Seobuk-gu, Chonan-si, Chungnam 330-825, South Korea
– sequence: 3
  givenname: Hee-Deung
  surname: Park
  fullname: Park, Hee-Deung
  organization: Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-714, South Korea
– sequence: 4
  givenname: Yong Jin
  surname: Kim
  fullname: Kim, Yong Jin
  organization: Eco Technology Center, Korea Institute of Industrial Technology, 35-3 Hongchon-ri, Ipjang-myun, Seobuk-gu, Chonan-si, Chungnam 330-825, South Korea
– sequence: 5
  givenname: Dong Jung
  surname: Lim
  fullname: Lim, Dong Jung
  organization: Biolsystems Co. Ltd., Joong Pyung B/D 6F 64-1, Umyeon-dong, Seocho-gu, Seoul 137-900, South Korea
– sequence: 6
  givenname: Sang-Hyoun
  surname: Kim
  fullname: Kim, Sang-Hyoun
  email: sanghkim1@daegu.ac.kr
  organization: Department of Environmental Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, South Korea
BookMark eNqFkLFOwzAURS1UJNrCL6BsTAnPsWvHYgFVtCBVYoHZcpxncJXExU6Q-vcEFWamt9x7dN9ZkFkfeiTkmkJBgYrbfeH3H8cGeyxKoLQAXgCwMzKnlVQ545WckTkwATmjSl2QRUp7ACqBqzm526BJvvatH45ZcFntw8SK4R377BBDM9rBhz5zMXTZFlvf-LHLTGf65P0lOXemTXj1e5fkbfP4un7Kdy_b5_XDLrecwpBzQZVUtauMYLUE42xjQbK6rlasacTKMKSlQpBClSUvSyOl5BVz0lGnXCXZktycuNOgzxHToDufLLat6TGMSSuQVAhZlVNSnJI2hpQiOn2IvjPxqCnoH1l6r_9k6R9ZGrieZE3F-1MRpz--PEadrMfeYuMj2kE3wf-H-AYN0XfX
CitedBy_id crossref_primary_10_1007_s11814_024_00031_6
crossref_primary_10_1016_j_biortech_2017_04_113
crossref_primary_10_1016_j_renene_2013_09_010
crossref_primary_10_1016_j_renene_2015_09_016
crossref_primary_10_1186_s12934_018_0879_x
crossref_primary_10_1016_j_ijhydene_2014_03_244
crossref_primary_10_1016_j_biortech_2015_02_066
crossref_primary_10_1016_j_ijhydene_2022_03_024
crossref_primary_10_1016_j_biortech_2018_04_070
crossref_primary_10_1016_j_biortech_2014_10_067
crossref_primary_10_1016_j_jbiosc_2017_11_005
crossref_primary_10_1007_s12649_018_0430_7
crossref_primary_10_1016_j_ibiod_2016_04_016
crossref_primary_10_1016_j_fuel_2024_131720
crossref_primary_10_1007_s13369_015_1729_3
crossref_primary_10_1016_j_biortech_2019_122613
crossref_primary_10_1007_s10529_015_1869_2
crossref_primary_10_1016_j_energy_2022_124059
crossref_primary_10_7316_KHNES_2012_23_4_397
crossref_primary_10_1016_j_biortech_2019_02_050
crossref_primary_10_1016_j_ijhydene_2018_03_143
crossref_primary_10_1016_j_rser_2014_12_013
crossref_primary_10_1186_s13068_016_0666_z
crossref_primary_10_1590_s1517_707620190002_0678
crossref_primary_10_1016_j_biortech_2014_01_081
crossref_primary_10_1016_j_ijhydene_2015_08_069
crossref_primary_10_1002_bab_1820
crossref_primary_10_1016_j_ijhydene_2021_04_204
crossref_primary_10_1016_j_ijhydene_2016_07_203
crossref_primary_10_1186_s40643_015_0045_9
crossref_primary_10_3390_polym15030681
crossref_primary_10_1016_j_biortech_2011_12_123
crossref_primary_10_1007_s13399_021_01608_5
crossref_primary_10_1007_s11270_019_4155_4
crossref_primary_10_1016_j_carbpol_2020_115887
crossref_primary_10_1007_s11157_019_09496_y
crossref_primary_10_1016_j_ijhydene_2012_04_076
crossref_primary_10_3390_pr7110853
crossref_primary_10_1016_j_ijhydene_2014_08_137
crossref_primary_10_1007_s11814_016_0063_0
crossref_primary_10_1007_s12649_018_00558_w
crossref_primary_10_1016_j_biortech_2017_09_001
crossref_primary_10_1016_j_biortech_2022_128332
crossref_primary_10_1007_s10811_023_02956_7
crossref_primary_10_1016_j_ijhydene_2017_05_106
crossref_primary_10_1016_j_ijhydene_2016_03_057
crossref_primary_10_1016_j_jtice_2021_05_034
crossref_primary_10_1016_j_rineng_2022_100815
crossref_primary_10_1016_j_algal_2015_07_015
crossref_primary_10_1007_s00253_015_7002_6
crossref_primary_10_3389_fenrg_2019_00078
crossref_primary_10_1016_j_ijhydene_2016_06_237
crossref_primary_10_1016_j_btre_2017_06_001
crossref_primary_10_1016_j_ijhydene_2023_01_175
crossref_primary_10_1016_j_renene_2016_02_072
crossref_primary_10_1515_ehs_2022_0127
crossref_primary_10_1002_jctb_4701
crossref_primary_10_1016_j_ijhydene_2023_12_103
crossref_primary_10_3390_en13246494
crossref_primary_10_1016_j_algal_2014_11_001
crossref_primary_10_1088_1755_1315_36_1_012041
crossref_primary_10_1016_j_wasman_2024_03_035
crossref_primary_10_1186_s13068_018_1044_9
crossref_primary_10_1002_cssc_201701611
crossref_primary_10_1016_j_ijhydene_2019_04_136
crossref_primary_10_3390_fermentation9030242
crossref_primary_10_1016_j_ijhydene_2016_09_110
crossref_primary_10_1016_j_ref_2017_06_003
crossref_primary_10_1007_s11771_017_3533_6
crossref_primary_10_1016_j_biortech_2016_01_104
crossref_primary_10_1016_j_biortech_2015_01_107
crossref_primary_10_1016_j_renene_2022_08_035
crossref_primary_10_1016_j_ijhydene_2017_08_150
crossref_primary_10_1016_j_rser_2020_110155
crossref_primary_10_1016_j_ijhydene_2019_01_046
crossref_primary_10_1016_j_biortech_2013_03_068
crossref_primary_10_1016_j_seta_2024_103606
crossref_primary_10_1088_1755_1315_308_1_012029
crossref_primary_10_1016_j_energy_2015_12_087
crossref_primary_10_1016_j_psep_2024_04_034
crossref_primary_10_1016_j_biotechadv_2014_04_007
crossref_primary_10_1016_j_biortech_2017_03_062
crossref_primary_10_1016_j_jbiosc_2016_10_006
crossref_primary_10_1016_j_renene_2013_09_050
crossref_primary_10_1016_j_copbio_2011_10_013
crossref_primary_10_1016_j_ijhydene_2014_10_094
crossref_primary_10_1016_j_ijhydene_2015_05_163
crossref_primary_10_1016_j_rser_2017_03_091
crossref_primary_10_1016_j_biortech_2015_03_057
crossref_primary_10_1016_j_jbiosc_2017_04_004
crossref_primary_10_1016_j_fuel_2019_05_066
crossref_primary_10_1016_j_bej_2023_108993
crossref_primary_10_1016_j_ijhydene_2021_01_075
crossref_primary_10_1007_s13399_020_01187_x
crossref_primary_10_1186_1475_2859_11_96
crossref_primary_10_1016_j_ijhydene_2021_10_138
crossref_primary_10_1016_j_envres_2023_116709
crossref_primary_10_1016_j_ijhydene_2018_02_193
crossref_primary_10_1016_j_jbiosc_2016_08_006
crossref_primary_10_1016_j_biortech_2022_128383
crossref_primary_10_3390_en15249395
crossref_primary_10_1016_j_ijhydene_2018_09_098
crossref_primary_10_1016_j_ijhydene_2016_05_195
crossref_primary_10_1039_C5RA02911B
crossref_primary_10_1016_j_ijhydene_2013_01_050
crossref_primary_10_1016_j_ijhydene_2016_06_047
crossref_primary_10_1016_j_chemosphere_2023_139724
crossref_primary_10_1016_j_bej_2016_06_014
crossref_primary_10_4491_eer_2015_068
crossref_primary_10_1016_j_ijhydene_2021_12_177
crossref_primary_10_1007_s13197_014_1329_3
crossref_primary_10_1016_j_biortech_2017_05_172
crossref_primary_10_1016_j_fuel_2020_119059
crossref_primary_10_1016_j_ijhydene_2019_04_151
crossref_primary_10_1016_j_rser_2015_05_076
crossref_primary_10_1016_j_ijhydene_2020_11_096
crossref_primary_10_1016_j_biombioe_2013_04_024
crossref_primary_10_1016_j_ijhydene_2020_05_018
crossref_primary_10_1016_j_procbio_2014_01_030
crossref_primary_10_1016_j_biortech_2015_07_097
crossref_primary_10_1016_j_ijhydene_2014_08_063
crossref_primary_10_3389_fbioe_2014_00090
crossref_primary_10_1016_j_pecs_2019_100819
crossref_primary_10_1016_j_foodchem_2020_128685
crossref_primary_10_1016_j_ijhydene_2015_06_133
Cites_doi 10.1016/j.procbio.2005.06.013
10.2166/wst.2000.0261
10.1016/j.ijhydene.2006.02.020
10.1016/j.ijhydene.2003.09.001
10.1016/j.ijhydene.2006.02.012
10.2166/wst.2000.0401
10.1016/S0360-3199(02)00130-1
10.1080/10408419891294181
10.1016/S0360-3199(02)00090-3
10.1023/B:JAPH.0000047947.96231.ea
10.1080/00071617900650121
10.1023/A:1023807503255
10.1002/bit.1118
10.1016/j.ijhydene.2008.05.010
10.1016/j.ijhydene.2004.02.018
10.1006/abio.1998.3059
10.1128/MMBR.62.2.334-361.1998
10.1016/S0141-0229(98)00101-X
10.2166/wst.2000.0052
ContentType Journal Article
Copyright 2011 Hydrogen Energy Publications, LLC.
Copyright_xml – notice: 2011 Hydrogen Energy Publications, LLC.
DBID AAYXX
CITATION
M7N
DOI 10.1016/j.ijhydene.2011.04.003
DatabaseName CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList
Algology Mycology and Protozoology Abstracts (Microbiology C)
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 14003
ExternalDocumentID 10_1016_j_ijhydene_2011_04_003
S0360319911008342
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
TN5
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
M7N
ID FETCH-LOGICAL-c410t-461979bf8a63b70afcdc073bb853dd65a3e129e076922422a777483f7f1f9f873
ISSN 0360-3199
IngestDate Fri Oct 25 04:08:51 EDT 2024
Thu Sep 26 17:36:13 EDT 2024
Fri Feb 23 02:20:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Pretreatment
Galactose
Dark fermentation
Red algae
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-461979bf8a63b70afcdc073bb853dd65a3e129e076922422a777483f7f1f9f873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 907166782
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_907166782
crossref_primary_10_1016_j_ijhydene_2011_04_003
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2011_04_003
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, Shin (bib2) 2004; 29
Percival (bib6) 1979; 14
Noike, Mizuno (bib19) 2000
Mizuno, Ohara, Shinya, Noike (bib21) 2000
Luning, Pang (bib4) 2003; 15
Okamoto, Miyahara, Mizuno, Noike (bib20) 2000; 41
Buck, Buchholz (bib5) 2004; 16
Gancedo (bib8) 1998; 62
Chang, Lee, Lin (bib3) 2002; 27
Kim, Han, Kim, Shin (bib9) 2006; 31
Nandi, Sengupta (bib15) 1998; 24
Chen, Chen, Kumar Khanal, Sung (bib14) 2006; 31
Lay (bib16) 2001; 74
Kim, Han, Shin (bib1) 2004; 29
Khanal, Chen, Li, Sung (bib12) 2004; 29
Jol, Neiss, Penninkhof, Rudolph, De Ruiter (bib7) 1999; 268
Hawkes, Dinsdale, Hawkes, Hussy (bib17) 2002; 27
Kim, Han, Shin (bib10) 2006; 41
Kim, Shin (bib11) 2008; 33
Clesceri, Greenberg, Eaton, Association (bib13) 1989
Larsson, Palmqvist, Hahn-Hagerdal, Stenberg, Zacchi, Nilvebrant (bib18) 1999; 24
Percival (10.1016/j.ijhydene.2011.04.003_bib6) 1979; 14
Clesceri (10.1016/j.ijhydene.2011.04.003_bib13) 1989
Larsson (10.1016/j.ijhydene.2011.04.003_bib18) 1999; 24
Buck (10.1016/j.ijhydene.2011.04.003_bib5) 2004; 16
Khanal (10.1016/j.ijhydene.2011.04.003_bib12) 2004; 29
Gancedo (10.1016/j.ijhydene.2011.04.003_bib8) 1998; 62
Noike (10.1016/j.ijhydene.2011.04.003_bib19) 2000
Nandi (10.1016/j.ijhydene.2011.04.003_bib15) 1998; 24
Luning (10.1016/j.ijhydene.2011.04.003_bib4) 2003; 15
Chen (10.1016/j.ijhydene.2011.04.003_bib14) 2006; 31
Jol (10.1016/j.ijhydene.2011.04.003_bib7) 1999; 268
Chang (10.1016/j.ijhydene.2011.04.003_bib3) 2002; 27
Mizuno (10.1016/j.ijhydene.2011.04.003_bib21) 2000
Okamoto (10.1016/j.ijhydene.2011.04.003_bib20) 2000; 41
Kim (10.1016/j.ijhydene.2011.04.003_bib11) 2008; 33
Kim (10.1016/j.ijhydene.2011.04.003_bib10) 2006; 41
Lay (10.1016/j.ijhydene.2011.04.003_bib16) 2001; 74
Kim (10.1016/j.ijhydene.2011.04.003_bib9) 2006; 31
Kim (10.1016/j.ijhydene.2011.04.003_bib1) 2004; 29
Han (10.1016/j.ijhydene.2011.04.003_bib2) 2004; 29
Hawkes (10.1016/j.ijhydene.2011.04.003_bib17) 2002; 27
References_xml – volume: 29
  start-page: 569
  year: 2004
  end-page: 577
  ident: bib2
  article-title: Biohydrogen production by anaerobic fermentation of food waste
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Shin
– volume: 14
  start-page: 103
  year: 1979
  end-page: 117
  ident: bib6
  article-title: The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function
  publication-title: European Journal of Phycology
  contributor:
    fullname: Percival
– start-page: 155
  year: 2000
  end-page: 162
  ident: bib19
  article-title: Hydrogen fermentation of organic municipal wastes
  publication-title: Water Science and Technology
  contributor:
    fullname: Mizuno
– volume: 27
  start-page: 1339
  year: 2002
  end-page: 1347
  ident: bib17
  article-title: Sustainable fermentative hydrogen production: challenges for process optimisation
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Hussy
– volume: 41
  start-page: 199
  year: 2006
  end-page: 207
  ident: bib10
  article-title: Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter
  publication-title: Process Biochemistry
  contributor:
    fullname: Shin
– volume: 24
  start-page: 61
  year: 1998
  end-page: 84
  ident: bib15
  article-title: Microbial production of hydrogen: an overview
  publication-title: Critical Reviews in Microbiology
  contributor:
    fullname: Sengupta
– volume: 27
  start-page: 1167
  year: 2002
  end-page: 1174
  ident: bib3
  article-title: Biohydrogen production with fixed-bed bioreactors
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Lin
– volume: 24
  start-page: 151
  year: 1999
  end-page: 159
  ident: bib18
  article-title: The generation of fermentation inhibitors during dilute acid hydrolysis of softwood
  publication-title: Enzyme and Microbial Technology
  contributor:
    fullname: Nilvebrant
– volume: 16
  start-page: 355
  year: 2004
  end-page: 368
  ident: bib5
  article-title: The offshore-ring: a new system design for the open ocean aquaculture of macroalgae
  publication-title: Journal of Applied Phycology
  contributor:
    fullname: Buchholz
– volume: 268
  start-page: 213
  year: 1999
  end-page: 222
  ident: bib7
  article-title: A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose
  publication-title: Analytical Biochemistry
  contributor:
    fullname: De Ruiter
– volume: 15
  start-page: 115
  year: 2003
  end-page: 119
  ident: bib4
  article-title: Mass cultivation of seaweeds: current aspects and approaches
  publication-title: Journal of Applied Phycology
  contributor:
    fullname: Pang
– start-page: 345
  year: 2000
  end-page: 350
  ident: bib21
  article-title: Characteristics of hydrogen production from bean c urd manufacturing waste by anaerobic microflora
  publication-title: Water Science and Technology
  contributor:
    fullname: Noike
– volume: 74
  start-page: 280
  year: 2001
  end-page: 287
  ident: bib16
  article-title: Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose
  publication-title: Biotechnology and Bioengineering
  contributor:
    fullname: Lay
– volume: 33
  start-page: 5266
  year: 2008
  end-page: 5274
  ident: bib11
  article-title: Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Shin
– year: 1989
  ident: bib13
  article-title: Standard methods for the examination of water and wastewater
  contributor:
    fullname: Association
– volume: 31
  start-page: 2170
  year: 2006
  end-page: 2178
  ident: bib14
  article-title: Kinetic study of biological hydrogen production by anaerobic fermentation
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Sung
– volume: 29
  start-page: 1607
  year: 2004
  end-page: 1616
  ident: bib1
  article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Shin
– volume: 29
  start-page: 1123
  year: 2004
  end-page: 1131
  ident: bib12
  article-title: Biological hydrogen production: effects of pH and intermediate products
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Sung
– volume: 41
  start-page: 25
  year: 2000
  ident: bib20
  article-title: Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes
  publication-title: Water Science and Technology: A Journal of the International Association on Water Pollution Research
  contributor:
    fullname: Noike
– volume: 62
  start-page: 334
  year: 1998
  ident: bib8
  article-title: Yeast carbon catabolite repression
  publication-title: Microbiology and Molecular Biology Reviews
  contributor:
    fullname: Gancedo
– volume: 31
  start-page: 2158
  year: 2006
  end-page: 2169
  ident: bib9
  article-title: Effect of gas sparging on continuous fermentative hydrogen production
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Shin
– volume: 41
  start-page: 199
  year: 2006
  ident: 10.1016/j.ijhydene.2011.04.003_bib10
  article-title: Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter
  publication-title: Process Biochemistry
  doi: 10.1016/j.procbio.2005.06.013
  contributor:
    fullname: Kim
– year: 1989
  ident: 10.1016/j.ijhydene.2011.04.003_bib13
  contributor:
    fullname: Clesceri
– start-page: 155
  year: 2000
  ident: 10.1016/j.ijhydene.2011.04.003_bib19
  article-title: Hydrogen fermentation of organic municipal wastes
  publication-title: Water Science and Technology
  doi: 10.2166/wst.2000.0261
  contributor:
    fullname: Noike
– volume: 31
  start-page: 2170
  year: 2006
  ident: 10.1016/j.ijhydene.2011.04.003_bib14
  article-title: Kinetic study of biological hydrogen production by anaerobic fermentation
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.02.020
  contributor:
    fullname: Chen
– volume: 29
  start-page: 569
  year: 2004
  ident: 10.1016/j.ijhydene.2011.04.003_bib2
  article-title: Biohydrogen production by anaerobic fermentation of food waste
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2003.09.001
  contributor:
    fullname: Han
– volume: 31
  start-page: 2158
  year: 2006
  ident: 10.1016/j.ijhydene.2011.04.003_bib9
  article-title: Effect of gas sparging on continuous fermentative hydrogen production
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.02.012
  contributor:
    fullname: Kim
– start-page: 345
  year: 2000
  ident: 10.1016/j.ijhydene.2011.04.003_bib21
  article-title: Characteristics of hydrogen production from bean c urd manufacturing waste by anaerobic microflora
  publication-title: Water Science and Technology
  doi: 10.2166/wst.2000.0401
  contributor:
    fullname: Mizuno
– volume: 27
  start-page: 1167
  year: 2002
  ident: 10.1016/j.ijhydene.2011.04.003_bib3
  article-title: Biohydrogen production with fixed-bed bioreactors
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/S0360-3199(02)00130-1
  contributor:
    fullname: Chang
– volume: 24
  start-page: 61
  year: 1998
  ident: 10.1016/j.ijhydene.2011.04.003_bib15
  article-title: Microbial production of hydrogen: an overview
  publication-title: Critical Reviews in Microbiology
  doi: 10.1080/10408419891294181
  contributor:
    fullname: Nandi
– volume: 27
  start-page: 1339
  year: 2002
  ident: 10.1016/j.ijhydene.2011.04.003_bib17
  article-title: Sustainable fermentative hydrogen production: challenges for process optimisation
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/S0360-3199(02)00090-3
  contributor:
    fullname: Hawkes
– volume: 16
  start-page: 355
  year: 2004
  ident: 10.1016/j.ijhydene.2011.04.003_bib5
  article-title: The offshore-ring: a new system design for the open ocean aquaculture of macroalgae
  publication-title: Journal of Applied Phycology
  doi: 10.1023/B:JAPH.0000047947.96231.ea
  contributor:
    fullname: Buck
– volume: 14
  start-page: 103
  year: 1979
  ident: 10.1016/j.ijhydene.2011.04.003_bib6
  article-title: The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function
  publication-title: European Journal of Phycology
  doi: 10.1080/00071617900650121
  contributor:
    fullname: Percival
– volume: 29
  start-page: 1123
  year: 2004
  ident: 10.1016/j.ijhydene.2011.04.003_bib12
  article-title: Biological hydrogen production: effects of pH and intermediate products
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Khanal
– volume: 15
  start-page: 115
  year: 2003
  ident: 10.1016/j.ijhydene.2011.04.003_bib4
  article-title: Mass cultivation of seaweeds: current aspects and approaches
  publication-title: Journal of Applied Phycology
  doi: 10.1023/A:1023807503255
  contributor:
    fullname: Luning
– volume: 74
  start-page: 280
  year: 2001
  ident: 10.1016/j.ijhydene.2011.04.003_bib16
  article-title: Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/bit.1118
  contributor:
    fullname: Lay
– volume: 33
  start-page: 5266
  year: 2008
  ident: 10.1016/j.ijhydene.2011.04.003_bib11
  article-title: Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.05.010
  contributor:
    fullname: Kim
– volume: 29
  start-page: 1607
  year: 2004
  ident: 10.1016/j.ijhydene.2011.04.003_bib1
  article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.02.018
  contributor:
    fullname: Kim
– volume: 268
  start-page: 213
  year: 1999
  ident: 10.1016/j.ijhydene.2011.04.003_bib7
  article-title: A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose
  publication-title: Analytical Biochemistry
  doi: 10.1006/abio.1998.3059
  contributor:
    fullname: Jol
– volume: 62
  start-page: 334
  year: 1998
  ident: 10.1016/j.ijhydene.2011.04.003_bib8
  article-title: Yeast carbon catabolite repression
  publication-title: Microbiology and Molecular Biology Reviews
  doi: 10.1128/MMBR.62.2.334-361.1998
  contributor:
    fullname: Gancedo
– volume: 24
  start-page: 151
  year: 1999
  ident: 10.1016/j.ijhydene.2011.04.003_bib18
  article-title: The generation of fermentation inhibitors during dilute acid hydrolysis of softwood
  publication-title: Enzyme and Microbial Technology
  doi: 10.1016/S0141-0229(98)00101-X
  contributor:
    fullname: Larsson
– volume: 41
  start-page: 25
  year: 2000
  ident: 10.1016/j.ijhydene.2011.04.003_bib20
  article-title: Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes
  publication-title: Water Science and Technology: A Journal of the International Association on Water Pollution Research
  doi: 10.2166/wst.2000.0052
  contributor:
    fullname: Okamoto
SSID ssj0017049
Score 2.4504652
Snippet The feasibility of hydrogen production from red algae was investigated. Galactose, the main sugar monomer of red algae, was readily converted to hydrogen by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 13997
SubjectTerms Dark fermentation
Galactose
Gelidium amansii
Pretreatment
Red algae
Title Feasibility of biohydrogen production from Gelidium amansii
URI https://dx.doi.org/10.1016/j.ijhydene.2011.04.003
https://search.proquest.com/docview/907166782
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaW9gIHVF6i0CIfenXJxia2xamiW5Y99NIitSfLie2SVUlQ2xz494xjOwktCBDqJVp5FW8yMzvzjeeF0J4FI-t0LklJKSMgIQL0oBGkKHIt5lpbqfvRCSf8-EwcLthiNkvjxsa1e-U0rAGvfeXsP3B72BQW4DPwHK7Adbj-Fd8B08WM1z52Xtbtl-_mqr0IuVgmNIsNVSUf7WVtap-d_BUMVl1PgerPJ4WT_hLDbravGhxDUCHnemXb5oIs2zG6f96GwH74ZtU1t29ZWksObRdNqB4mPJ_7MUir2BncDCetKcUtnpalipkxPSlUaXm9H4Yi7dugdAWXhLJoeKNWDm1RovSFIuqoYwGzhpTeaLDBRezbJNy1BuFgYr1fr4E2QJXYsdX3S6ej_RuyEk_8w_ln8230BGVg2Tdz0F-gPjcPPi3OVkN4ike_Kr3MpPT817_2O9Rzy_73oOZ0Cz2O3gg-CGL0BM1s8xQ9mvSofIbeTwQKtw5PBAqPAoW9QOEkUDgK1HP0-Whx-mFJ4sQNUrF5dkMYuNNclk7ogpY8064yFdiAsgRQZ0zxTlML-NBmvJAA_fJcc_AeBHXczZ10gtMXaKNpG_sSYSoFm-fc8Mw4ZkwlrRQCAFklKgouBt9GbxNF1LfQWEWljMO1SjRUnoYqY76F7TaSiXAqwsMA-xTw-4_34kRpBfrTB8V0Y9vuWknA2AUgtvzVf2z_Gj0c_wE7aOPmqrO76MG16d5E0fkBbCOWUA
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+biohydrogen+production+from+Gelidium+amansii&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Park%2C+Jeong-Hoon&rft.au=Yoon%2C+Jeong-Jun&rft.au=Park%2C+Hee-Deung&rft.au=Kim%2C+Yong+Jin&rft.date=2011-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=36&rft.issue=21&rft.spage=13997&rft.epage=14003&rft_id=info:doi/10.1016%2Fj.ijhydene.2011.04.003&rft.externalDocID=S0360319911008342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon