Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries
We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are based on a voxel representation of the geometry and staircase approximation of boundaries. Such approximations are commonly used in the context of lattice Boltzmann simulations, because they favor the...
Saved in:
Published in: | Computers & fluids Vol. 39; no. 9; pp. 1625 - 1633 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-10-2010
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are based on a voxel representation of the geometry and staircase approximation of boundaries. Such approximations are commonly used in the context of lattice Boltzmann simulations, because they favor the use of simple and highly efficient data structures. We show on several two- and three-dimensional simulations that this low-order approximation of the boundary affects the accuracy of wall shear stress measurements in areas directly adjacent to the wall. A few lattice nodes apart from the wall, the accuracy is however largely improved, and can be considered to be compatible with the overall accuracy of a simulation at a given coarseness level of the grid. This result is interpreted as a justification for the use of walls with staircase shape, even in simulations with high expectations regarding the level of accuracy. Furthermore, we propose a novel method for establishing the direction of the wall normal, a quantity which is required for the computation of the wall shear stress. With this method, the wall normal is computed from local data that is extracted from the results of the fluid flow simulation. Owing to the nature of the flow dynamics, which tends to smooth out the asperities of the wall, the information on the wall orientation obtained in this way is observed to be of high quality. |
---|---|
AbstractList | We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are based on a voxel representation of the geometry and staircase approximation of boundaries. Such approximations are commonly used in the context of lattice Boltzmann simulations, because they favor the use of simple and highly efficient data structures. We show on several two- and three-dimensional simulations that this low-order approximation of the boundary affects the accuracy of wall shear stress measurements in areas directly adjacent to the wall. A few lattice nodes apart from the wall, the accuracy is however largely improved, and can be considered to be compatible with the overall accuracy of a simulation at a given coarseness level of the grid. This result is interpreted as a justification for the use of walls with staircase shape, even in simulations with high expectations regarding the level of accuracy. Furthermore, we propose a novel method for establishing the direction of the wall normal, a quantity which is required for the computation of the wall shear stress. With this method, the wall normal is computed from local data that is extracted from the results of the fluid flow simulation. Owing to the nature of the flow dynamics, which tends to smooth out the asperities of the wall, the information on the wall orientation obtained in this way is observed to be of high quality. |
Author | Latt, J. Chopard, B. Stahl, B. |
Author_xml | – sequence: 1 givenname: B. surname: Stahl fullname: Stahl, B. organization: Université de Genève, Computer Science Department, 7 route de Drize, 1227 Carouge, Switzerland – sequence: 2 givenname: B. surname: Chopard fullname: Chopard, B. email: bastien.chopard@unige.ch organization: Université de Genève, Computer Science Department, 7 route de Drize, 1227 Carouge, Switzerland – sequence: 3 givenname: J. surname: Latt fullname: Latt, J. organization: Ecole Polytechnique Fédérale de Lausanne, STI/IGM/LIN, Station 9, 1015 Lausanne, Switzerland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23059329$$DView record in Pascal Francis |
BookMark | eNqFkU1v3CAQhlGVSN0k_Q3lUrUXbwcbG3NMo35JqXJJzwjDoGVlwxZwk_bXl9VGOTan0Yyed77eC3IWYkBC3jLYMmDDx_3WxOXg5tXbbQu1Cv0WWP-KbNgoZAOCizOyAeB9I2QHr8lFznuoedfyDVl-oM5rwgVDyTQ6-qDnmeYd6kRzSZgzffBlR8sO6axL8QbppziXv4sOgS5YdtFSHWyFtU9GZ6T6cEjx0S-6-BiOLae4BquTx3xFzp2eM755ipfk55fP9zffmtu7r99vrm8bwxmUph3M1A9cOLDOMDniMOnRGSsnx6xB4ySzlusB7MRB844zbEE41krRd24cu0vy_tS3bvJrxVzU4rPBedYB45rV2PeDEBKgkh_-SzIBUgySs7ai4oSaFHNO6NQh1SvTH8VAHa1Qe_VshTpaoaBX1YqqfPc0RGejZ5d0MD4_y9sOetm1snLXJw7rb357TCobj8Gg9QlNUTb6F2f9A4R5p-s |
CODEN | CPFLBI |
CitedBy_id | crossref_primary_10_1063_5_0109175 crossref_primary_10_1142_S0129183114500570 crossref_primary_10_1103_PhysRevE_89_023303 crossref_primary_10_1007_s11433_014_5436_y crossref_primary_10_3390_bioengineering10070849 crossref_primary_10_1016_j_ces_2022_118172 crossref_primary_10_1063_5_0195370 crossref_primary_10_1038_s41598_023_28878_5 crossref_primary_10_1007_s10439_023_03350_7 crossref_primary_10_1016_j_geoen_2023_212047 crossref_primary_10_1016_j_proeng_2013_08_010 crossref_primary_10_1038_s41598_021_86360_6 crossref_primary_10_1080_10255842_2022_2034794 crossref_primary_10_1007_s11517_019_02058_y crossref_primary_10_1002_aic_16091 crossref_primary_10_1016_j_cej_2020_126653 crossref_primary_10_1016_j_compfluid_2013_05_019 crossref_primary_10_1016_j_compfluid_2018_04_015 crossref_primary_10_1002_ceat_201600083 crossref_primary_10_1016_j_camwa_2015_11_021 crossref_primary_10_1108_HFF_04_2021_0299 crossref_primary_10_1016_j_compfluid_2012_12_018 crossref_primary_10_1002_btpr_2880 crossref_primary_10_1016_j_compfluid_2014_04_011 crossref_primary_10_1080_13873954_2013_833523 crossref_primary_10_1115_1_4033913 crossref_primary_10_1063_5_0041178 crossref_primary_10_1142_S021951941450016X crossref_primary_10_1016_j_compfluid_2019_104422 crossref_primary_10_1016_j_cnsns_2023_107281 crossref_primary_10_1134_S0869864323040017 crossref_primary_10_1134_S0869864322040060 crossref_primary_10_1007_s11242_017_0967_0 crossref_primary_10_1142_S0129183113400081 crossref_primary_10_1063_5_0149868 crossref_primary_10_1038_s41598_020_66225_0 crossref_primary_10_1038_s41598_020_65576_y crossref_primary_10_1098_rsif_2014_0543 |
Cites_doi | 10.1103/PhysRevE.72.066701 10.1103/PhysRevE.77.056703 10.1142/S0219525902000602 10.1063/1.1399290 10.1161/01.STR.0000144648.89172.0f 10.1016/0370-1573(92)90090-M 10.1146/annurev.fluid.30.1.329 10.1161/STROKEAHA.108.521617 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7UA C1K F1W H96 L.G |
DOI | 10.1016/j.compfluid.2010.05.015 |
DatabaseName | Pascal-Francis CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0747 |
EndPage | 1633 |
ExternalDocumentID | 10_1016_j_compfluid_2010_05_015 23059329 S0045793010001283 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSW SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- ABPIF ABPTK IQODW AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7UA C1K F1W H96 L.G |
ID | FETCH-LOGICAL-c410t-26cb5647f0dfc198e6ba8fcd9bf1dcecf91dd4a60db40a4341e207f129753f883 |
ISSN | 0045-7930 |
IngestDate | Fri Oct 25 07:40:52 EDT 2024 Fri Oct 25 03:41:12 EDT 2024 Fri Nov 22 01:01:28 EST 2024 Sun Oct 22 16:04:05 EDT 2023 Fri Feb 23 02:29:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | CFD Lattice Boltzmann Wall shear stress Voxel geometry Boltzmann equation Pipe flow Computational fluid dynamics Digital simulation Aneurysm Cardiovascular disease Vascular disease Blood circulation Voxel Lattice model Curved pipe Shear stress Modelling Inclined pipe |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c410t-26cb5647f0dfc198e6ba8fcd9bf1dcecf91dd4a60db40a4341e207f129753f883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1709769412 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_855677900 proquest_miscellaneous_1709769412 crossref_primary_10_1016_j_compfluid_2010_05_015 pascalfrancis_primary_23059329 elsevier_sciencedirect_doi_10_1016_j_compfluid_2010_05_015 |
PublicationCentury | 2000 |
PublicationDate | 2010-10-01 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Computers & fluids |
PublicationYear | 2010 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Bouzidi, Firdaouss, Lallemand (bib3) 2001; 13 Chopard, Droz (bib5) 1998 Shojima, Oshima, Takagi, Torii, Hayakawa, Katada (bib10) 2004; 35 Sukop, Thorne (bib11) 2006 Benzi, Succi, Vergassola (bib1) 1992; 222 Chen, Doolen (bib4) 1998; 30 Junk, Yang (bib7) 2005; 72 Latt, Chopard, Malaspinas, Deville, Michler (bib8) 2008; 77 Jonas Latt, Daniel Lagrava, Fokko Beekhof, Bastien Chopard, Orestis Malaspinas. Computation of wall normal and distance function in voxelized 3d geometries for lattice Boltzmann simulations, in preparation. Boussel, Rayz, McCulloch, Martin, Acevedo-Bolton, Lawton (bib2) 2008; 39 Chopard, Dupuis, Masselot, Luthi (bib6) 2002; 5 Benzi (10.1016/j.compfluid.2010.05.015_bib1) 1992; 222 Chopard (10.1016/j.compfluid.2010.05.015_bib6) 2002; 5 Junk (10.1016/j.compfluid.2010.05.015_bib7) 2005; 72 Latt (10.1016/j.compfluid.2010.05.015_bib8) 2008; 77 Chen (10.1016/j.compfluid.2010.05.015_bib4) 1998; 30 Chopard (10.1016/j.compfluid.2010.05.015_bib5) 1998 Boussel (10.1016/j.compfluid.2010.05.015_bib2) 2008; 39 Bouzidi (10.1016/j.compfluid.2010.05.015_bib3) 2001; 13 10.1016/j.compfluid.2010.05.015_bib9 Shojima (10.1016/j.compfluid.2010.05.015_bib10) 2004; 35 Sukop (10.1016/j.compfluid.2010.05.015_bib11) 2006 |
References_xml | – volume: 77 start-page: 056703 year: 2008 ident: bib8 article-title: Straight velocity boundaries in the lattice Boltzmann method publication-title: Phys Rev E contributor: fullname: Michler – volume: 39 start-page: 2997 year: 2008 end-page: 3002 ident: bib2 article-title: Patient-specific correlation of hemodynamics and growth in a longitudinal study publication-title: Stroke contributor: fullname: Lawton – volume: 13 start-page: 3452 year: 2001 end-page: 3459 ident: bib3 article-title: Momentum transfer of a Boltzmann-lattice fluid with boundaries publication-title: Phys Fluids contributor: fullname: Lallemand – volume: 30 start-page: 329 year: 1998 end-page: 364 ident: bib4 article-title: Lattice Boltzmann method for fluid flows publication-title: Ann Rev Fluid Mech contributor: fullname: Doolen – volume: 5 start-page: 103 year: 2002 end-page: 246 ident: bib6 article-title: Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems publication-title: Adv Complex Syst contributor: fullname: Luthi – volume: 72 start-page: 066701 year: 2005 ident: bib7 article-title: One-point boundary condition for the lattice Boltzmann method publication-title: Phys Rev E contributor: fullname: Yang – year: 2006 ident: bib11 article-title: Lattice Boltzmann modeling: an introduction for geoscientists and engineers contributor: fullname: Thorne – volume: 222 start-page: 145 year: 1992 end-page: 197 ident: bib1 article-title: The lattice Boltzmann equation: theory and application publication-title: Phys Rep contributor: fullname: Vergassola – year: 1998 ident: bib5 article-title: Cellular automata modeling of physical systems contributor: fullname: Droz – volume: 35 start-page: 2500 year: 2004 end-page: 2505 ident: bib10 article-title: Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms publication-title: Stroke contributor: fullname: Katada – volume: 72 start-page: 066701 issue: 6 year: 2005 ident: 10.1016/j.compfluid.2010.05.015_bib7 article-title: One-point boundary condition for the lattice Boltzmann method publication-title: Phys Rev E doi: 10.1103/PhysRevE.72.066701 contributor: fullname: Junk – volume: 77 start-page: 056703 year: 2008 ident: 10.1016/j.compfluid.2010.05.015_bib8 article-title: Straight velocity boundaries in the lattice Boltzmann method publication-title: Phys Rev E doi: 10.1103/PhysRevE.77.056703 contributor: fullname: Latt – year: 1998 ident: 10.1016/j.compfluid.2010.05.015_bib5 contributor: fullname: Chopard – ident: 10.1016/j.compfluid.2010.05.015_bib9 – volume: 5 start-page: 103 year: 2002 ident: 10.1016/j.compfluid.2010.05.015_bib6 article-title: Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems publication-title: Adv Complex Syst doi: 10.1142/S0219525902000602 contributor: fullname: Chopard – volume: 13 start-page: 3452 year: 2001 ident: 10.1016/j.compfluid.2010.05.015_bib3 article-title: Momentum transfer of a Boltzmann-lattice fluid with boundaries publication-title: Phys Fluids doi: 10.1063/1.1399290 contributor: fullname: Bouzidi – volume: 35 start-page: 2500 year: 2004 ident: 10.1016/j.compfluid.2010.05.015_bib10 article-title: Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms publication-title: Stroke doi: 10.1161/01.STR.0000144648.89172.0f contributor: fullname: Shojima – volume: 222 start-page: 145 issue: 3 year: 1992 ident: 10.1016/j.compfluid.2010.05.015_bib1 article-title: The lattice Boltzmann equation: theory and application publication-title: Phys Rep doi: 10.1016/0370-1573(92)90090-M contributor: fullname: Benzi – year: 2006 ident: 10.1016/j.compfluid.2010.05.015_bib11 contributor: fullname: Sukop – volume: 30 start-page: 329 year: 1998 ident: 10.1016/j.compfluid.2010.05.015_bib4 article-title: Lattice Boltzmann method for fluid flows publication-title: Ann Rev Fluid Mech doi: 10.1146/annurev.fluid.30.1.329 contributor: fullname: Chen – volume: 39 start-page: 2997 year: 2008 ident: 10.1016/j.compfluid.2010.05.015_bib2 article-title: Patient-specific correlation of hemodynamics and growth in a longitudinal study publication-title: Stroke doi: 10.1161/STROKEAHA.108.521617 contributor: fullname: Boussel |
SSID | ssj0004324 |
Score | 2.1860402 |
Snippet | We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are based on a voxel representation of the geometry and... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1625 |
SubjectTerms | Accuracy Approximation Biological and medical sciences Blood and lymphatic vessels Boundaries Cardiology. Vascular system CFD Computational methods in fluid dynamics Computer simulation Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Exact sciences and technology Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fundamental areas of phenomenology (including applications) Lattice Boltzmann Lattices Mathematical analysis Medical sciences Physics Voxel geometry Wall shear stress Wall shear stresses Walls |
Title | Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries |
URI | https://dx.doi.org/10.1016/j.compfluid.2010.05.015 https://search.proquest.com/docview/1709769412 https://search.proquest.com/docview/855677900 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa67QWEEFdRLpOReEOZ7DRX3gYUDQS8bEh7sxxfxKY2qZpWIH4959jOpWITIMRL1Fpt4uR8Of5sn_MdQl6giFmscx1JVWIJM2aiKtVVJFMgRzw2M59Ie3Kafz4v3s6T-WTSSWwMbf_V0tAGtsbM2b-wdn9SaIDPYHM4gtXh-Ed2_zQs-rkojW-499xi3eouL8QvvQI8FnKDoW8vXzeLzY-lrOtQT9ptKGBe1VrBGOdlx79fLHtyWblSTOsu_LDTOQj1IVqHJrvYXuierwOl_eq3N46GeILGKz2OGz_KsFd1NF6NwMgONl6N6NNkhpgk53YT1MUMGzDGe9oix-wpL7fZuWKvaxQgV478Ks98enQYo4FEzq70_34p4hLtt3I3GoL3UJs1HYa8PhDxFLuGPeNuSa6Y7ZGDGL6Dxzw4fj8__zDk2M5ir-gdbmUnVvDKy13HdG6tZAvvn_WFU37hAI7YnN0ht8OMhB57KN0lE1PfIzdHOpX3yXIMKtpYiqCiDlTUg4oiqCiAigZQ0R5U1IOKAqhoDyq6Ayo85QCqB-TLu_nZm5Mo1OmIVMLZJoozVaVZklumreJlYbJKFlbpsrJcK6NsybVOZMZ0lTCZAG8yMcstd0ndtihmD8l-3dTmEaGoF1eVpeJMATHWuuCZiXNpqhjTmLJkSlj3TMXKy7GILk7xUvRmEGgGwVIBZpiSV92zF4FVerYoADS___PhjrX6i8LMPYWpTzklzzvzCXDMuNsma9NsW8FzBlS_THg8JfSa3xRpmqHgJ3v8L518Qm4Mr-JTsr9Zb80zstfq7WFA8U-vXsPp |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurements+of+wall+shear+stress+with+the+lattice+Boltzmann+method+and+staircase+approximation+of+boundaries&rft.jtitle=Computers+%26+fluids&rft.au=Stahl%2C+B.&rft.au=Chopard%2C+B.&rft.au=Latt%2C+J.&rft.date=2010-10-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=39&rft.issue=9&rft.spage=1625&rft.epage=1633&rft_id=info:doi/10.1016%2Fj.compfluid.2010.05.015&rft.externalDocID=S0045793010001283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |