Non-isothermal crystallization behavioral analysis of detonation sprayed Fe-based amorphous coating
The non-isothermal crystallization behaviors of a detonation sprayed Fe-based amorphous coating (AMC) was systematically investigated through differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. The crystallization mechanism of the Fe-based AMC is analyzed and d...
Saved in:
Published in: | Journal of materials research and technology Vol. 23; pp. 6115 - 6126 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-03-2023
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The non-isothermal crystallization behaviors of a detonation sprayed Fe-based amorphous coating (AMC) was systematically investigated through differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. The crystallization mechanism of the Fe-based AMC is analyzed and discussed in detail using a combination of the Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall approaches, as well as the local Avrami exponent. The results indicate that the crystallization process of the Fe-based AMC is affected by the non-isothermal heating rate with a significantly higher initial crystallization activation energy (917.7 kJ mol−1) and first peak activation energy (479.6 kJ mol−1), indicating excellent thermal stability. After four stages of amorphous crystallization and phase transformation, the crystallization products of the equilibrium state were primarily composed of 78.5%, 11.3%, and 5.8% (Cr, Fe)23(C, B)6, α-Fe phases, and FeMo2B2 phases, respectively. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2023.02.203 |