Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries

We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are based on a voxel representation of the geometry and staircase approximation of boundaries. Such approximations are commonly used in the context of lattice Boltzmann simulations, because they favor the...

Full description

Saved in:
Bibliographic Details
Published in:Computers & fluids Vol. 39; no. 9; pp. 1625 - 1633
Main Authors: Stahl, B., Chopard, B., Latt, J.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-10-2010
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are based on a voxel representation of the geometry and staircase approximation of boundaries. Such approximations are commonly used in the context of lattice Boltzmann simulations, because they favor the use of simple and highly efficient data structures. We show on several two- and three-dimensional simulations that this low-order approximation of the boundary affects the accuracy of wall shear stress measurements in areas directly adjacent to the wall. A few lattice nodes apart from the wall, the accuracy is however largely improved, and can be considered to be compatible with the overall accuracy of a simulation at a given coarseness level of the grid. This result is interpreted as a justification for the use of walls with staircase shape, even in simulations with high expectations regarding the level of accuracy. Furthermore, we propose a novel method for establishing the direction of the wall normal, a quantity which is required for the computation of the wall shear stress. With this method, the wall normal is computed from local data that is extracted from the results of the fluid flow simulation. Owing to the nature of the flow dynamics, which tends to smooth out the asperities of the wall, the information on the wall orientation obtained in this way is observed to be of high quality.
AbstractList We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are based on a voxel representation of the geometry and staircase approximation of boundaries. Such approximations are commonly used in the context of lattice Boltzmann simulations, because they favor the use of simple and highly efficient data structures. We show on several two- and three-dimensional simulations that this low-order approximation of the boundary affects the accuracy of wall shear stress measurements in areas directly adjacent to the wall. A few lattice nodes apart from the wall, the accuracy is however largely improved, and can be considered to be compatible with the overall accuracy of a simulation at a given coarseness level of the grid. This result is interpreted as a justification for the use of walls with staircase shape, even in simulations with high expectations regarding the level of accuracy. Furthermore, we propose a novel method for establishing the direction of the wall normal, a quantity which is required for the computation of the wall shear stress. With this method, the wall normal is computed from local data that is extracted from the results of the fluid flow simulation. Owing to the nature of the flow dynamics, which tends to smooth out the asperities of the wall, the information on the wall orientation obtained in this way is observed to be of high quality.
Author Latt, J.
Chopard, B.
Stahl, B.
Author_xml – sequence: 1
  givenname: B.
  surname: Stahl
  fullname: Stahl, B.
  organization: Université de Genève, Computer Science Department, 7 route de Drize, 1227 Carouge, Switzerland
– sequence: 2
  givenname: B.
  surname: Chopard
  fullname: Chopard, B.
  email: bastien.chopard@unige.ch
  organization: Université de Genève, Computer Science Department, 7 route de Drize, 1227 Carouge, Switzerland
– sequence: 3
  givenname: J.
  surname: Latt
  fullname: Latt, J.
  organization: Ecole Polytechnique Fédérale de Lausanne, STI/IGM/LIN, Station 9, 1015 Lausanne, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23059329$$DView record in Pascal Francis
BookMark eNqFkU1v3CAQhlGVSN0k_Q3lUrUXbwcbG3NMo35JqXJJzwjDoGVlwxZwk_bXl9VGOTan0Yyed77eC3IWYkBC3jLYMmDDx_3WxOXg5tXbbQu1Cv0WWP-KbNgoZAOCizOyAeB9I2QHr8lFznuoedfyDVl-oM5rwgVDyTQ6-qDnmeYd6kRzSZgzffBlR8sO6axL8QbppziXv4sOgS5YdtFSHWyFtU9GZ6T6cEjx0S-6-BiOLae4BquTx3xFzp2eM755ipfk55fP9zffmtu7r99vrm8bwxmUph3M1A9cOLDOMDniMOnRGSsnx6xB4ySzlusB7MRB844zbEE41krRd24cu0vy_tS3bvJrxVzU4rPBedYB45rV2PeDEBKgkh_-SzIBUgySs7ai4oSaFHNO6NQh1SvTH8VAHa1Qe_VshTpaoaBX1YqqfPc0RGejZ5d0MD4_y9sOetm1snLXJw7rb357TCobj8Gg9QlNUTb6F2f9A4R5p-s
CODEN CPFLBI
CitedBy_id crossref_primary_10_1063_5_0109175
crossref_primary_10_1142_S0129183114500570
crossref_primary_10_1103_PhysRevE_89_023303
crossref_primary_10_1007_s11433_014_5436_y
crossref_primary_10_3390_bioengineering10070849
crossref_primary_10_1016_j_ces_2022_118172
crossref_primary_10_1063_5_0195370
crossref_primary_10_1038_s41598_023_28878_5
crossref_primary_10_1007_s10439_023_03350_7
crossref_primary_10_1016_j_geoen_2023_212047
crossref_primary_10_1016_j_proeng_2013_08_010
crossref_primary_10_1038_s41598_021_86360_6
crossref_primary_10_1080_10255842_2022_2034794
crossref_primary_10_1007_s11517_019_02058_y
crossref_primary_10_1002_aic_16091
crossref_primary_10_1016_j_cej_2020_126653
crossref_primary_10_1016_j_compfluid_2013_05_019
crossref_primary_10_1016_j_compfluid_2018_04_015
crossref_primary_10_1002_ceat_201600083
crossref_primary_10_1016_j_camwa_2015_11_021
crossref_primary_10_1108_HFF_04_2021_0299
crossref_primary_10_1016_j_compfluid_2012_12_018
crossref_primary_10_1002_btpr_2880
crossref_primary_10_1016_j_compfluid_2014_04_011
crossref_primary_10_1080_13873954_2013_833523
crossref_primary_10_1115_1_4033913
crossref_primary_10_1063_5_0041178
crossref_primary_10_1142_S021951941450016X
crossref_primary_10_1016_j_compfluid_2019_104422
crossref_primary_10_1016_j_cnsns_2023_107281
crossref_primary_10_1134_S0869864323040017
crossref_primary_10_1134_S0869864322040060
crossref_primary_10_1007_s11242_017_0967_0
crossref_primary_10_1142_S0129183113400081
crossref_primary_10_1063_5_0149868
crossref_primary_10_1038_s41598_020_66225_0
crossref_primary_10_1038_s41598_020_65576_y
crossref_primary_10_1098_rsif_2014_0543
Cites_doi 10.1103/PhysRevE.72.066701
10.1103/PhysRevE.77.056703
10.1142/S0219525902000602
10.1063/1.1399290
10.1161/01.STR.0000144648.89172.0f
10.1016/0370-1573(92)90090-M
10.1146/annurev.fluid.30.1.329
10.1161/STROKEAHA.108.521617
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7UA
C1K
F1W
H96
L.G
DOI 10.1016/j.compfluid.2010.05.015
DatabaseName Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0747
EndPage 1633
ExternalDocumentID 10_1016_j_compfluid_2010_05_015
23059329
S0045793010001283
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-c410t-26cb5647f0dfc198e6ba8fcd9bf1dcecf91dd4a60db40a4341e207f129753f883
ISSN 0045-7930
IngestDate Fri Oct 25 07:40:52 EDT 2024
Fri Oct 25 03:41:12 EDT 2024
Fri Nov 22 01:01:28 EST 2024
Sun Oct 22 16:04:05 EDT 2023
Fri Feb 23 02:29:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords CFD
Lattice Boltzmann
Wall shear stress
Voxel geometry
Boltzmann equation
Pipe flow
Computational fluid dynamics
Digital simulation
Aneurysm
Cardiovascular disease
Vascular disease
Blood circulation
Voxel
Lattice model
Curved pipe
Shear stress
Modelling
Inclined pipe
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-26cb5647f0dfc198e6ba8fcd9bf1dcecf91dd4a60db40a4341e207f129753f883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1709769412
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_855677900
proquest_miscellaneous_1709769412
crossref_primary_10_1016_j_compfluid_2010_05_015
pascalfrancis_primary_23059329
elsevier_sciencedirect_doi_10_1016_j_compfluid_2010_05_015
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Computers & fluids
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Bouzidi, Firdaouss, Lallemand (bib3) 2001; 13
Chopard, Droz (bib5) 1998
Shojima, Oshima, Takagi, Torii, Hayakawa, Katada (bib10) 2004; 35
Sukop, Thorne (bib11) 2006
Benzi, Succi, Vergassola (bib1) 1992; 222
Chen, Doolen (bib4) 1998; 30
Junk, Yang (bib7) 2005; 72
Latt, Chopard, Malaspinas, Deville, Michler (bib8) 2008; 77
Jonas Latt, Daniel Lagrava, Fokko Beekhof, Bastien Chopard, Orestis Malaspinas. Computation of wall normal and distance function in voxelized 3d geometries for lattice Boltzmann simulations, in preparation.
Boussel, Rayz, McCulloch, Martin, Acevedo-Bolton, Lawton (bib2) 2008; 39
Chopard, Dupuis, Masselot, Luthi (bib6) 2002; 5
Benzi (10.1016/j.compfluid.2010.05.015_bib1) 1992; 222
Chopard (10.1016/j.compfluid.2010.05.015_bib6) 2002; 5
Junk (10.1016/j.compfluid.2010.05.015_bib7) 2005; 72
Latt (10.1016/j.compfluid.2010.05.015_bib8) 2008; 77
Chen (10.1016/j.compfluid.2010.05.015_bib4) 1998; 30
Chopard (10.1016/j.compfluid.2010.05.015_bib5) 1998
Boussel (10.1016/j.compfluid.2010.05.015_bib2) 2008; 39
Bouzidi (10.1016/j.compfluid.2010.05.015_bib3) 2001; 13
10.1016/j.compfluid.2010.05.015_bib9
Shojima (10.1016/j.compfluid.2010.05.015_bib10) 2004; 35
Sukop (10.1016/j.compfluid.2010.05.015_bib11) 2006
References_xml – volume: 77
  start-page: 056703
  year: 2008
  ident: bib8
  article-title: Straight velocity boundaries in the lattice Boltzmann method
  publication-title: Phys Rev E
  contributor:
    fullname: Michler
– volume: 39
  start-page: 2997
  year: 2008
  end-page: 3002
  ident: bib2
  article-title: Patient-specific correlation of hemodynamics and growth in a longitudinal study
  publication-title: Stroke
  contributor:
    fullname: Lawton
– volume: 13
  start-page: 3452
  year: 2001
  end-page: 3459
  ident: bib3
  article-title: Momentum transfer of a Boltzmann-lattice fluid with boundaries
  publication-title: Phys Fluids
  contributor:
    fullname: Lallemand
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  ident: bib4
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Ann Rev Fluid Mech
  contributor:
    fullname: Doolen
– volume: 5
  start-page: 103
  year: 2002
  end-page: 246
  ident: bib6
  article-title: Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems
  publication-title: Adv Complex Syst
  contributor:
    fullname: Luthi
– volume: 72
  start-page: 066701
  year: 2005
  ident: bib7
  article-title: One-point boundary condition for the lattice Boltzmann method
  publication-title: Phys Rev E
  contributor:
    fullname: Yang
– year: 2006
  ident: bib11
  article-title: Lattice Boltzmann modeling: an introduction for geoscientists and engineers
  contributor:
    fullname: Thorne
– volume: 222
  start-page: 145
  year: 1992
  end-page: 197
  ident: bib1
  article-title: The lattice Boltzmann equation: theory and application
  publication-title: Phys Rep
  contributor:
    fullname: Vergassola
– year: 1998
  ident: bib5
  article-title: Cellular automata modeling of physical systems
  contributor:
    fullname: Droz
– volume: 35
  start-page: 2500
  year: 2004
  end-page: 2505
  ident: bib10
  article-title: Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms
  publication-title: Stroke
  contributor:
    fullname: Katada
– volume: 72
  start-page: 066701
  issue: 6
  year: 2005
  ident: 10.1016/j.compfluid.2010.05.015_bib7
  article-title: One-point boundary condition for the lattice Boltzmann method
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.72.066701
  contributor:
    fullname: Junk
– volume: 77
  start-page: 056703
  year: 2008
  ident: 10.1016/j.compfluid.2010.05.015_bib8
  article-title: Straight velocity boundaries in the lattice Boltzmann method
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.77.056703
  contributor:
    fullname: Latt
– year: 1998
  ident: 10.1016/j.compfluid.2010.05.015_bib5
  contributor:
    fullname: Chopard
– ident: 10.1016/j.compfluid.2010.05.015_bib9
– volume: 5
  start-page: 103
  year: 2002
  ident: 10.1016/j.compfluid.2010.05.015_bib6
  article-title: Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems
  publication-title: Adv Complex Syst
  doi: 10.1142/S0219525902000602
  contributor:
    fullname: Chopard
– volume: 13
  start-page: 3452
  year: 2001
  ident: 10.1016/j.compfluid.2010.05.015_bib3
  article-title: Momentum transfer of a Boltzmann-lattice fluid with boundaries
  publication-title: Phys Fluids
  doi: 10.1063/1.1399290
  contributor:
    fullname: Bouzidi
– volume: 35
  start-page: 2500
  year: 2004
  ident: 10.1016/j.compfluid.2010.05.015_bib10
  article-title: Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms
  publication-title: Stroke
  doi: 10.1161/01.STR.0000144648.89172.0f
  contributor:
    fullname: Shojima
– volume: 222
  start-page: 145
  issue: 3
  year: 1992
  ident: 10.1016/j.compfluid.2010.05.015_bib1
  article-title: The lattice Boltzmann equation: theory and application
  publication-title: Phys Rep
  doi: 10.1016/0370-1573(92)90090-M
  contributor:
    fullname: Benzi
– year: 2006
  ident: 10.1016/j.compfluid.2010.05.015_bib11
  contributor:
    fullname: Sukop
– volume: 30
  start-page: 329
  year: 1998
  ident: 10.1016/j.compfluid.2010.05.015_bib4
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Ann Rev Fluid Mech
  doi: 10.1146/annurev.fluid.30.1.329
  contributor:
    fullname: Chen
– volume: 39
  start-page: 2997
  year: 2008
  ident: 10.1016/j.compfluid.2010.05.015_bib2
  article-title: Patient-specific correlation of hemodynamics and growth in a longitudinal study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.521617
  contributor:
    fullname: Boussel
SSID ssj0004324
Score 2.1860402
Snippet We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are based on a voxel representation of the geometry and...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1625
SubjectTerms Accuracy
Approximation
Biological and medical sciences
Blood and lymphatic vessels
Boundaries
Cardiology. Vascular system
CFD
Computational methods in fluid dynamics
Computer simulation
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Lattice Boltzmann
Lattices
Mathematical analysis
Medical sciences
Physics
Voxel geometry
Wall shear stress
Wall shear stresses
Walls
Title Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries
URI https://dx.doi.org/10.1016/j.compfluid.2010.05.015
https://search.proquest.com/docview/1709769412
https://search.proquest.com/docview/855677900
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa67QWEEFdRLpOReEOZ7DRX3gYUDQS8bEh7sxxfxKY2qZpWIH4959jOpWITIMRL1Fpt4uR8Of5sn_MdQl6giFmscx1JVWIJM2aiKtVVJFMgRzw2M59Ie3Kafz4v3s6T-WTSSWwMbf_V0tAGtsbM2b-wdn9SaIDPYHM4gtXh-Ed2_zQs-rkojW-499xi3eouL8QvvQI8FnKDoW8vXzeLzY-lrOtQT9ptKGBe1VrBGOdlx79fLHtyWblSTOsu_LDTOQj1IVqHJrvYXuierwOl_eq3N46GeILGKz2OGz_KsFd1NF6NwMgONl6N6NNkhpgk53YT1MUMGzDGe9oix-wpL7fZuWKvaxQgV478Ks98enQYo4FEzq70_34p4hLtt3I3GoL3UJs1HYa8PhDxFLuGPeNuSa6Y7ZGDGL6Dxzw4fj8__zDk2M5ir-gdbmUnVvDKy13HdG6tZAvvn_WFU37hAI7YnN0ht8OMhB57KN0lE1PfIzdHOpX3yXIMKtpYiqCiDlTUg4oiqCiAigZQ0R5U1IOKAqhoDyq6Ayo85QCqB-TLu_nZm5Mo1OmIVMLZJoozVaVZklumreJlYbJKFlbpsrJcK6NsybVOZMZ0lTCZAG8yMcstd0ndtihmD8l-3dTmEaGoF1eVpeJMATHWuuCZiXNpqhjTmLJkSlj3TMXKy7GILk7xUvRmEGgGwVIBZpiSV92zF4FVerYoADS___PhjrX6i8LMPYWpTzklzzvzCXDMuNsma9NsW8FzBlS_THg8JfSa3xRpmqHgJ3v8L518Qm4Mr-JTsr9Zb80zstfq7WFA8U-vXsPp
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurements+of+wall+shear+stress+with+the+lattice+Boltzmann+method+and+staircase+approximation+of+boundaries&rft.jtitle=Computers+%26+fluids&rft.au=Stahl%2C+B.&rft.au=Chopard%2C+B.&rft.au=Latt%2C+J.&rft.date=2010-10-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=39&rft.issue=9&rft.spage=1625&rft.epage=1633&rft_id=info:doi/10.1016%2Fj.compfluid.2010.05.015&rft.externalDocID=S0045793010001283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon