Design Principles of Interfacial Dynamic Bonds in Self‐Healing Materials: What are the Parameters?

Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significa...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry, an Asian journal Vol. 15; no. 24; pp. 4215 - 4240
Main Authors: Sattar, Mohammad Abdul, Patnaik, Archita
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 14-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significantly enhanced long life and safety have been designed to epitomize the forefront of recent advances in materials chemistry and engineering. Self‐healing PNC (SH‐PNCs) materials are a class of smart composites in which nanoparticles induce interfacial reconstruction via multiple covalent and non‐covalent interactions culminating in improved mechanical strength and self‐healing capability. However, since the filler nanoparticles are independent of the reversible supramolecular network, the filler incorporation destroys the self‐healing ability but could enhance the mechanical strength. Hence, the molecular parameters controlling the alliance of robust mechanical strength with virtuous self‐healing ability is a crucial challenge. Herein, we review the latest developments that have been made in self‐healing materials and puts advancing insights into the fabrication of SH‐PNCs in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. We highlight the importance of specific entropic, enthalpic changes, polymer chain conformations and flexibility that enable the reconstruction of damaged surface and physical reshuffling of dynamic bonds at the interface of cut surfaces. Self‐healing is one of the fascinating processes in nature. There is considerable interest in elastomeric materials that can sense and repair physical damage by themselves. This magical characteristic is called self‐healing capability. Inspired by nature's exquisite and complex assemblies, the molecular mechanism behind the self‐healing materials is driven by dynamic covalent and non‐covalent transitory bonds. This review summarizes the latest developments that have been made in self‐healing materials and puts advancing insights into their fabrication in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability.
AbstractList Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significantly enhanced long life and safety have been designed to epitomize the forefront of recent advances in materials chemistry and engineering. Self‐healing PNC (SH‐PNCs) materials are a class of smart composites in which nanoparticles induce interfacial reconstruction via multiple covalent and non‐covalent interactions culminating in improved mechanical strength and self‐healing capability. However, since the filler nanoparticles are independent of the reversible supramolecular network, the filler incorporation destroys the self‐healing ability but could enhance the mechanical strength. Hence, the molecular parameters controlling the alliance of robust mechanical strength with virtuous self‐healing ability is a crucial challenge. Herein, we review the latest developments that have been made in self‐healing materials and puts advancing insights into the fabrication of SH‐PNCs in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. We highlight the importance of specific entropic, enthalpic changes, polymer chain conformations and flexibility that enable the reconstruction of damaged surface and physical reshuffling of dynamic bonds at the interface of cut surfaces.
Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significantly enhanced long life and safety have been designed to epitomize the forefront of recent advances in materials chemistry and engineering. Self‐healing PNC (SH‐PNCs) materials are a class of smart composites in which nanoparticles induce interfacial reconstruction via multiple covalent and non‐covalent interactions culminating in improved mechanical strength and self‐healing capability. However, since the filler nanoparticles are independent of the reversible supramolecular network, the filler incorporation destroys the self‐healing ability but could enhance the mechanical strength. Hence, the molecular parameters controlling the alliance of robust mechanical strength with virtuous self‐healing ability is a crucial challenge. Herein, we review the latest developments that have been made in self‐healing materials and puts advancing insights into the fabrication of SH‐PNCs in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. We highlight the importance of specific entropic, enthalpic changes, polymer chain conformations and flexibility that enable the reconstruction of damaged surface and physical reshuffling of dynamic bonds at the interface of cut surfaces. Self‐healing is one of the fascinating processes in nature. There is considerable interest in elastomeric materials that can sense and repair physical damage by themselves. This magical characteristic is called self‐healing capability. Inspired by nature's exquisite and complex assemblies, the molecular mechanism behind the self‐healing materials is driven by dynamic covalent and non‐covalent transitory bonds. This review summarizes the latest developments that have been made in self‐healing materials and puts advancing insights into their fabrication in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability.
Abstract Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significantly enhanced long life and safety have been designed to epitomize the forefront of recent advances in materials chemistry and engineering. Self‐healing PNC (SH‐PNCs) materials are a class of smart composites in which nanoparticles induce interfacial reconstruction via multiple covalent and non‐covalent interactions culminating in improved mechanical strength and self‐healing capability. However, since the filler nanoparticles are independent of the reversible supramolecular network, the filler incorporation destroys the self‐healing ability but could enhance the mechanical strength. Hence, the molecular parameters controlling the alliance of robust mechanical strength with virtuous self‐healing ability is a crucial challenge. Herein, we review the latest developments that have been made in self‐healing materials and puts advancing insights into the fabrication of SH‐PNCs in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. We highlight the importance of specific entropic, enthalpic changes, polymer chain conformations and flexibility that enable the reconstruction of damaged surface and physical reshuffling of dynamic bonds at the interface of cut surfaces.
Author Sattar, Mohammad Abdul
Patnaik, Archita
Author_xml – sequence: 1
  givenname: Mohammad Abdul
  orcidid: 0000-0002-4267-6805
  surname: Sattar
  fullname: Sattar, Mohammad Abdul
  email: abdulelectrophile@gmail.com, abdul.mohammad@mrfmail.com
  organization: R&D Centre MRF Limited
– sequence: 2
  givenname: Archita
  orcidid: 0000-0002-0754-7055
  surname: Patnaik
  fullname: Patnaik, Archita
  email: archita@iitm.ac.in
  organization: Indian Institute of Technology Madras
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33137223$$D View this record in MEDLINE/PubMed
BookMark eNqF0MtKAzEUBuAgipfq1qUE3LhpzWUuGTdS66UFRUFFd8MxOaORmUxNWqQ7H8Fn9EmMVCu4cXUC58vP4d8gy651SMg2Zz3OmNiHYKEnmGCM8zRfIutcZbyb5Px-efEWao1shPDMWCpYoVbJmpRc5kLIdWKOMdhHR6-8ddqOawy0rejITdBXoC3U9HjmoLGaHrXOBGodvca6-nh7HyLU1j3SC4g2wnBA755gQsEjnTwhvQIPDcZdONwkK1UEuPU9O-T29ORmMOyeX56NBv3zrk44y7vaFNwokEZDzlOsdLwgq7gQLMt1lrC0AFOoRKfFQ8olgIFKSZXwxKAyoDLZIXvz3LFvX6YYJmVjg8a6BoftNJQiSWMZTGV5pLt_6HM79S5eF1XOuFKFFFH15kr7NgSPVTn2tgE_Kzkrv_ovv_ovF_3HDzvfsdOHBs2C_xQeQTEHr7bG2T9xZf961P8N_wT2ypPh
CitedBy_id crossref_primary_10_3390_molecules27196635
crossref_primary_10_1016_j_mtphys_2024_101448
crossref_primary_10_1039_D3MH00040K
crossref_primary_10_1080_00914037_2021_2008390
crossref_primary_10_1002_slct_202100831
crossref_primary_10_1021_acsomega_1c05848
crossref_primary_10_1002_asia_202400183
crossref_primary_10_1002_cjce_24849
crossref_primary_10_1016_j_pmatsci_2022_101001
crossref_primary_10_3390_ijms23094757
crossref_primary_10_1016_j_jclepro_2023_138207
crossref_primary_10_1002_macp_202300211
crossref_primary_10_3390_polym14214607
crossref_primary_10_1016_j_wasman_2021_03_025
crossref_primary_10_1002_cssc_202202309
Cites_doi 10.1002/adma.201801435
10.1021/acsami.6b10881
10.1002/marc.201600226
10.1021/nn9006847
10.1038/35057232
10.1002/polb.23980
10.1021/cr500633b
10.1039/C5TA05788D
10.1021/ar950199y
10.1039/C9TA09158K
10.1021/acsmacrolett.6b00805
10.1039/C9TA13928A
10.1039/c3py00087g
10.1039/b910648k
10.1016/j.compscitech.2006.07.028
10.3390/polym10010094
10.1002/marc.201600428
10.1016/j.chempr.2018.06.001
10.1021/cr990125q
10.1007/s11947-020-02462-5
10.1002/anie.201407402
10.1021/ja303356z
10.1021/acs.jpcc.9b05545
10.3390/polym11030490
10.1002/mame.201600385
10.1039/C7CP03570E
10.1021/acs.macromol.7b02287
10.1021/jacs.8b01682
10.1039/D0MH00535E
10.1038/s41467-018-05285-3
10.1038/s41467-020-14911-y
10.3390/polym12020487
10.1039/C9CP04091A
10.1016/j.mattod.2014.01.020
10.1021/ma00205a023
10.1039/C6PY01112H
10.1021/acssuschemeng.6b01760
10.1039/D0TA01593H
10.1016/j.compositesb.2018.08.082
10.1021/acsomega.9b03516
10.1016/j.carbpol.2018.10.080
10.1002/adma201302015
10.1002/ange.201712670
10.1073/pnas.1705380114
10.2533/chimia.2011.745
10.1039/C7TA08255J
10.1039/C7CS00564D
10.1016/j.eurpolymj.2017.04.026
10.1021/acs.langmuir.9b01847
10.1039/c1jm10794a
10.1016/j.polymer.2019.04.059
10.1016/j.polymer.2014.11.052
10.1039/B803951H
10.1002/adma.201903762
10.3390/polym12040989
10.1002/app.10112
10.1016/j.progpolymsci.2015.06.001
10.1039/C8TA02102C
10.1021/ma3023603
10.1021/acsami.8b21197
10.1021/acsami.7b19649
10.1080/15583724.2018.1454947
10.1021/acs.biomac.7b00089
10.1002/adma.200400607
10.1039/D0CC00672F
10.1021/ma402368s
10.1021/acsami.7b09997
10.1038/nprot.2017.053
10.1021/ma200202w
10.1021/acsapm.8b00274
10.1016/j.polymer.2016.05.004
10.1002/app.29226
10.1021/acs.macromol.8b01124
10.1002/marc.201200689
10.1146/annurev-matsci-070909-104532
10.1016/S1369-7021(04)00187-7
10.1021/am303015e
10.1002/adma.200802008
10.1021/acs.nanolett.5b03069
10.1021/ma902379t
10.1063/1.2742385
10.3390/polym11122122
10.1021/jacs.5b03551
10.1002/adfm.201302058
10.1021/ma2001492
10.1021/acsami.7b18700
10.1021/acsami.7b17465
10.1023/B:JMSC.0000016173.73733.dc
10.1002/adma.201203865
10.1126/science.1065879
10.1039/B603168B
10.1002/marc.201600777
10.1039/C5CC00262A
10.1039/c2py20290e
10.1021/acs.macromol.7b00022
10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H
10.1039/C9TA01266D
10.1021/ma9022197
10.1016/j.eurpolymj.2016.08.028
10.1039/C6TC04715G
10.1038/nature06669
10.1021/acsami.8b20380
10.1002/app.38838
10.1002/ange.200700439
10.1039/c2sm25144b
10.1039/C4TA06304J
10.1002/anie.201712670
10.3390/polym12030603
10.1021/ja104446r
10.1021/nn2025397
10.1039/C8AY00598B
10.1039/B917901A
10.1016/S0040-4039(01)00796-1
10.1016/j.ccr.2014.01.016
10.1021/acs.macromol.9b00597
10.1002/chem.201603753
10.1039/C5CP02151K
10.1103/PhysRevLett.122.217801
10.1039/C5SC02223A
10.1039/b912433k
10.1021/ma401016d
10.1002/anie.198110511
10.1021/acs.macromol.8b02466
10.1007/s10904-006-9075-2
10.1016/j.tet.2008.05.077
10.1021/acs.macromol.5b02756
10.3390/entropy-e10020049
10.1021/acsami.5b05041
10.1002/adma.201003036
10.1016/j.apsusc.2018.05.159
10.3390/polym9090431
10.1039/C5CC06824J
10.1021/bm200423f
10.1021/acsami.6b15476
10.1039/c2cs15305j
10.1021/acsomega.9b01243
10.1016/j.compscitech.2020.108271
10.1021/jacs.6b02428
10.1016/j.eurpolymj.2015.04.021
10.1016/j.progpolymsci.2009.10.002
10.1021/ma202325k
10.1021/acsapm.0c00250
10.1021/ma2015134
10.1039/C8NR06348F
10.1002/marc.201200675
10.1039/C6RA28416G
10.1007/BF01410350
10.1073/pnas.0401885101
10.1021/acs.biomac.6b01841
10.1021/acs.macromol.6b00826
10.1039/c4ta02079k
10.1002/adma.201303652
10.1016/j.foodcont.2013.05.004
10.1021/acsami.8b13249
10.1039/C9PY01630A
10.1021/ma052691v
10.1021/acsmacrolett.9b00351
10.1038/ncomms14857
10.1021/acsami.5b12358
10.1088/1361-665X/aa71f5
10.1021/acsomega.0c02929
10.1021/acs.macromol.7b01261
10.1021/acsmacrolett.8b00411
10.1039/C5TA01915J
10.1021/nn200201u
10.1021/ma401111n
10.1021/acsami.6b05941
10.1002/smll.201604077
10.1038/ncomms1521
10.1039/b900859d
10.1021/acsami.7b13309
10.1016/j.compscitech.2005.04.020
10.1002/pola.27655
10.1039/C8TA09866B
10.1039/C9TA03775F
10.1021/cr970022c
10.1002/adma.201500140
10.1002/anie.198407411
10.1039/c2cs35091b
10.1126/science.1212648
10.1039/C6SC02354A
10.1039/C4TB00862F
10.1021/acs.macromol.9b00830
10.1039/c3cs60109a
10.1016/j.progpolymsci.2005.06.002
10.1002/macp.201700327
10.1016/j.compscitech.2007.07.021
10.1021/acsami.6b02259
10.1021/acsami.9b00626
10.1038/nmat858
10.1021/acs.macromol.6b01443
10.1038/nature09963
10.1021/cr60110a002
10.1021/acsami.0c05083
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
10.1039/C7SM00916J
10.1002/anie.201705462
10.1038/nmat952
10.1016/j.polymer.2019.122003
10.1088/1757-899X/377/1/012007
10.1039/C6MH00029K
10.1021/am301879z
10.1021/jacs.8b03257
10.1021/cm102963k
10.1080/15321799308021436
10.1021/ja00256a040
10.1039/C7NR05011A
10.1021/ja500205v
10.1021/ma902596s
10.1021/acs.accounts.7b00371
10.1021/acs.macromol.6b01576
10.1002/admi.201800051
10.1016/j.chempr.2017.07.017
10.1021/acs.macromol.5b02214
10.1016/j.eurpolymj.2004.10.012
10.1021/acs.macromol.9b00159
10.1039/p29850000607
10.1021/ja01561a014
10.1021/acsami.9b11166
10.1002/adma.201200196
10.1021/acsami.9b12264
10.1021/ja9756331
10.1039/b711716g
10.1021/jacs.5b02653
10.1016/j.polymer.2019.01.010
10.1021/acsapm.9b01095
10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
10.1021/acs.jpcc.9b07247
10.1016/j.progpolymsci.2009.03.001
10.1021/ja00170a016
10.1016/j.ijbiomac.2014.03.013
10.1021/ja0279693
10.1021/acs.iecr.6b00612
10.1021/acs.macromol.5b00210
10.1021/mz200195n
10.1126/science.1181044
10.1080/23311916.2015.1075686
10.1002/marc.201700739
10.1039/C9SM00254E
10.1021/ja300050x
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
K9.
7X8
DOI 10.1002/asia.202001157
DatabaseName PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage 4240
ExternalDocumentID 10_1002_asia_202001157
33137223
ASIA202001157
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: MRF Ltd. Chennai
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
RAD
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
NPM
AAYXX
CITATION
K9.
7X8
ID FETCH-LOGICAL-c4107-cd91d8a3dca715efcfac6f122067c64059ad984c59b513aadaf838414de8da863
IEDL.DBID 33P
ISSN 1861-4728
IngestDate Sat Oct 26 01:39:03 EDT 2024
Thu Oct 10 15:59:09 EDT 2024
Thu Sep 12 19:21:09 EDT 2024
Sat Sep 28 08:26:41 EDT 2024
Sat Aug 24 01:05:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords broadband dielectric spectroscopy
mechanical strength
dynamic bonds
segmental dynamics
glass transition
interface
Polymer nanocomposites
non-bonding interactions
self-healing
supramolecular network
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4107-cd91d8a3dca715efcfac6f122067c64059ad984c59b513aadaf838414de8da863
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-4267-6805
0000-0002-0754-7055
PMID 33137223
PQID 2470188932
PQPubID 986338
PageCount 26
ParticipantIDs proquest_miscellaneous_2457280867
proquest_journals_2470188932
crossref_primary_10_1002_asia_202001157
pubmed_primary_33137223
wiley_primary_10_1002_asia_202001157_ASIA202001157
PublicationCentury 2000
PublicationDate December 14, 2020
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: December 14, 2020
  day: 14
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2013; 2
2019; 11
1987; 109
2006; 39
2004; 7
2013; 129
2019; 15
2009; 111
2014; 24
2005; 65
2020; 12
2020; 11
2007 2007; 119
2013; 5
2016; 37
2014; 136
2001; 40
2019; 164
2001; 42
2011; 472
1944; 35
2018; 7
2009; 11
2010; 22
2018; 6
2018; 9
2012; 134
2018; 4
2015; 137
2019; 21
2004; 39
2002; 84
2018; 455
2019; 157
2011; 65
2018; 30
2018; 219
2014; 17
2012; 24
2016; 49
1998; 98
2007; 67
2019; 8
2007; 17
2019; 7
2015; 56
2019; 4
2011; 2
2010; 35
2010; 328
2015; 51
2019; 1
2010; 39
2019; 35
2015; 53
1998
2016; 96
2014; 47
2011; 5
2010; 40
1981; 20
1957; 79
2016; 4
2015; 68
2017; 50
2016; 5
2010; 43
2016; 7
1990; 23
2016; 3
2015; 115
1997; 30
2017; 56
1990; 112
2005; 17
2018; 10
2012; 45
2016; 8
2017; 302
2014; 268
2012; 41
2019; 175
2016; 22
2017; 5
2009; 44
2017; 7
2001; 101
2017; 8
2013; 25
2017; 3
2019; 52
2017; 46
1984; 23
2020; 59
2020; 56
2011; 12
2008; 4
2017; 114
2019; 122
2017; 9
2019; 123
2007; 36
2020; 8
2015; 48
2020; 5
2020; 3
2020; 2
2014; 2
2002; 41
1993; C33
1989; 267
2017; 38
2018 2018; 57 130
2018; 377
2003; 2
2005; 30
2016; 85
2011; 21
2008; 68
2011; 23
2008; 64
2003; 125
2018; 75
1998; 120
2014; 53
2015; 2
2004; 101
2007; 126
2015; 15
2011; 334
2015; 17
2009; 21
2018; 140
2015; 3
2017; 26
2013; 46
2020; 186
1985; 2
2002; 295
2013; 42
2016; 54
2005; 41
2001; 409
2008; 10
1999; 5
2015; 7
2016; 55
2009; 34
2017; 91
2015; 27
2012; 3
2012; 1
2020; 197
2013; 34
2017; 13
2017; 12
2009; 143
2010; 132
2019
2018
2011; 44
2017; 19
2016
2017; 18
2015
2018; 51
2016; 138
2011; 45
2014
2009; 5
2013
2009; 3
2008; 451
2012; 4
2012; 8
2018; 58
e_1_2_9_79_1
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_33_1
e_1_2_9_216_1
Guan Q. (e_1_2_9_228_1) 2019; 7
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_122_1
e_1_2_9_145_1
Li F. (e_1_2_9_82_1) 2019; 11
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_60_2
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_227_1
Wang S. (e_1_2_9_110_1) 2007
e_1_2_9_22_2
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_242_1
Pierre P. (e_1_2_9_177_1) 1998
Kloxin C. J. (e_1_2_9_185_1) 2013
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
Haili N. (e_1_2_9_12_1) 2018
e_1_2_9_232_1
e_1_2_9_255_1
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
Hossain S. (e_1_2_9_115_1)
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_110_2
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_171_1
e_1_2_9_194_1
Chang R. (e_1_2_9_218_1) 2016
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_256_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_39_2
Shengju G. (e_1_2_9_11_1) 2018; 75
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_257_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
Xu M. (e_1_2_9_204_1) 2020; 2
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_222_1
e_1_2_9_21_2
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_258_1
e_1_2_9_90_1
Geitner R. (e_1_2_9_245_1)
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
Huang J. (e_1_2_9_188_1) 2020; 59
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_246_1
e_1_2_9_41_2
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_236_1
e_1_2_9_259_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_251_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_38_2
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_42_2
e_1_2_9_65_1
e_1_2_9_247_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_237_1
e_1_2_9_252_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_4_1
e_1_2_9_240_1
e_1_2_9_155_2
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_253_1
e_1_2_9_127_1
e_1_2_9_104_1
e_1_2_9_59_2
e_1_2_9_36_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
Yang M. W Urban Y. (e_1_2_9_107_1) 2013
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 68
  start-page: 978
  year: 2008
  end-page: 986
  publication-title: Compos. Sci. Technol.
– volume: 132
  start-page: 12051
  year: 2010
  end-page: 12058
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6791
  year: 2011
  end-page: 6818
  publication-title: ACS Nano
– volume: 52
  start-page: 6055
  year: 2019
  end-page: 6067
  publication-title: Macromolecules.
– start-page: 34
  year: 2015
  end-page: 59
  publication-title: Prog. Polym. Sci.
– volume: 7
  start-page: 20093
  year: 2017
  end-page: 20100
  publication-title: RSC Adv.
– volume: 27
  start-page: 2722
  year: 2015
  end-page: 2727
  publication-title: Adv. Mater.
– volume: 9
  start-page: 15696
  year: 2017
  end-page: 15706
  publication-title: Nanoscale
– volume: 43
  start-page: 2643
  year: 2010
  end-page: 2653
  publication-title: Macromolecules
– volume: 54
  start-page: 781
  year: 2016
  end-page: 786
  publication-title: J. Polym. Sci. Part B.
– volume: 7
  start-page: 5343
  year: 2016
  end-page: 5346
  publication-title: Polym. Chem.
– volume: 37
  start-page: 1667
  year: 2016
  end-page: 1675
  publication-title: Macromol. Rapid Commun.
– volume: 59
  start-page: 21
  year: 2020
  end-page: 9958
  publication-title: Ind. Eng. Chem. Res.
– volume: 472
  start-page: 334
  year: 2011
  end-page: 33
  publication-title: Nature
– volume: 10
  start-page: 94
  year: 2018
  publication-title: Polymer
– volume: 5
  start-page: 3858
  year: 2011
  end-page: 3866
  publication-title: ACS Nano
– volume: 12
  start-page: 33139
  year: 2020
  end-page: 33151
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 6
  year: 2020
  end-page: 2237
  publication-title: ACS Appl. Polym. Mater.
– volume: 46
  start-page: 6621
  year: 2013
  end-page: 6633
  publication-title: Macromolecules
– volume: 10
  year: 2008
  publication-title: Entropy
– volume: 5
  start-page: 25660
  year: 2017
  end-page: 25671
  publication-title: J. Mater. Chem. A
– start-page: 147
  year: 2014
  end-page: 153
  publication-title: Int. J. Biol. Macromol.
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 26
  year: 2017
  publication-title: Smart Mater. Struct.
– volume: 44
  start-page: 6717
  year: 2009
  end-page: 6719
  publication-title: Chem. Commun.
– volume: 35
  start-page: 3
  year: 2010
  end-page: 23
  publication-title: Prog. Polym. Sci.
– volume: 3
  start-page: 691
  year: 2017
  end-page: 705
  publication-title: Chem.
– volume: 2
  start-page: 510
  year: 2003
  publication-title: Nat. Mater.
– volume: 91
  start-page: 408
  year: 2017
  end-page: 419
  publication-title: Eur. Polym. J.
– volume: 10
  start-page: 2992
  year: 2018
  end-page: 3001
  publication-title: ACS Appl. Mater. Interfaces
– volume: 295
  start-page: 1698
  year: 2002
  end-page: 1702
  publication-title: Science
– volume: 2
  start-page: 1634
  year: 2013
  end-page: 1638
  publication-title: Adv. Mater.
– volume: 140
  start-page: 5280
  year: 2018
  end-page: 5289
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 1070
  year: 2012
  end-page: 1075
  publication-title: Macromolecules
– volume: 5
  start-page: 2455
  year: 1999
  end-page: 2463
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 8245
  year: 2018
  end-page: 8257
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 18651
  year: 2018
  end-page: 18656
  publication-title: Nanoscale
– volume: 8
  start-page: 17728
  year: 2016
  end-page: 17737
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 11049
  year: 2014
  end-page: 11053
  publication-title: J. Mater. Chem. A.
– volume: 57 130
  start-page: 2194 2216
  year: 2018 2018
  end-page: 2198 2220
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 6715
  year: 2016
  end-page: 6720
  publication-title: Chem. Sci.
– volume: 5
  start-page: 220
  year: 2017
  end-page: 228
  publication-title: J. Mater. Chem. C
– volume: 15
  start-page: 2826
  year: 2019
  end-page: 2837
  publication-title: Soft Matter
– volume: 8
  start-page: 32520
  year: 2016
  end-page: 32527
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 50
  start-page: 2610
  year: 2017
  end-page: 2620
  publication-title: Acc. Chem. Res.
– volume: 41
  start-page: 2003
  year: 2012
  end-page: 2024
  publication-title: Chem. Soc. Rev.
– volume: 39
  start-page: 1703
  year: 2004
  end-page: 1710
  publication-title: J. Mater. Sci.
– volume: 143
  start-page: 251
  year: 2009
  end-page: 264
  publication-title: Faraday Discuss.
– volume: 17
  start-page: 205
  year: 2005
  end-page: 208
  publication-title: Adv. Mater.
– volume: 41
  start-page: 898
  year: 2002
  end-page: 952
  publication-title: Angew. Chem. Int. Ed.
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 7
  start-page: 1198
  year: 2018
  end-page: 1202
  publication-title: ACS Macro Lett.
– volume: 2
  start-page: 6
  year: 2020
  end-page: 2283
  publication-title: ACS Appl. Polym. Mater.
– volume: 175
  start-page: 15
  year: 2019
  end-page: 24
  publication-title: Polymer
– volume: 75
  start-page: 1
  year: 2018
  end-page: 12
  publication-title: J. Foodhyd
– volume: 2
  start-page: 607
  year: 1985
  end-page: 624
  publication-title: J. Chem. Soc., Perkin Trans.
– volume: 5
  start-page: 1348
  year: 2016
  end-page: 1352
  publication-title: ACS Macro Lett.
– volume: 15
  start-page: 6276
  year: 2015
  end-page: 6281
  publication-title: Nano Lett.
– volume: 13
  year: 2017
  publication-title: Small
– year: 2013
– volume: 42
  start-page: 4705
  year: 2001
  end-page: 4707
  publication-title: Tetrahedron Lett.
– volume: 101
  start-page: 4071
  year: 2001
  end-page: 4098
  publication-title: Chem. Rev.
– volume: 25
  start-page: 5530
  year: 2013
  end-page: 5548
  publication-title: Adv. Mater.
– volume: 40
  start-page: 179
  year: 2010
  end-page: 211
  publication-title: Annu. Rev. Mater. Res.
– volume: 41
  start-page: 6042
  year: 2012
  end-page: 6065
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 2494
  year: 2018
  end-page: 2502
  publication-title: Anal. Methods
– volume: 140
  start-page: 6217
  year: 2018
  end-page: 6220
  publication-title: J. Am. Chem.
– volume: 21
  start-page: 11123
  year: 2011
  end-page: 11130
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 1494
  year: 2013
  end-page: 1502
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 3011
  year: 2018
  end-page: 3019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  start-page: 203
  year: 2013
  end-page: 220
  publication-title: Macromol. Rapid Commun.
– volume: 39
  start-page: 17
  year: 2010
  end-page: 29
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 1188
  year: 2020
  end-page: 1197
  publication-title: Polym. Chem.
– volume: 52
  start-page: 2531
  year: 2019
  end-page: 2541
  publication-title: Macromolecules
– volume: 19
  start-page: 18461
  year: 2017
  end-page: 18470
  publication-title: Phys. Chem. Chem. Phys.
– volume: 23
  start-page: 6
  year: 2011
  end-page: 8
  publication-title: Chem. Mater.
– volume: 197
  year: 2020
  publication-title: Compos. Sci. Technol.
– volume: 9
  start-page: 2725
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 10184
  year: 2018
  end-page: 10188
  publication-title: J. Mater. Chem. A
– volume: 37
  start-page: 1040
  year: 2016
  end-page: 1045
  publication-title: Macromol. Rapid Commun.
– start-page: 188
  year: 2018
  end-page: 195
  publication-title: J. Foodchem.
– volume: 7
  start-page: 20623
  year: 2015
  end-page: 20630
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 643
  year: 2010
  end-page: 651
  publication-title: Macromolecules
– volume: 56
  start-page: 10462
  year: 2017
  end-page: 10466
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 17
  year: 2019
  end-page: 16116
  publication-title: ACS Appl. Mater. Interfaces
– volume: 409
  start-page: 794
  year: 2001
  end-page: 797
  publication-title: Nature
– volume: 334
  start-page: 965
  year: 2011
  end-page: 968
  publication-title: Science
– volume: 49
  start-page: 1781
  year: 2016
  end-page: 1789
  publication-title: Macromolecules
– volume: 8
  start-page: 4955
  year: 2016
  end-page: 4962
  publication-title: ACS Appl. Mater. Interfaces
– volume: 120
  start-page: 5604
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 91
  year: 2007
  publication-title: J. Inorg. Organomet. Polym. Mater.
– volume: 451
  start-page: 977
  year: 2008
  end-page: 980
  publication-title: Nature
– volume: 64
  start-page: 8346
  year: 2008
  end-page: 8354
  publication-title: Tetrahedron
– volume: 51
  start-page: 15196
  year: 2015
  end-page: 15199
  publication-title: Chem. Commun.
– volume: 7
  start-page: 1459
  year: 2019
  end-page: 1467
  publication-title: J. Mater. Chem. A
– volume: 129
  start-page: 1383
  year: 2013
  end-page: 1393
  publication-title: J. Appl. Polym. Sci.
– volume: 12
  start-page: 603
  year: 2020
  publication-title: Polymer
– volume: 2
  start-page: 278
  year: 2003
  end-page: 283
  publication-title: Nat. Mater.
– volume: 21
  start-page: 645
  year: 2009
  end-page: 649
  publication-title: Adv. Mater.
– volume: 96
  start-page: 26
  year: 2016
  end-page: 34
  publication-title: Polymer
– volume: 50
  start-page: 7584
  year: 2017
  end-page: 7592
  publication-title: Macromolecules
– volume: 17
  start-page: 22587
  year: 2015
  end-page: 22595
  publication-title: Phys. Chem. Chem. Phys.
– volume: 49
  start-page: 298
  year: 2016
  end-page: 307
  publication-title: Macromolecules
– volume: 11
  start-page: 490
  year: 2019
  publication-title: Polymer.
– volume: 43
  start-page: 1191
  year: 2010
  end-page: 1194
  publication-title: Macromolecules
– volume: 67
  start-page: 201
  year: 2007
  end-page: 12
  publication-title: Compos. Sci. Technol.
– volume: 12
  start-page: 487
  year: 2020
  publication-title: Polymer.
– volume: 55
  start-page: 4539
  year: 2016
  end-page: 4548
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 13948
  year: 2019
  end-page: 13955
  publication-title: Chem. A
– volume: 11
  start-page: 7755
  year: 2019
  end-page: 7763
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 7446
  year: 2013
  end-page: 7467
  publication-title: Chem. Soc. Rev.
– volume: 30
  start-page: 814
  year: 2005
  end-page: 831
  publication-title: Dynamers. Prog. Polym. Sci.
– volume: 12
  start-page: 2894
  year: 2011
  end-page: 2901
  publication-title: Biomacromolecules
– volume: 3
  start-page: 2677
  year: 2009
  end-page: 2685
  publication-title: ACS Nano.
– volume: 2
  start-page: 6878
  year: 2014
  end-page: 6885
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 241
  year: 2016
  end-page: 247
  publication-title: Mater. Horiz.
– start-page: 2
  end-page: 17982
  publication-title: Phys. Chem. Chem. Phys.
– volume: 49
  start-page: 8593
  year: 2016
  end-page: 8604
  publication-title: Macromolecules
– volume: 186
  year: 2020
  publication-title: Polymer
– volume: 39
  start-page: 3441
  year: 2006
  end-page: 3449
  publication-title: Macromolecules
– volume: 35
  start-page: 51
  year: 1944
  end-page: 75
  publication-title: Chem. Rev.
– volume: 11
  start-page: 9530
  year: 2009
  end-page: 9536
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 6416
  year: 2012
  end-page: 6429
  publication-title: Soft Matter
– volume: 136
  start-page: 6969
  year: 2014
  end-page: 6977
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 1794
  year: 2013
  end-page: 1802
  publication-title: Macromolecules.
– volume: 40
  start-page: 2004
  year: 2001
  end-page: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 400
  year: 2008
  end-page: 418
  publication-title: Soft Matter.
– volume: 20
  start-page: 1051
  year: 1981
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 3045
  year: 2012
  end-page: 3056
  publication-title: Polym. Chem.
– volume: 50
  start-page: 2092
  year: 2017
  end-page: 2102
  publication-title: Macromolecules
– volume: 2
  start-page: 511
  year: 2011
  end-page: 516
  publication-title: Nat. Commun.
– volume: 85
  start-page: 605
  year: 2016
  end-page: 619
  publication-title: Eur. Polym. J.
– volume: 455
  start-page: 318
  year: 2018
  end-page: 325
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 34
  year: 2004
  end-page: 39
  publication-title: Mater. Today
– volume: 52
  start-page: 5157
  year: 2019
  end-page: 5167
  publication-title: Macromolecules
– volume: 5
  start-page: 21191
  year: 2020
  end-page: 21202
  publication-title: ACS Omega
– volume: 101
  start-page: 8270
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 43
  start-page: 643
  year: 2010
  end-page: 651
  publication-title: Macromolecules.
– year: 1998
– volume: 53
  start-page: 14149
  year: 2014
  end-page: 14152
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 1521
  year: 2017
  end-page: 1541
  publication-title: Nat. Protoc.
– volume: 45
  start-page: 142
  year: 2011
  end-page: 149
  publication-title: Macromolecules
– volume: 101
  start-page: 4071
  year: 2001
  end-page: 4097
  publication-title: Chem. Rev.
– volume: 21
  start-page: 19890
  year: 2019
  end-page: 19903
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 8
  year: 2016
  end-page: 25551
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 10283
  year: 2019
  end-page: 10291
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 12864
  year: 2015
  end-page: 12872
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 18435
  year: 2016
  end-page: 18441
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 6901
  year: 2019
  end-page: 6910
  publication-title: J. Mater. Chem. A
– volume: 138
  start-page: 6020
  year: 2016
  end-page: 6027
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 30
  year: 2016
  publication-title: Chem. Sci.
– volume: 46
  start-page: 6621
  year: 2017
  end-page: 6637
  publication-title: Chem. Soc. Rev.
– volume: 157
  start-page: 1
  year: 2019
  end-page: 13
  publication-title: Composites Part B.
– volume: 8
  start-page: 6757
  year: 2020
  end-page: 6767
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 468
  year: 2018
  end-page: 479
  publication-title: Macromolecules
– volume: 219
  year: 2018
  publication-title: Macromol. Chem. Phys.
– volume: 7
  start-page: 27278
  year: 2019
  end-page: 27288
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 6864
  year: 2013
  end-page: 6867
  publication-title: Adv. Mater.
– volume: 11
  start-page: 38126
  year: 2019
  end-page: 38135
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 431
  year: 2017
  publication-title: Polymer
– volume: 17
  start-page: 2
  year: 2014
  publication-title: Mater. Today
– volume: 137
  start-page: 6078
  year: 2015
  end-page: 6083
  publication-title: J. Am. Chem. Soc.
– year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 13
  start-page: 7371
  year: 2017
  end-page: 7380
  publication-title: Soft Matter.
– volume: 49
  start-page: 6277
  year: 2016
  end-page: 6284
  publication-title: Macromolecules
– volume: 109
  start-page: 6825
  year: 1987
  end-page: 6836
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 290
  year: 2013
  end-page: 309
  publication-title: Macromol. Rapid Commun.
– volume: 10
  start-page: 9727
  year: 2018
  end-page: 9735
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 435
  year: 2015
  end-page: 442
  publication-title: Polymer
– volume: 8
  start-page: 14857
  year: 2017
  publication-title: Nat. Commun.
– volume: 1
  start-page: 275
  year: 2012
  end-page: 279
  publication-title: ACS Macro Lett.
– volume: 12
  start-page: 989
  year: 2020
  publication-title: Polymer
– volume: 267
  start-page: 125
  year: 1989
  end-page: 132
  publication-title: Colloid Polym. Sci.
– volume: 65
  start-page: 745
  year: 2011
  publication-title: Chimia
– volume: 23
  start-page: 829
  year: 1990
  end-page: 835
  publication-title: Macromolecules
– volume: 48
  start-page: 2098
  year: 2015
  end-page: 2106
  publication-title: Macromolecules
– volume: 47
  start-page: 729
  year: 2014
  end-page: 740
  publication-title: Macromolecules
– volume: 2
  start-page: 1108
  year: 2020
  end-page: 1113
  publication-title: ACS Appl. Polym. Mater.
– volume: 44
  start-page: 2444
  year: 2011
  end-page: 2250
  publication-title: Macromolecules
– volume: 53
  start-page: 2094
  year: 2015
  end-page: 2103
  publication-title: J. Polym. Sci. Part A
– volume: 5
  start-page: 275
  year: 2009
  end-page: 81
  publication-title: Soft Matter
– volume: 4
  start-page: 1928
  year: 2018
  end-page: 1936
  publication-title: Chem
– volume: 1
  start-page: 969
  year: 2019
  end-page: 981
  publication-title: ACS Appl. Polym. Mater.
– volume: 4
  start-page: 4955
  year: 2013
  end-page: 4965
  publication-title: Polym. Chem.
– volume: 84
  start-page: 1339
  year: 2002
  end-page: 1345
  publication-title: J. Appl. Polym. Sci.
– volume: 51
  start-page: 5294
  year: 2018
  end-page: 5303
  publication-title: Macromolecules
– volume: 8
  start-page: 10647
  year: 2016
  end-page: 10656
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 1162
  year: 2017
  end-page: 1171
  publication-title: Biomacromolecules
– volume: 119
  start-page: 46 3989
  year: 2007 2007
  end-page: 3917 3991
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2924
  year: 2015
  end-page: 2933
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 10939
  year: 2019
  end-page: 10949
  publication-title: ACS Omega
– volume: 7
  start-page: 15207
  year: 2019
  end-page: 15214
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1063
  year: 2020
  end-page: 1073
  publication-title: Food and Bioprocess Technology
– volume: 2
  year: 2015
  publication-title: Cogent. Eng.
– volume: 11
  start-page: 12105
  year: 2019
  end-page: 12113
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 5362
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 11482
  year: 2019
  end-page: 11490
  publication-title: Langmuir.
– volume: 9
  start-page: 3040
  year: 2017
  end-page: 3049
  publication-title: ACS Appl. Mater. Interfaces
– volume: C33
  start-page: 239
  year: 1993
  publication-title: J. Macromol. Sci. Rev. Macromol. Chem. Phys.
– volume: 10
  start-page: 35533
  year: 2018
  end-page: 35538
  publication-title: ACS Appl. Mater. Interfaces
– volume: 111
  start-page: 2127
  year: 2009
  end-page: 2133
  publication-title: Appl. Polym. Sci.
– volume: 68
  start-page: 90
  year: 2015
  end-page: 103
  publication-title: Eur. Polym. J.
– volume: 24
  start-page: 1235
  year: 2014
  end-page: 1242
  publication-title: Adv. Funct. Mater.
– year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 114
  start-page: 8163
  year: 2017
  end-page: 8168
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 115
  start-page: 7196
  year: 2015
  end-page: 7239
  publication-title: Chem. Rev.
– volume: 328
  start-page: 216
  year: 2010
  end-page: 220
  publication-title: Science
– volume: 125
  start-page: 3896
  year: 2003
  end-page: 3900
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 2536
  year: 2011
  end-page: 2541
  publication-title: Macromolecules
– volume: 34
  start-page: 581
  year: 2009
  end-page: 604
  publication-title: Prog. Polym. Sci.
– start-page: 410
  year: 2019
  end-page: 419
  publication-title: Carbohydr. Polym.
– volume: 123
  start-page: 28427
  year: 2019
  end-page: 28436
  publication-title: J. Phys. Chem. C.
– volume: 11
  start-page: 2122
  year: 2019
  publication-title: Polymer
– volume: 164
  start-page: 79
  year: 2019
  end-page: 85
  publication-title: Polymer
– volume: 41
  start-page: 589
  year: 2005
  end-page: 598
  publication-title: Eur. Polym. J.
– volume: 56
  start-page: 4381
  year: 2020
  end-page: 4395
  publication-title: Chem. Commun.
– volume: 3
  start-page: 19662
  year: 2015
  end-page: 19668
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 6377
  year: 2015
  end-page: 6380
  publication-title: Chem. Commun.
– volume: 98
  start-page: 1743
  year: 1998
  end-page: 1754
  publication-title: Chem. Rev.
– volume: 377
  year: 2018
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 134
  start-page: 8424
  year: 2012
  end-page: 8427
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 2578
  year: 2012
  end-page: 2581
  publication-title: Adv. Mater.
– volume: 52
  start-page: 4169
  year: 2019
  end-page: 4184
  publication-title: Macromolecules
– volume: 112
  start-page: 5525
  year: 1990
  publication-title: J. Am. Chem. Soc.
– volume: 268
  start-page: 1
  year: 2014
  end-page: 22
  publication-title: Coord. Chem. Rev.
– volume: 22
  start-page: 5424
  year: 2010
  end-page: 5430
  publication-title: Adv. Mater.
– volume: 137
  start-page: 6492
  year: 2015
  end-page: 6495
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 5893
  year: 2016
  end-page: 5902
  publication-title: Macromolecules
– volume: 18
  start-page: 1356
  year: 2017
  end-page: 1364
  publication-title: Biomacromolecules
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 126
  year: 2007
  publication-title: . J. Chem. Phys.
– volume: 36
  start-page: 161
  year: 2007
  end-page: 171
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 5776
  year: 2016
  end-page: 5784
  publication-title: ACS Sustainable Chem. Eng.
– volume: 123
  start-page: 23995
  year: 2019
  end-page: 24006
  publication-title: J. Phys. Chem. C.
– volume: 23
  start-page: 741
  year: 1984
  end-page: 742
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 34
  start-page: 436
  year: 2013
  end-page: 443
  publication-title: Food Control
– volume: 65
  start-page: 2466
  year: 2005
  end-page: 73
  publication-title: Compos. Sci. Technol.
– volume: 11
  start-page: 33356
  year: 2019
  end-page: 33363
  publication-title: ACS Appl. Mater. Interfaces
– volume: 302
  year: 2017
  publication-title: Macromol. Mater. Eng.
– volume: 30
  start-page: 393
  year: 1997
  end-page: 401
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 1902
  year: 2020
  end-page: 1910
  publication-title: ACS Omega
– volume: 79
  start-page: 833
  year: 1957
  end-page: 838
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 6280
  year: 2012
  end-page: 6288
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 29363
  year: 2017
  end-page: 29373
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  start-page: 585
  year: 2018
  end-page: 609
  publication-title: Polym. Rev.
– volume: 8
  start-page: 1006
  year: 2019
  end-page: 1011
  publication-title: ACS Macro Lett.
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.201801435
– ident: e_1_2_9_4_1
  doi: 10.1021/acsami.6b10881
– ident: e_1_2_9_7_1
  doi: 10.1002/marc.201600226
– ident: e_1_2_9_44_1
  doi: 10.1021/nn9006847
– ident: e_1_2_9_66_1
  doi: 10.1038/35057232
– ident: e_1_2_9_6_1
  doi: 10.1002/polb.23980
– ident: e_1_2_9_131_1
  doi: 10.1021/cr500633b
– ident: e_1_2_9_85_1
  doi: 10.1039/C5TA05788D
– ident: e_1_2_9_126_1
  doi: 10.1021/ar950199y
– ident: e_1_2_9_73_1
  doi: 10.1039/C9TA09158K
– ident: e_1_2_9_214_1
  doi: 10.1021/acsmacrolett.6b00805
– ident: e_1_2_9_216_1
  doi: 10.1039/C9TA13928A
– ident: e_1_2_9_84_1
  doi: 10.1039/c3py00087g
– ident: e_1_2_9_146_1
  doi: 10.1039/b910648k
– ident: e_1_2_9_62_1
  doi: 10.1016/j.compscitech.2006.07.028
– ident: e_1_2_9_75_1
  doi: 10.3390/polym10010094
– ident: e_1_2_9_124_1
– ident: e_1_2_9_180_1
  doi: 10.1002/marc.201600428
– ident: e_1_2_9_244_1
  doi: 10.1016/j.chempr.2018.06.001
– ident: e_1_2_9_125_1
  doi: 10.1021/cr990125q
– ident: e_1_2_9_39_2
  doi: 10.1007/s11947-020-02462-5
– ident: e_1_2_9_153_1
  doi: 10.1002/anie.201407402
– ident: e_1_2_9_234_1
  doi: 10.1021/ja303356z
– ident: e_1_2_9_52_1
  doi: 10.1021/acs.jpcc.9b05545
– ident: e_1_2_9_220_1
  doi: 10.3390/polym11030490
– ident: e_1_2_9_99_1
  doi: 10.1002/mame.201600385
– ident: e_1_2_9_203_1
  doi: 10.1039/C7CP03570E
– ident: e_1_2_9_250_1
  doi: 10.1021/acs.macromol.7b02287
– ident: e_1_2_9_210_1
  doi: 10.1021/jacs.8b01682
– ident: e_1_2_9_117_1
  doi: 10.1039/D0MH00535E
– ident: e_1_2_9_181_1
  doi: 10.1038/s41467-018-05285-3
– ident: e_1_2_9_116_1
  doi: 10.1038/s41467-020-14911-y
– ident: e_1_2_9_17_1
  doi: 10.1021/cr990125q
– ident: e_1_2_9_227_1
  doi: 10.3390/polym12020487
– ident: e_1_2_9_47_1
  doi: 10.1039/C9CP04091A
– ident: e_1_2_9_242_1
  doi: 10.1016/j.mattod.2014.01.020
– ident: e_1_2_9_255_1
  doi: 10.1021/ma00205a023
– ident: e_1_2_9_76_1
  doi: 10.1039/C6PY01112H
– ident: e_1_2_9_86_1
  doi: 10.1021/acssuschemeng.6b01760
– ident: e_1_2_9_171_1
  doi: 10.1039/D0TA01593H
– ident: e_1_2_9_136_1
  doi: 10.1016/j.compositesb.2018.08.082
– ident: e_1_2_9_139_1
  doi: 10.1021/acsomega.9b03516
– ident: e_1_2_9_9_1
  doi: 10.1016/j.carbpol.2018.10.080
– ident: e_1_2_9_16_1
  doi: 10.1002/adma201302015
– ident: e_1_2_9_155_2
  doi: 10.1002/ange.201712670
– ident: e_1_2_9_40_1
– ident: e_1_2_9_160_1
  doi: 10.1073/pnas.1705380114
– ident: e_1_2_9_173_1
  doi: 10.2533/chimia.2011.745
– ident: e_1_2_9_179_1
  doi: 10.1039/C7TA08255J
– ident: e_1_2_9_128_1
  doi: 10.1039/C7CS00564D
– ident: e_1_2_9_163_1
  doi: 10.1016/j.eurpolymj.2017.04.026
– ident: e_1_2_9_45_1
  doi: 10.1021/acs.langmuir.9b01847
– ident: e_1_2_9_59_2
  doi: 10.1039/c1jm10794a
– ident: e_1_2_9_197_1
  doi: 10.1016/j.polymer.2019.04.059
– ident: e_1_2_9_103_1
  doi: 10.1016/j.polymer.2014.11.052
– ident: e_1_2_9_113_1
  doi: 10.1039/B803951H
– ident: e_1_2_9_178_1
  doi: 10.1002/adma.201903762
– ident: e_1_2_9_205_1
  doi: 10.3390/polym12040989
– ident: e_1_2_9_169_1
  doi: 10.1002/app.10112
– ident: e_1_2_9_105_1
  doi: 10.1016/j.progpolymsci.2015.06.001
– ident: e_1_2_9_238_1
  doi: 10.1039/C8TA02102C
– ident: e_1_2_9_243_1
  doi: 10.1021/ma3023603
– ident: e_1_2_9_37_1
– ident: e_1_2_9_69_1
  doi: 10.1021/acsami.8b21197
– ident: e_1_2_9_195_1
  doi: 10.1021/acsami.7b19649
– ident: e_1_2_9_207_1
  doi: 10.1080/15583724.2018.1454947
– ident: e_1_2_9_92_1
  doi: 10.1021/acs.biomac.7b00089
– ident: e_1_2_9_65_1
  doi: 10.1002/adma.200400607
– ident: e_1_2_9_156_1
  doi: 10.1039/D0CC00672F
– ident: e_1_2_9_130_1
  doi: 10.1021/ma402368s
– ident: e_1_2_9_170_1
  doi: 10.1021/acsami.7b09997
– ident: e_1_2_9_157_1
  doi: 10.1038/nprot.2017.053
– ident: e_1_2_9_200_1
  doi: 10.1021/ma200202w
– ident: e_1_2_9_55_1
  doi: 10.1021/acsapm.8b00274
– ident: e_1_2_9_97_1
  doi: 10.1016/j.polymer.2016.05.004
– start-page: 188
  year: 2018
  ident: e_1_2_9_12_1
  publication-title: J. Foodchem.
  contributor:
    fullname: Haili N.
– ident: e_1_2_9_38_2
  doi: 10.1002/app.29226
– ident: e_1_2_9_159_1
  doi: 10.1021/acs.macromol.8b01124
– start-page: 8
  year: 2016
  ident: e_1_2_9_218_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Chang R.
– ident: e_1_2_9_23_1
  doi: 10.1002/marc.201200689
– ident: e_1_2_9_71_1
  doi: 10.1146/annurev-matsci-070909-104532
– ident: e_1_2_9_29_1
  doi: 10.1016/S1369-7021(04)00187-7
– ident: e_1_2_9_102_1
  doi: 10.1021/am303015e
– ident: e_1_2_9_61_1
  doi: 10.1002/adma.200802008
– ident: e_1_2_9_2_1
  doi: 10.1021/acs.nanolett.5b03069
– ident: e_1_2_9_256_1
  doi: 10.1021/ma902379t
– volume-title: Reversible Covalent Bond Formation as a Strategy for Healable Polymer Networks, in RSC Polymer Chemistry Series No. 5, Healable Polymer Systems
  year: 2013
  ident: e_1_2_9_185_1
  contributor:
    fullname: Kloxin C. J.
– ident: e_1_2_9_134_1
  doi: 10.1063/1.2742385
– ident: e_1_2_9_206_1
  doi: 10.3390/polym11122122
– ident: e_1_2_9_226_1
  doi: 10.1021/jacs.5b03551
– ident: e_1_2_9_32_1
  doi: 10.1002/adfm.201302058
– ident: e_1_2_9_199_1
  doi: 10.1021/ma2001492
– ident: e_1_2_9_79_1
  doi: 10.1021/acsami.7b18700
– ident: e_1_2_9_240_1
  doi: 10.1021/acsami.7b17465
– ident: e_1_2_9_64_1
  doi: 10.1023/B:JMSC.0000016173.73733.dc
– ident: e_1_2_9_247_1
  doi: 10.1002/adma.201203865
– ident: e_1_2_9_192_1
  doi: 10.1126/science.1065879
– ident: e_1_2_9_152_1
  doi: 10.1039/B603168B
– volume-title: A to Z of Thermodynamics
  year: 1998
  ident: e_1_2_9_177_1
  contributor:
    fullname: Pierre P.
– ident: e_1_2_9_89_1
  doi: 10.1002/marc.201600777
– ident: e_1_2_9_158_1
  doi: 10.1039/C5CC00262A
– ident: e_1_2_9_209_1
  doi: 10.1039/c2py20290e
– ident: e_1_2_9_48_1
  doi: 10.1021/acs.macromol.7b00022
– ident: e_1_2_9_184_1
  doi: 10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H
– ident: e_1_2_9_10_1
  doi: 10.1039/C9TA01266D
– ident: e_1_2_9_222_1
  doi: 10.1021/ma9022197
– ident: e_1_2_9_46_1
  doi: 10.1016/j.eurpolymj.2016.08.028
– ident: e_1_2_9_194_1
  doi: 10.1039/C6TC04715G
– ident: e_1_2_9_30_1
  doi: 10.1038/nature06669
– volume: 7
  start-page: 13948
  year: 2019
  ident: e_1_2_9_228_1
  publication-title: Chem. A
  contributor:
    fullname: Guan Q.
– ident: e_1_2_9_36_1
  doi: 10.1021/acsami.8b20380
– ident: e_1_2_9_60_2
  doi: 10.1002/app.38838
– ident: e_1_2_9_58_1
– ident: e_1_2_9_110_2
  doi: 10.1002/ange.200700439
– ident: e_1_2_9_18_1
  doi: 10.1039/c2sm25144b
– ident: e_1_2_9_165_1
  doi: 10.1039/C4TA06304J
– ident: e_1_2_9_155_1
  doi: 10.1002/anie.201712670
– ident: e_1_2_9_196_1
  doi: 10.3390/polym12030603
– ident: e_1_2_9_149_1
  doi: 10.1021/ja104446r
– ident: e_1_2_9_15_1
  doi: 10.1021/nn2025397
– ident: e_1_2_9_248_1
  doi: 10.1039/C8AY00598B
– ident: e_1_2_9_142_1
  doi: 10.1039/B917901A
– ident: e_1_2_9_176_1
  doi: 10.1016/S0040-4039(01)00796-1
– ident: e_1_2_9_224_1
  doi: 10.1016/j.ccr.2014.01.016
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.macromol.9b00597
– ident: e_1_2_9_154_1
  doi: 10.1002/chem.201603753
– volume-title: Thermodynamics of self-healing reactions and their applications in polymeric materials, in RSC Polymer Chemistry Series No. 5, Healable Polymer Systems
  year: 2013
  ident: e_1_2_9_107_1
  contributor:
    fullname: Yang M. W Urban Y.
– ident: e_1_2_9_246_1
  doi: 10.1039/C5CP02151K
– ident: e_1_2_9_56_1
  doi: 10.1103/PhysRevLett.122.217801
– ident: e_1_2_9_230_1
  doi: 10.1039/C5SC02223A
– ident: e_1_2_9_104_1
  doi: 10.1039/b912433k
– ident: e_1_2_9_43_1
  doi: 10.1021/ma401016d
– ident: e_1_2_9_143_1
  doi: 10.1002/anie.198110511
– ident: e_1_2_9_26_1
  doi: 10.1021/acs.macromol.8b02466
– ident: e_1_2_9_20_1
– ident: e_1_2_9_174_1
  doi: 10.1007/s10904-006-9075-2
– ident: e_1_2_9_147_1
  doi: 10.1016/j.tet.2008.05.077
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.macromol.5b02756
– ident: e_1_2_9_111_1
  doi: 10.3390/entropy-e10020049
– ident: e_1_2_9_253_1
  doi: 10.1021/acsami.5b05041
– ident: e_1_2_9_121_1
  doi: 10.1002/adma.201003036
– ident: e_1_2_9_211_1
  doi: 10.1016/j.apsusc.2018.05.159
– ident: e_1_2_9_81_1
  doi: 10.3390/polym9090431
– ident: e_1_2_9_100_1
  doi: 10.1039/C5CC06824J
– ident: e_1_2_9_215_1
  doi: 10.1021/bm200423f
– ident: e_1_2_9_93_1
  doi: 10.1021/acsami.6b15476
– ident: e_1_2_9_212_1
  doi: 10.1039/c2cs15305j
– ident: e_1_2_9_119_1
  doi: 10.1021/acsomega.9b01243
– ident: e_1_2_9_41_2
  doi: 10.1016/j.compscitech.2020.108271
– ident: e_1_2_9_182_1
  doi: 10.1021/jacs.6b02428
– ident: e_1_2_9_258_1
  doi: 10.1016/j.eurpolymj.2015.04.021
– ident: e_1_2_9_112_1
  doi: 10.1016/j.progpolymsci.2009.10.002
– ident: e_1_2_9_257_1
  doi: 10.1021/ma202325k
– start-page: 46
  year: 2007
  ident: e_1_2_9_110_1
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Wang S.
– ident: e_1_2_9_162_1
  doi: 10.1021/acsapm.0c00250
– ident: e_1_2_9_198_1
  doi: 10.1021/ma2015134
– ident: e_1_2_9_213_1
  doi: 10.1039/C8NR06348F
– ident: e_1_2_9_31_1
  doi: 10.1002/marc.201200675
– ident: e_1_2_9_88_1
  doi: 10.1021/ma902379t
– ident: e_1_2_9_164_1
  doi: 10.1039/C6RA28416G
– ident: e_1_2_9_254_1
  doi: 10.1007/BF01410350
– ident: e_1_2_9_217_1
  doi: 10.1073/pnas.0401885101
– ident: e_1_2_9_101_1
  doi: 10.1021/acs.biomac.6b01841
– ident: e_1_2_9_239_1
  doi: 10.1021/acs.macromol.6b00826
– ident: e_1_2_9_33_1
  doi: 10.1039/c4ta02079k
– ident: e_1_2_9_34_1
  doi: 10.1002/adma.201303652
– ident: e_1_2_9_249_1
  doi: 10.1016/j.foodcont.2013.05.004
– ident: e_1_2_9_193_1
  doi: 10.1021/acsami.8b13249
– ident: e_1_2_9_172_1
  doi: 10.1039/C9PY01630A
– ident: e_1_2_9_28_1
  doi: 10.1021/ma052691v
– ident: e_1_2_9_54_1
  doi: 10.1021/acsmacrolett.9b00351
– ident: e_1_2_9_233_1
  doi: 10.1038/ncomms14857
– ident: e_1_2_9_70_1
  doi: 10.1021/acsami.5b12358
– volume: 2
  start-page: 6
  year: 2020
  ident: e_1_2_9_204_1
  publication-title: ACS Appl. Polym. Mater.
  contributor:
    fullname: Xu M.
– ident: e_1_2_9_91_1
  doi: 10.1088/1361-665X/aa71f5
– ident: e_1_2_9_120_1
  doi: 10.1021/acsomega.0c02929
– ident: e_1_2_9_231_1
  doi: 10.1021/acs.macromol.7b01261
– ident: e_1_2_9_53_1
  doi: 10.1021/acsmacrolett.8b00411
– ident: e_1_2_9_137_1
  doi: 10.1039/C5TA01915J
– volume: 59
  start-page: 21
  year: 2020
  ident: e_1_2_9_188_1
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Huang J.
– ident: e_1_2_9_42_2
  doi: 10.1021/nn200201u
– ident: e_1_2_9_72_1
  doi: 10.1021/ma401111n
– ident: e_1_2_9_166_1
  doi: 10.1021/acsami.6b05941
– ident: e_1_2_9_96_1
  doi: 10.1002/smll.201604077
– ident: e_1_2_9_1_1
  doi: 10.1038/ncomms1521
– ident: e_1_2_9_145_1
  doi: 10.1039/b900859d
– volume: 11
  start-page: 17
  year: 2019
  ident: e_1_2_9_82_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Li F.
– ident: e_1_2_9_133_1
  doi: 10.1021/acsami.7b13309
– ident: e_1_2_9_67_1
  doi: 10.1016/j.compscitech.2005.04.020
– ident: e_1_2_9_94_1
  doi: 10.1002/pola.27655
– ident: e_1_2_9_241_1
  doi: 10.1039/C8TA09866B
– ident: e_1_2_9_138_1
  doi: 10.1039/C9TA03775F
– ident: e_1_2_9_151_1
  doi: 10.1021/cr970022c
– ident: e_1_2_9_98_1
  doi: 10.1002/adma.201500140
– ident: e_1_2_9_225_1
  doi: 10.1002/anie.198407411
– volume-title: Annual Meeting & Exhibition Supplemental Proceedings
  ident: e_1_2_9_115_1
  contributor:
    fullname: Hossain S.
– ident: e_1_2_9_14_1
  doi: 10.1039/c2cs35091b
– ident: e_1_2_9_229_1
  doi: 10.1126/science.1212648
– ident: e_1_2_9_77_1
  doi: 10.1039/C6SC02354A
– ident: e_1_2_9_95_1
  doi: 10.1039/C4TB00862F
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.macromol.9b00830
– ident: e_1_2_9_108_1
  doi: 10.1039/c3cs60109a
– ident: e_1_2_9_123_1
  doi: 10.1016/j.progpolymsci.2005.06.002
– ident: e_1_2_9_252_1
  doi: 10.1002/macp.201700327
– ident: e_1_2_9_63_1
  doi: 10.1016/j.compscitech.2007.07.021
– ident: e_1_2_9_259_1
  doi: 10.1021/acsami.6b02259
– ident: e_1_2_9_161_1
  doi: 10.1021/acsami.9b00626
– ident: e_1_2_9_22_2
  doi: 10.1038/nmat858
– ident: e_1_2_9_237_1
  doi: 10.1021/acs.macromol.6b01443
– ident: e_1_2_9_175_1
  doi: 10.1038/nature09963
– ident: e_1_2_9_189_1
  doi: 10.1021/cr60110a002
– ident: e_1_2_9_83_1
  doi: 10.1021/acsami.0c05083
– ident: e_1_2_9_191_1
  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
– ident: e_1_2_9_221_1
  doi: 10.1039/C7SM00916J
– ident: e_1_2_9_78_1
  doi: 10.1002/anie.201705462
– ident: e_1_2_9_21_2
  doi: 10.1038/nmat952
– ident: e_1_2_9_135_1
  doi: 10.1016/j.polymer.2019.122003
– ident: e_1_2_9_190_1
  doi: 10.1088/1757-899X/377/1/012007
– start-page: 2
  ident: e_1_2_9_245_1
  publication-title: Phys. Chem. Chem. Phys.
  contributor:
    fullname: Geitner R.
– ident: e_1_2_9_236_1
  doi: 10.1039/C6MH00029K
– ident: e_1_2_9_87_1
  doi: 10.1021/am301879z
– ident: e_1_2_9_235_1
  doi: 10.1021/jacs.8b03257
– ident: e_1_2_9_148_1
  doi: 10.1021/cm102963k
– ident: e_1_2_9_186_1
  doi: 10.1080/15321799308021436
– ident: e_1_2_9_202_1
  doi: 10.1021/ja00256a040
– ident: e_1_2_9_132_1
  doi: 10.1039/C7NR05011A
– ident: e_1_2_9_35_1
  doi: 10.1021/ja500205v
– ident: e_1_2_9_187_1
  doi: 10.1021/ma902596s
– volume: 75
  start-page: 1
  year: 2018
  ident: e_1_2_9_11_1
  publication-title: J. Foodhyd
  contributor:
    fullname: Shengju G.
– ident: e_1_2_9_25_1
  doi: 10.1021/acs.accounts.7b00371
– ident: e_1_2_9_8_1
  doi: 10.1021/acs.macromol.6b01576
– ident: e_1_2_9_106_1
  doi: 10.1002/admi.201800051
– ident: e_1_2_9_208_1
  doi: 10.1016/j.chempr.2017.07.017
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.macromol.5b02214
– ident: e_1_2_9_168_1
  doi: 10.1016/j.eurpolymj.2004.10.012
– ident: e_1_2_9_251_1
  doi: 10.1021/acs.macromol.9b00159
– ident: e_1_2_9_144_1
  doi: 10.1039/p29850000607
– ident: e_1_2_9_201_1
  doi: 10.1021/ja01561a014
– ident: e_1_2_9_80_1
  doi: 10.1021/acsami.9b11166
– ident: e_1_2_9_68_1
  doi: 10.1002/adma.201200196
– ident: e_1_2_9_27_1
  doi: 10.1021/acsami.9b12264
– ident: e_1_2_9_127_1
  doi: 10.1021/ja9756331
– ident: e_1_2_9_3_1
  doi: 10.1039/b711716g
– ident: e_1_2_9_232_1
  doi: 10.1021/jacs.5b02653
– ident: e_1_2_9_74_1
  doi: 10.1016/j.polymer.2019.01.010
– ident: e_1_2_9_140_1
  doi: 10.1021/acsapm.9b01095
– ident: e_1_2_9_122_1
  doi: 10.1021/cr990125q
– ident: e_1_2_9_183_1
  doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
– ident: e_1_2_9_50_1
  doi: 10.1021/acs.jpcc.9b07247
– ident: e_1_2_9_219_1
  doi: 10.1016/j.progpolymsci.2009.03.001
– ident: e_1_2_9_141_1
  doi: 10.1021/ja00170a016
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ijbiomac.2014.03.013
– ident: e_1_2_9_114_1
  doi: 10.1021/ja0279693
– ident: e_1_2_9_167_1
  doi: 10.1021/acs.iecr.6b00612
– ident: e_1_2_9_90_1
  doi: 10.1021/acs.macromol.5b00210
– ident: e_1_2_9_223_1
  doi: 10.1021/mz200195n
– ident: e_1_2_9_19_1
  doi: 10.1126/science.1181044
– ident: e_1_2_9_129_1
  doi: 10.1080/23311916.2015.1075686
– ident: e_1_2_9_109_1
  doi: 10.1002/marc.201700739
– ident: e_1_2_9_118_1
  doi: 10.1039/C9SM00254E
– ident: e_1_2_9_150_1
  doi: 10.1021/ja300050x
SSID ssj0052098
Score 2.434137
SecondaryResourceType review_article
Snippet Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental...
Abstract Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4215
SubjectTerms broadband dielectric spectroscopy
Chemistry
Covalence
Covalent bonds
Damage
dynamic bonds
Fillers
glass transition
Healing
interface
Mechanical properties
mechanical strength
Molecular conformation
Nanocomposites
Nanoparticles
non-bonding interactions
Parameters
Polymer nanocomposites
Polymers
Reconstruction
segmental dynamics
self-healing
supramolecular network
Title Design Principles of Interfacial Dynamic Bonds in Self‐Healing Materials: What are the Parameters?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202001157
https://www.ncbi.nlm.nih.gov/pubmed/33137223
https://www.proquest.com/docview/2470188932
https://search.proquest.com/docview/2457280867
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZtLu2lrzSp07QoEOjJxHpYlnMJSzahPTQsbAu9mVk9oFC8Zb1770_Ib8wvyYy8dllyKKRHY8uSNSPpm_HMN4ydQlFLJyyg8oYi17osc_CFzwmLeONKEXUqYjuvbn7Y6RXR5IxZ_D0_xOhwo5WR9mta4LDozv6ShlKSIdp3MoEaSidHUyHlcKjZsBVTiEfKhbMGDaVK2oG1sZBnu813T6UHUHMXuaaj5_rl_w_6FXuxhZ180uvJa_YktG_Ys8uh2ts-89MUysFng_O948vIk78wArnV-bSvXc-pEHHHf7Z8Hn7Fuz-3lMiE5x__Cutem8858YFzWAWO6JLPgOK_iMTz4i37fn317fJzvq3AkDuNdmHuPErMgvIOKlGG6LBHE4UkzndnEOvV4GurXVkvSqEAPESrrBbaB-vBGnXA9tplG94xHh1-tjFWLyJCHtBQSO_R-ApltLV1JmOfBgk0v3uijaanVJYNzVozzlrGjgcBNdsF1zVSV4WwCL5kxk7G2ziH9P8D2rDc0DMlFeOyBl9x2At27EopoSqEShmTSX7_GEMzmX-ZjFdHj2n0nj2XlEohZC7VMdtbrzbhA3va-c3HpMT3PrnwFw
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB4a9-Be0nfjNm23UMhJRPvQatVLMXFCQpNgsAO5ick-oFDkEtv3_IT8xv6S7qwsFZNDofSox0qrndndb0Yz3wB8xrwSlhuMyuvzTKmiyNDlLiMs4rQteFCpiO2svLw2k2OiyRl3uTAtP0TvcKOZkdZrmuDkkD78wxpKWYbRwBMJ1ZQ78FhpVVH1Bimn3WJMQR4pG87oaCqVwnS8jbk43G6_vS89AJvb2DVtPidP_0O3n8HuBnmycasqz-GRb17A8Kgr-PYS3CRFc7Bp539fskVgyWUYkDzrbNKWr2dUi3jJvjds5n-EX3f3lMsUt0B2gatWob8wogRneOtZBJhsihQCRjyeX1_B1cnx_Og02xRhyKyKpmFmXRSaQekslrzwwcY36sAF0b5bHeFeha4yyhbVTcElosNgpFFcOW8cGi1fw6BZNH4PWLDxs7U26iZE1IMKc-FctL98EUxlrB7BQSeC-mfLtVG3rMqiplGr-1EbwX4noXoz55a1UGXOTcRfYgSf-stxDOkXCDZ-saZ7CqrHZXR8xJtWsv2rpOSyjGhpBCIJ8C99qMezs3F_9PZfGn2E4en84rw-P7v89g6e0HmKlOFqHwar27V_DztLt_6QNPo3ZSf0Ng
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkCgXSqHQLdAaqRKniNhxHKcXtGJZgQpopW2l3qLBDwkJZRHL3vsT-hv7S_A4m6BVD0hwzMOJ4xnb30xmvgH4hmkpDNcYlNeliZR5nqBNbUJYxCqTcy9jEdtxcf1bD86IJqfL4m_4ITqHG82MuF7TBL-3_viZNJSSDIN9JyKoKZZhVRIWpySObNSuxRTjEZPhtAqWUiF0S9uYiuPF9ovb0n9YcxG6xr1n-P7tvd6EjTnuZP1GUT7Akqu34N1pW-5tG-wgxnKwUet9n7KJZ9Fh6JH86mzQFK9nVIl4ym5rNnZ3_t-fv5TJFDZAdoWPjTp_Z0QIzvDBsQAv2QgpAIxYPE8-wq_h2c_T82RegiExMhiGibFBZBoza7DgufMmvFF5Loj03agA9kq0pZYmL29yniFa9DrTkkvrtEWtsh1YqSe1-wTMm_DZSml54wPmQYmpsDZYXy73utRG9eColUB13zBtVA2nsqho1Kpu1Hqw3wqoms-4aSVkkXId0JfowWF3OYwh_QDB2k1mdE9O1bi0Co_YbQTbvSrLeFYErNQDEeX3Qh-q_vii3x19fk2jr7A2Ggyry4vrH3uwTqcpTIbLfVh5fJi5A1ie2tmXqM9Phffy5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+of+Interfacial+Dynamic+Bonds+in+Self%E2%80%90Healing+Materials%3A+What+are+the+Parameters%3F&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Sattar%2C+Mohammad+Abdul&rft.au=Patnaik%2C+Archita&rft.date=2020-12-14&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=15&rft.issue=24&rft.spage=4215&rft.epage=4240&rft_id=info:doi/10.1002%2Fasia.202001157&rft.externalDBID=10.1002%252Fasia.202001157&rft.externalDocID=ASIA202001157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon