Design Principles of Interfacial Dynamic Bonds in Self‐Healing Materials: What are the Parameters?
Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significa...
Saved in:
Published in: | Chemistry, an Asian journal Vol. 15; no. 24; pp. 4215 - 4240 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
14-12-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significantly enhanced long life and safety have been designed to epitomize the forefront of recent advances in materials chemistry and engineering. Self‐healing PNC (SH‐PNCs) materials are a class of smart composites in which nanoparticles induce interfacial reconstruction via multiple covalent and non‐covalent interactions culminating in improved mechanical strength and self‐healing capability. However, since the filler nanoparticles are independent of the reversible supramolecular network, the filler incorporation destroys the self‐healing ability but could enhance the mechanical strength. Hence, the molecular parameters controlling the alliance of robust mechanical strength with virtuous self‐healing ability is a crucial challenge. Herein, we review the latest developments that have been made in self‐healing materials and puts advancing insights into the fabrication of SH‐PNCs in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. We highlight the importance of specific entropic, enthalpic changes, polymer chain conformations and flexibility that enable the reconstruction of damaged surface and physical reshuffling of dynamic bonds at the interface of cut surfaces.
Self‐healing is one of the fascinating processes in nature. There is considerable interest in elastomeric materials that can sense and repair physical damage by themselves. This magical characteristic is called self‐healing capability. Inspired by nature's exquisite and complex assemblies, the molecular mechanism behind the self‐healing materials is driven by dynamic covalent and non‐covalent transitory bonds. This review summarizes the latest developments that have been made in self‐healing materials and puts advancing insights into their fabrication in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. |
---|---|
AbstractList | Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significantly enhanced long life and safety have been designed to epitomize the forefront of recent advances in materials chemistry and engineering. Self‐healing PNC (SH‐PNCs) materials are a class of smart composites in which nanoparticles induce interfacial reconstruction via multiple covalent and non‐covalent interactions culminating in improved mechanical strength and self‐healing capability. However, since the filler nanoparticles are independent of the reversible supramolecular network, the filler incorporation destroys the self‐healing ability but could enhance the mechanical strength. Hence, the molecular parameters controlling the alliance of robust mechanical strength with virtuous self‐healing ability is a crucial challenge. Herein, we review the latest developments that have been made in self‐healing materials and puts advancing insights into the fabrication of SH‐PNCs in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. We highlight the importance of specific entropic, enthalpic changes, polymer chain conformations and flexibility that enable the reconstruction of damaged surface and physical reshuffling of dynamic bonds at the interface of cut surfaces. Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significantly enhanced long life and safety have been designed to epitomize the forefront of recent advances in materials chemistry and engineering. Self‐healing PNC (SH‐PNCs) materials are a class of smart composites in which nanoparticles induce interfacial reconstruction via multiple covalent and non‐covalent interactions culminating in improved mechanical strength and self‐healing capability. However, since the filler nanoparticles are independent of the reversible supramolecular network, the filler incorporation destroys the self‐healing ability but could enhance the mechanical strength. Hence, the molecular parameters controlling the alliance of robust mechanical strength with virtuous self‐healing ability is a crucial challenge. Herein, we review the latest developments that have been made in self‐healing materials and puts advancing insights into the fabrication of SH‐PNCs in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. We highlight the importance of specific entropic, enthalpic changes, polymer chain conformations and flexibility that enable the reconstruction of damaged surface and physical reshuffling of dynamic bonds at the interface of cut surfaces. Self‐healing is one of the fascinating processes in nature. There is considerable interest in elastomeric materials that can sense and repair physical damage by themselves. This magical characteristic is called self‐healing capability. Inspired by nature's exquisite and complex assemblies, the molecular mechanism behind the self‐healing materials is driven by dynamic covalent and non‐covalent transitory bonds. This review summarizes the latest developments that have been made in self‐healing materials and puts advancing insights into their fabrication in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. Abstract Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental issues due to deformation‐induced damage that once formed, does not vanish at future stages. Therefore, self‐healing materials with significantly enhanced long life and safety have been designed to epitomize the forefront of recent advances in materials chemistry and engineering. Self‐healing PNC (SH‐PNCs) materials are a class of smart composites in which nanoparticles induce interfacial reconstruction via multiple covalent and non‐covalent interactions culminating in improved mechanical strength and self‐healing capability. However, since the filler nanoparticles are independent of the reversible supramolecular network, the filler incorporation destroys the self‐healing ability but could enhance the mechanical strength. Hence, the molecular parameters controlling the alliance of robust mechanical strength with virtuous self‐healing ability is a crucial challenge. Herein, we review the latest developments that have been made in self‐healing materials and puts advancing insights into the fabrication of SH‐PNCs in which the combination of covalent bonds and non‐covalent interactions provides an optimal balance between their mechanical performance and self‐healing capability. We highlight the importance of specific entropic, enthalpic changes, polymer chain conformations and flexibility that enable the reconstruction of damaged surface and physical reshuffling of dynamic bonds at the interface of cut surfaces. |
Author | Sattar, Mohammad Abdul Patnaik, Archita |
Author_xml | – sequence: 1 givenname: Mohammad Abdul orcidid: 0000-0002-4267-6805 surname: Sattar fullname: Sattar, Mohammad Abdul email: abdulelectrophile@gmail.com, abdul.mohammad@mrfmail.com organization: R&D Centre MRF Limited – sequence: 2 givenname: Archita orcidid: 0000-0002-0754-7055 surname: Patnaik fullname: Patnaik, Archita email: archita@iitm.ac.in organization: Indian Institute of Technology Madras |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33137223$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0MtKAzEUBuAgipfq1qUE3LhpzWUuGTdS66UFRUFFd8MxOaORmUxNWqQ7H8Fn9EmMVCu4cXUC58vP4d8gy651SMg2Zz3OmNiHYKEnmGCM8zRfIutcZbyb5Px-efEWao1shPDMWCpYoVbJmpRc5kLIdWKOMdhHR6-8ddqOawy0rejITdBXoC3U9HjmoLGaHrXOBGodvca6-nh7HyLU1j3SC4g2wnBA755gQsEjnTwhvQIPDcZdONwkK1UEuPU9O-T29ORmMOyeX56NBv3zrk44y7vaFNwokEZDzlOsdLwgq7gQLMt1lrC0AFOoRKfFQ8olgIFKSZXwxKAyoDLZIXvz3LFvX6YYJmVjg8a6BoftNJQiSWMZTGV5pLt_6HM79S5eF1XOuFKFFFH15kr7NgSPVTn2tgE_Kzkrv_ovv_ovF_3HDzvfsdOHBs2C_xQeQTEHr7bG2T9xZf961P8N_wT2ypPh |
CitedBy_id | crossref_primary_10_3390_molecules27196635 crossref_primary_10_1016_j_mtphys_2024_101448 crossref_primary_10_1039_D3MH00040K crossref_primary_10_1080_00914037_2021_2008390 crossref_primary_10_1002_slct_202100831 crossref_primary_10_1021_acsomega_1c05848 crossref_primary_10_1002_asia_202400183 crossref_primary_10_1002_cjce_24849 crossref_primary_10_1016_j_pmatsci_2022_101001 crossref_primary_10_3390_ijms23094757 crossref_primary_10_1016_j_jclepro_2023_138207 crossref_primary_10_1002_macp_202300211 crossref_primary_10_3390_polym14214607 crossref_primary_10_1016_j_wasman_2021_03_025 crossref_primary_10_1002_cssc_202202309 |
Cites_doi | 10.1002/adma.201801435 10.1021/acsami.6b10881 10.1002/marc.201600226 10.1021/nn9006847 10.1038/35057232 10.1002/polb.23980 10.1021/cr500633b 10.1039/C5TA05788D 10.1021/ar950199y 10.1039/C9TA09158K 10.1021/acsmacrolett.6b00805 10.1039/C9TA13928A 10.1039/c3py00087g 10.1039/b910648k 10.1016/j.compscitech.2006.07.028 10.3390/polym10010094 10.1002/marc.201600428 10.1016/j.chempr.2018.06.001 10.1021/cr990125q 10.1007/s11947-020-02462-5 10.1002/anie.201407402 10.1021/ja303356z 10.1021/acs.jpcc.9b05545 10.3390/polym11030490 10.1002/mame.201600385 10.1039/C7CP03570E 10.1021/acs.macromol.7b02287 10.1021/jacs.8b01682 10.1039/D0MH00535E 10.1038/s41467-018-05285-3 10.1038/s41467-020-14911-y 10.3390/polym12020487 10.1039/C9CP04091A 10.1016/j.mattod.2014.01.020 10.1021/ma00205a023 10.1039/C6PY01112H 10.1021/acssuschemeng.6b01760 10.1039/D0TA01593H 10.1016/j.compositesb.2018.08.082 10.1021/acsomega.9b03516 10.1016/j.carbpol.2018.10.080 10.1002/adma201302015 10.1002/ange.201712670 10.1073/pnas.1705380114 10.2533/chimia.2011.745 10.1039/C7TA08255J 10.1039/C7CS00564D 10.1016/j.eurpolymj.2017.04.026 10.1021/acs.langmuir.9b01847 10.1039/c1jm10794a 10.1016/j.polymer.2019.04.059 10.1016/j.polymer.2014.11.052 10.1039/B803951H 10.1002/adma.201903762 10.3390/polym12040989 10.1002/app.10112 10.1016/j.progpolymsci.2015.06.001 10.1039/C8TA02102C 10.1021/ma3023603 10.1021/acsami.8b21197 10.1021/acsami.7b19649 10.1080/15583724.2018.1454947 10.1021/acs.biomac.7b00089 10.1002/adma.200400607 10.1039/D0CC00672F 10.1021/ma402368s 10.1021/acsami.7b09997 10.1038/nprot.2017.053 10.1021/ma200202w 10.1021/acsapm.8b00274 10.1016/j.polymer.2016.05.004 10.1002/app.29226 10.1021/acs.macromol.8b01124 10.1002/marc.201200689 10.1146/annurev-matsci-070909-104532 10.1016/S1369-7021(04)00187-7 10.1021/am303015e 10.1002/adma.200802008 10.1021/acs.nanolett.5b03069 10.1021/ma902379t 10.1063/1.2742385 10.3390/polym11122122 10.1021/jacs.5b03551 10.1002/adfm.201302058 10.1021/ma2001492 10.1021/acsami.7b18700 10.1021/acsami.7b17465 10.1023/B:JMSC.0000016173.73733.dc 10.1002/adma.201203865 10.1126/science.1065879 10.1039/B603168B 10.1002/marc.201600777 10.1039/C5CC00262A 10.1039/c2py20290e 10.1021/acs.macromol.7b00022 10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H 10.1039/C9TA01266D 10.1021/ma9022197 10.1016/j.eurpolymj.2016.08.028 10.1039/C6TC04715G 10.1038/nature06669 10.1021/acsami.8b20380 10.1002/app.38838 10.1002/ange.200700439 10.1039/c2sm25144b 10.1039/C4TA06304J 10.1002/anie.201712670 10.3390/polym12030603 10.1021/ja104446r 10.1021/nn2025397 10.1039/C8AY00598B 10.1039/B917901A 10.1016/S0040-4039(01)00796-1 10.1016/j.ccr.2014.01.016 10.1021/acs.macromol.9b00597 10.1002/chem.201603753 10.1039/C5CP02151K 10.1103/PhysRevLett.122.217801 10.1039/C5SC02223A 10.1039/b912433k 10.1021/ma401016d 10.1002/anie.198110511 10.1021/acs.macromol.8b02466 10.1007/s10904-006-9075-2 10.1016/j.tet.2008.05.077 10.1021/acs.macromol.5b02756 10.3390/entropy-e10020049 10.1021/acsami.5b05041 10.1002/adma.201003036 10.1016/j.apsusc.2018.05.159 10.3390/polym9090431 10.1039/C5CC06824J 10.1021/bm200423f 10.1021/acsami.6b15476 10.1039/c2cs15305j 10.1021/acsomega.9b01243 10.1016/j.compscitech.2020.108271 10.1021/jacs.6b02428 10.1016/j.eurpolymj.2015.04.021 10.1016/j.progpolymsci.2009.10.002 10.1021/ma202325k 10.1021/acsapm.0c00250 10.1021/ma2015134 10.1039/C8NR06348F 10.1002/marc.201200675 10.1039/C6RA28416G 10.1007/BF01410350 10.1073/pnas.0401885101 10.1021/acs.biomac.6b01841 10.1021/acs.macromol.6b00826 10.1039/c4ta02079k 10.1002/adma.201303652 10.1016/j.foodcont.2013.05.004 10.1021/acsami.8b13249 10.1039/C9PY01630A 10.1021/ma052691v 10.1021/acsmacrolett.9b00351 10.1038/ncomms14857 10.1021/acsami.5b12358 10.1088/1361-665X/aa71f5 10.1021/acsomega.0c02929 10.1021/acs.macromol.7b01261 10.1021/acsmacrolett.8b00411 10.1039/C5TA01915J 10.1021/nn200201u 10.1021/ma401111n 10.1021/acsami.6b05941 10.1002/smll.201604077 10.1038/ncomms1521 10.1039/b900859d 10.1021/acsami.7b13309 10.1016/j.compscitech.2005.04.020 10.1002/pola.27655 10.1039/C8TA09866B 10.1039/C9TA03775F 10.1021/cr970022c 10.1002/adma.201500140 10.1002/anie.198407411 10.1039/c2cs35091b 10.1126/science.1212648 10.1039/C6SC02354A 10.1039/C4TB00862F 10.1021/acs.macromol.9b00830 10.1039/c3cs60109a 10.1016/j.progpolymsci.2005.06.002 10.1002/macp.201700327 10.1016/j.compscitech.2007.07.021 10.1021/acsami.6b02259 10.1021/acsami.9b00626 10.1038/nmat858 10.1021/acs.macromol.6b01443 10.1038/nature09963 10.1021/cr60110a002 10.1021/acsami.0c05083 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 10.1039/C7SM00916J 10.1002/anie.201705462 10.1038/nmat952 10.1016/j.polymer.2019.122003 10.1088/1757-899X/377/1/012007 10.1039/C6MH00029K 10.1021/am301879z 10.1021/jacs.8b03257 10.1021/cm102963k 10.1080/15321799308021436 10.1021/ja00256a040 10.1039/C7NR05011A 10.1021/ja500205v 10.1021/ma902596s 10.1021/acs.accounts.7b00371 10.1021/acs.macromol.6b01576 10.1002/admi.201800051 10.1016/j.chempr.2017.07.017 10.1021/acs.macromol.5b02214 10.1016/j.eurpolymj.2004.10.012 10.1021/acs.macromol.9b00159 10.1039/p29850000607 10.1021/ja01561a014 10.1021/acsami.9b11166 10.1002/adma.201200196 10.1021/acsami.9b12264 10.1021/ja9756331 10.1039/b711716g 10.1021/jacs.5b02653 10.1016/j.polymer.2019.01.010 10.1021/acsapm.9b01095 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E 10.1021/acs.jpcc.9b07247 10.1016/j.progpolymsci.2009.03.001 10.1021/ja00170a016 10.1016/j.ijbiomac.2014.03.013 10.1021/ja0279693 10.1021/acs.iecr.6b00612 10.1021/acs.macromol.5b00210 10.1021/mz200195n 10.1126/science.1181044 10.1080/23311916.2015.1075686 10.1002/marc.201700739 10.1039/C9SM00254E 10.1021/ja300050x |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION K9. 7X8 |
DOI | 10.1002/asia.202001157 |
DatabaseName | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | 4240 |
ExternalDocumentID | 10_1002_asia_202001157 33137223 ASIA202001157 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: MRF Ltd. Chennai |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW RAD ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- NPM AAYXX CITATION K9. 7X8 |
ID | FETCH-LOGICAL-c4107-cd91d8a3dca715efcfac6f122067c64059ad984c59b513aadaf838414de8da863 |
IEDL.DBID | 33P |
ISSN | 1861-4728 |
IngestDate | Sat Oct 26 01:39:03 EDT 2024 Thu Oct 10 15:59:09 EDT 2024 Thu Sep 12 19:21:09 EDT 2024 Sat Sep 28 08:26:41 EDT 2024 Sat Aug 24 01:05:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | broadband dielectric spectroscopy mechanical strength dynamic bonds segmental dynamics glass transition interface Polymer nanocomposites non-bonding interactions self-healing supramolecular network |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4107-cd91d8a3dca715efcfac6f122067c64059ad984c59b513aadaf838414de8da863 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-4267-6805 0000-0002-0754-7055 |
PMID | 33137223 |
PQID | 2470188932 |
PQPubID | 986338 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2457280867 proquest_journals_2470188932 crossref_primary_10_1002_asia_202001157 pubmed_primary_33137223 wiley_primary_10_1002_asia_202001157_ASIA202001157 |
PublicationCentury | 2000 |
PublicationDate | December 14, 2020 |
PublicationDateYYYYMMDD | 2020-12-14 |
PublicationDate_xml | – month: 12 year: 2020 text: December 14, 2020 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2013; 2 2019; 11 1987; 109 2006; 39 2004; 7 2013; 129 2019; 15 2009; 111 2014; 24 2005; 65 2020; 12 2020; 11 2007 2007; 119 2013; 5 2016; 37 2014; 136 2001; 40 2019; 164 2001; 42 2011; 472 1944; 35 2018; 7 2009; 11 2010; 22 2018; 6 2018; 9 2012; 134 2018; 4 2015; 137 2019; 21 2004; 39 2002; 84 2018; 455 2019; 157 2011; 65 2018; 30 2018; 219 2014; 17 2012; 24 2016; 49 1998; 98 2007; 67 2019; 8 2007; 17 2019; 7 2015; 56 2019; 4 2011; 2 2010; 35 2010; 328 2015; 51 2019; 1 2010; 39 2019; 35 2015; 53 1998 2016; 96 2014; 47 2011; 5 2010; 40 1981; 20 1957; 79 2016; 4 2015; 68 2017; 50 2016; 5 2010; 43 2016; 7 1990; 23 2016; 3 2015; 115 1997; 30 2017; 56 1990; 112 2005; 17 2018; 10 2012; 45 2016; 8 2017; 302 2014; 268 2012; 41 2019; 175 2016; 22 2017; 5 2009; 44 2017; 7 2001; 101 2017; 8 2013; 25 2017; 3 2019; 52 2017; 46 1984; 23 2020; 59 2020; 56 2011; 12 2008; 4 2017; 114 2019; 122 2017; 9 2019; 123 2007; 36 2020; 8 2015; 48 2020; 5 2020; 3 2020; 2 2014; 2 2002; 41 1993; C33 1989; 267 2017; 38 2018 2018; 57 130 2018; 377 2003; 2 2005; 30 2016; 85 2011; 21 2008; 68 2011; 23 2008; 64 2003; 125 2018; 75 1998; 120 2014; 53 2015; 2 2004; 101 2007; 126 2015; 15 2011; 334 2015; 17 2009; 21 2018; 140 2015; 3 2017; 26 2013; 46 2020; 186 1985; 2 2002; 295 2013; 42 2016; 54 2005; 41 2001; 409 2008; 10 1999; 5 2015; 7 2016; 55 2009; 34 2017; 91 2015; 27 2012; 3 2012; 1 2020; 197 2013; 34 2017; 13 2017; 12 2009; 143 2010; 132 2019 2018 2011; 44 2017; 19 2016 2017; 18 2015 2018; 51 2016; 138 2011; 45 2014 2009; 5 2013 2009; 3 2008; 451 2012; 4 2012; 8 2018; 58 e_1_2_9_79_1 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_33_1 e_1_2_9_216_1 Guan Q. (e_1_2_9_228_1) 2019; 7 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_122_1 e_1_2_9_145_1 Li F. (e_1_2_9_82_1) 2019; 11 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_60_2 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_227_1 Wang S. (e_1_2_9_110_1) 2007 e_1_2_9_22_2 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_242_1 Pierre P. (e_1_2_9_177_1) 1998 Kloxin C. J. (e_1_2_9_185_1) 2013 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 Haili N. (e_1_2_9_12_1) 2018 e_1_2_9_232_1 e_1_2_9_255_1 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 Hossain S. (e_1_2_9_115_1) e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_110_2 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_171_1 e_1_2_9_194_1 Chang R. (e_1_2_9_218_1) 2016 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_256_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_39_2 Shengju G. (e_1_2_9_11_1) 2018; 75 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_257_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 Xu M. (e_1_2_9_204_1) 2020; 2 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_222_1 e_1_2_9_21_2 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_258_1 e_1_2_9_90_1 Geitner R. (e_1_2_9_245_1) e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 Huang J. (e_1_2_9_188_1) 2020; 59 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_246_1 e_1_2_9_41_2 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_236_1 e_1_2_9_259_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_251_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_38_2 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_42_2 e_1_2_9_65_1 e_1_2_9_247_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_237_1 e_1_2_9_252_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_4_1 e_1_2_9_240_1 e_1_2_9_155_2 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_253_1 e_1_2_9_127_1 e_1_2_9_104_1 e_1_2_9_59_2 e_1_2_9_36_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 Yang M. W Urban Y. (e_1_2_9_107_1) 2013 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 68 start-page: 978 year: 2008 end-page: 986 publication-title: Compos. Sci. Technol. – volume: 132 start-page: 12051 year: 2010 end-page: 12058 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6791 year: 2011 end-page: 6818 publication-title: ACS Nano – volume: 52 start-page: 6055 year: 2019 end-page: 6067 publication-title: Macromolecules. – start-page: 34 year: 2015 end-page: 59 publication-title: Prog. Polym. Sci. – volume: 7 start-page: 20093 year: 2017 end-page: 20100 publication-title: RSC Adv. – volume: 27 start-page: 2722 year: 2015 end-page: 2727 publication-title: Adv. Mater. – volume: 9 start-page: 15696 year: 2017 end-page: 15706 publication-title: Nanoscale – volume: 43 start-page: 2643 year: 2010 end-page: 2653 publication-title: Macromolecules – volume: 54 start-page: 781 year: 2016 end-page: 786 publication-title: J. Polym. Sci. Part B. – volume: 7 start-page: 5343 year: 2016 end-page: 5346 publication-title: Polym. Chem. – volume: 37 start-page: 1667 year: 2016 end-page: 1675 publication-title: Macromol. Rapid Commun. – volume: 59 start-page: 21 year: 2020 end-page: 9958 publication-title: Ind. Eng. Chem. Res. – volume: 472 start-page: 334 year: 2011 end-page: 33 publication-title: Nature – volume: 10 start-page: 94 year: 2018 publication-title: Polymer – volume: 5 start-page: 3858 year: 2011 end-page: 3866 publication-title: ACS Nano – volume: 12 start-page: 33139 year: 2020 end-page: 33151 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 6 year: 2020 end-page: 2237 publication-title: ACS Appl. Polym. Mater. – volume: 46 start-page: 6621 year: 2013 end-page: 6633 publication-title: Macromolecules – volume: 10 year: 2008 publication-title: Entropy – volume: 5 start-page: 25660 year: 2017 end-page: 25671 publication-title: J. Mater. Chem. A – start-page: 147 year: 2014 end-page: 153 publication-title: Int. J. Biol. Macromol. – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 26 year: 2017 publication-title: Smart Mater. Struct. – volume: 44 start-page: 6717 year: 2009 end-page: 6719 publication-title: Chem. Commun. – volume: 35 start-page: 3 year: 2010 end-page: 23 publication-title: Prog. Polym. Sci. – volume: 3 start-page: 691 year: 2017 end-page: 705 publication-title: Chem. – volume: 2 start-page: 510 year: 2003 publication-title: Nat. Mater. – volume: 91 start-page: 408 year: 2017 end-page: 419 publication-title: Eur. Polym. J. – volume: 10 start-page: 2992 year: 2018 end-page: 3001 publication-title: ACS Appl. Mater. Interfaces – volume: 295 start-page: 1698 year: 2002 end-page: 1702 publication-title: Science – volume: 2 start-page: 1634 year: 2013 end-page: 1638 publication-title: Adv. Mater. – volume: 140 start-page: 5280 year: 2018 end-page: 5289 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 1070 year: 2012 end-page: 1075 publication-title: Macromolecules – volume: 5 start-page: 2455 year: 1999 end-page: 2463 publication-title: Chem. Eur. J. – volume: 10 start-page: 8245 year: 2018 end-page: 8257 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 18651 year: 2018 end-page: 18656 publication-title: Nanoscale – volume: 8 start-page: 17728 year: 2016 end-page: 17737 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 11049 year: 2014 end-page: 11053 publication-title: J. Mater. Chem. A. – volume: 57 130 start-page: 2194 2216 year: 2018 2018 end-page: 2198 2220 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 6715 year: 2016 end-page: 6720 publication-title: Chem. Sci. – volume: 5 start-page: 220 year: 2017 end-page: 228 publication-title: J. Mater. Chem. C – volume: 15 start-page: 2826 year: 2019 end-page: 2837 publication-title: Soft Matter – volume: 8 start-page: 32520 year: 2016 end-page: 32527 publication-title: ACS Appl. Mater. Interfaces. – volume: 50 start-page: 2610 year: 2017 end-page: 2620 publication-title: Acc. Chem. Res. – volume: 41 start-page: 2003 year: 2012 end-page: 2024 publication-title: Chem. Soc. Rev. – volume: 39 start-page: 1703 year: 2004 end-page: 1710 publication-title: J. Mater. Sci. – volume: 143 start-page: 251 year: 2009 end-page: 264 publication-title: Faraday Discuss. – volume: 17 start-page: 205 year: 2005 end-page: 208 publication-title: Adv. Mater. – volume: 41 start-page: 898 year: 2002 end-page: 952 publication-title: Angew. Chem. Int. Ed. – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 7 start-page: 1198 year: 2018 end-page: 1202 publication-title: ACS Macro Lett. – volume: 2 start-page: 6 year: 2020 end-page: 2283 publication-title: ACS Appl. Polym. Mater. – volume: 175 start-page: 15 year: 2019 end-page: 24 publication-title: Polymer – volume: 75 start-page: 1 year: 2018 end-page: 12 publication-title: J. Foodhyd – volume: 2 start-page: 607 year: 1985 end-page: 624 publication-title: J. Chem. Soc., Perkin Trans. – volume: 5 start-page: 1348 year: 2016 end-page: 1352 publication-title: ACS Macro Lett. – volume: 15 start-page: 6276 year: 2015 end-page: 6281 publication-title: Nano Lett. – volume: 13 year: 2017 publication-title: Small – year: 2013 – volume: 42 start-page: 4705 year: 2001 end-page: 4707 publication-title: Tetrahedron Lett. – volume: 101 start-page: 4071 year: 2001 end-page: 4098 publication-title: Chem. Rev. – volume: 25 start-page: 5530 year: 2013 end-page: 5548 publication-title: Adv. Mater. – volume: 40 start-page: 179 year: 2010 end-page: 211 publication-title: Annu. Rev. Mater. Res. – volume: 41 start-page: 6042 year: 2012 end-page: 6065 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 2494 year: 2018 end-page: 2502 publication-title: Anal. Methods – volume: 140 start-page: 6217 year: 2018 end-page: 6220 publication-title: J. Am. Chem. – volume: 21 start-page: 11123 year: 2011 end-page: 11130 publication-title: J. Mater. Chem. – volume: 5 start-page: 1494 year: 2013 end-page: 1502 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 3011 year: 2018 end-page: 3019 publication-title: ACS Appl. Mater. Interfaces – volume: 34 start-page: 203 year: 2013 end-page: 220 publication-title: Macromol. Rapid Commun. – volume: 39 start-page: 17 year: 2010 end-page: 29 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 1188 year: 2020 end-page: 1197 publication-title: Polym. Chem. – volume: 52 start-page: 2531 year: 2019 end-page: 2541 publication-title: Macromolecules – volume: 19 start-page: 18461 year: 2017 end-page: 18470 publication-title: Phys. Chem. Chem. Phys. – volume: 23 start-page: 6 year: 2011 end-page: 8 publication-title: Chem. Mater. – volume: 197 year: 2020 publication-title: Compos. Sci. Technol. – volume: 9 start-page: 2725 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 10184 year: 2018 end-page: 10188 publication-title: J. Mater. Chem. A – volume: 37 start-page: 1040 year: 2016 end-page: 1045 publication-title: Macromol. Rapid Commun. – start-page: 188 year: 2018 end-page: 195 publication-title: J. Foodchem. – volume: 7 start-page: 20623 year: 2015 end-page: 20630 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 643 year: 2010 end-page: 651 publication-title: Macromolecules – volume: 56 start-page: 10462 year: 2017 end-page: 10466 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 17 year: 2019 end-page: 16116 publication-title: ACS Appl. Mater. Interfaces – volume: 409 start-page: 794 year: 2001 end-page: 797 publication-title: Nature – volume: 334 start-page: 965 year: 2011 end-page: 968 publication-title: Science – volume: 49 start-page: 1781 year: 2016 end-page: 1789 publication-title: Macromolecules – volume: 8 start-page: 4955 year: 2016 end-page: 4962 publication-title: ACS Appl. Mater. Interfaces – volume: 120 start-page: 5604 year: 1998 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 91 year: 2007 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 451 start-page: 977 year: 2008 end-page: 980 publication-title: Nature – volume: 64 start-page: 8346 year: 2008 end-page: 8354 publication-title: Tetrahedron – volume: 51 start-page: 15196 year: 2015 end-page: 15199 publication-title: Chem. Commun. – volume: 7 start-page: 1459 year: 2019 end-page: 1467 publication-title: J. Mater. Chem. A – volume: 129 start-page: 1383 year: 2013 end-page: 1393 publication-title: J. Appl. Polym. Sci. – volume: 12 start-page: 603 year: 2020 publication-title: Polymer – volume: 2 start-page: 278 year: 2003 end-page: 283 publication-title: Nat. Mater. – volume: 21 start-page: 645 year: 2009 end-page: 649 publication-title: Adv. Mater. – volume: 96 start-page: 26 year: 2016 end-page: 34 publication-title: Polymer – volume: 50 start-page: 7584 year: 2017 end-page: 7592 publication-title: Macromolecules – volume: 17 start-page: 22587 year: 2015 end-page: 22595 publication-title: Phys. Chem. Chem. Phys. – volume: 49 start-page: 298 year: 2016 end-page: 307 publication-title: Macromolecules – volume: 11 start-page: 490 year: 2019 publication-title: Polymer. – volume: 43 start-page: 1191 year: 2010 end-page: 1194 publication-title: Macromolecules – volume: 67 start-page: 201 year: 2007 end-page: 12 publication-title: Compos. Sci. Technol. – volume: 12 start-page: 487 year: 2020 publication-title: Polymer. – volume: 55 start-page: 4539 year: 2016 end-page: 4548 publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 13948 year: 2019 end-page: 13955 publication-title: Chem. A – volume: 11 start-page: 7755 year: 2019 end-page: 7763 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 7446 year: 2013 end-page: 7467 publication-title: Chem. Soc. Rev. – volume: 30 start-page: 814 year: 2005 end-page: 831 publication-title: Dynamers. Prog. Polym. Sci. – volume: 12 start-page: 2894 year: 2011 end-page: 2901 publication-title: Biomacromolecules – volume: 3 start-page: 2677 year: 2009 end-page: 2685 publication-title: ACS Nano. – volume: 2 start-page: 6878 year: 2014 end-page: 6885 publication-title: J. Mater. Chem. B – volume: 3 start-page: 241 year: 2016 end-page: 247 publication-title: Mater. Horiz. – start-page: 2 end-page: 17982 publication-title: Phys. Chem. Chem. Phys. – volume: 49 start-page: 8593 year: 2016 end-page: 8604 publication-title: Macromolecules – volume: 186 year: 2020 publication-title: Polymer – volume: 39 start-page: 3441 year: 2006 end-page: 3449 publication-title: Macromolecules – volume: 35 start-page: 51 year: 1944 end-page: 75 publication-title: Chem. Rev. – volume: 11 start-page: 9530 year: 2009 end-page: 9536 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 6416 year: 2012 end-page: 6429 publication-title: Soft Matter – volume: 136 start-page: 6969 year: 2014 end-page: 6977 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1794 year: 2013 end-page: 1802 publication-title: Macromolecules. – volume: 40 start-page: 2004 year: 2001 end-page: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 400 year: 2008 end-page: 418 publication-title: Soft Matter. – volume: 20 start-page: 1051 year: 1981 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 3045 year: 2012 end-page: 3056 publication-title: Polym. Chem. – volume: 50 start-page: 2092 year: 2017 end-page: 2102 publication-title: Macromolecules – volume: 2 start-page: 511 year: 2011 end-page: 516 publication-title: Nat. Commun. – volume: 85 start-page: 605 year: 2016 end-page: 619 publication-title: Eur. Polym. J. – volume: 455 start-page: 318 year: 2018 end-page: 325 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 34 year: 2004 end-page: 39 publication-title: Mater. Today – volume: 52 start-page: 5157 year: 2019 end-page: 5167 publication-title: Macromolecules – volume: 5 start-page: 21191 year: 2020 end-page: 21202 publication-title: ACS Omega – volume: 101 start-page: 8270 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 43 start-page: 643 year: 2010 end-page: 651 publication-title: Macromolecules. – year: 1998 – volume: 53 start-page: 14149 year: 2014 end-page: 14152 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 1521 year: 2017 end-page: 1541 publication-title: Nat. Protoc. – volume: 45 start-page: 142 year: 2011 end-page: 149 publication-title: Macromolecules – volume: 101 start-page: 4071 year: 2001 end-page: 4097 publication-title: Chem. Rev. – volume: 21 start-page: 19890 year: 2019 end-page: 19903 publication-title: Phys. Chem. Chem. Phys. – start-page: 8 year: 2016 end-page: 25551 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 10283 year: 2019 end-page: 10291 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 12864 year: 2015 end-page: 12872 publication-title: J. Mater. Chem. A – volume: 22 start-page: 18435 year: 2016 end-page: 18441 publication-title: Chem. Eur. J. – volume: 7 start-page: 6901 year: 2019 end-page: 6910 publication-title: J. Mater. Chem. A – volume: 138 start-page: 6020 year: 2016 end-page: 6027 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 30 year: 2016 publication-title: Chem. Sci. – volume: 46 start-page: 6621 year: 2017 end-page: 6637 publication-title: Chem. Soc. Rev. – volume: 157 start-page: 1 year: 2019 end-page: 13 publication-title: Composites Part B. – volume: 8 start-page: 6757 year: 2020 end-page: 6767 publication-title: J. Mater. Chem. A – volume: 51 start-page: 468 year: 2018 end-page: 479 publication-title: Macromolecules – volume: 219 year: 2018 publication-title: Macromol. Chem. Phys. – volume: 7 start-page: 27278 year: 2019 end-page: 27288 publication-title: J. Mater. Chem. A – volume: 25 start-page: 6864 year: 2013 end-page: 6867 publication-title: Adv. Mater. – volume: 11 start-page: 38126 year: 2019 end-page: 38135 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 431 year: 2017 publication-title: Polymer – volume: 17 start-page: 2 year: 2014 publication-title: Mater. Today – volume: 137 start-page: 6078 year: 2015 end-page: 6083 publication-title: J. Am. Chem. Soc. – year: 2018 publication-title: Macromol. Rapid Commun. – volume: 13 start-page: 7371 year: 2017 end-page: 7380 publication-title: Soft Matter. – volume: 49 start-page: 6277 year: 2016 end-page: 6284 publication-title: Macromolecules – volume: 109 start-page: 6825 year: 1987 end-page: 6836 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 290 year: 2013 end-page: 309 publication-title: Macromol. Rapid Commun. – volume: 10 start-page: 9727 year: 2018 end-page: 9735 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 435 year: 2015 end-page: 442 publication-title: Polymer – volume: 8 start-page: 14857 year: 2017 publication-title: Nat. Commun. – volume: 1 start-page: 275 year: 2012 end-page: 279 publication-title: ACS Macro Lett. – volume: 12 start-page: 989 year: 2020 publication-title: Polymer – volume: 267 start-page: 125 year: 1989 end-page: 132 publication-title: Colloid Polym. Sci. – volume: 65 start-page: 745 year: 2011 publication-title: Chimia – volume: 23 start-page: 829 year: 1990 end-page: 835 publication-title: Macromolecules – volume: 48 start-page: 2098 year: 2015 end-page: 2106 publication-title: Macromolecules – volume: 47 start-page: 729 year: 2014 end-page: 740 publication-title: Macromolecules – volume: 2 start-page: 1108 year: 2020 end-page: 1113 publication-title: ACS Appl. Polym. Mater. – volume: 44 start-page: 2444 year: 2011 end-page: 2250 publication-title: Macromolecules – volume: 53 start-page: 2094 year: 2015 end-page: 2103 publication-title: J. Polym. Sci. Part A – volume: 5 start-page: 275 year: 2009 end-page: 81 publication-title: Soft Matter – volume: 4 start-page: 1928 year: 2018 end-page: 1936 publication-title: Chem – volume: 1 start-page: 969 year: 2019 end-page: 981 publication-title: ACS Appl. Polym. Mater. – volume: 4 start-page: 4955 year: 2013 end-page: 4965 publication-title: Polym. Chem. – volume: 84 start-page: 1339 year: 2002 end-page: 1345 publication-title: J. Appl. Polym. Sci. – volume: 51 start-page: 5294 year: 2018 end-page: 5303 publication-title: Macromolecules – volume: 8 start-page: 10647 year: 2016 end-page: 10656 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 1162 year: 2017 end-page: 1171 publication-title: Biomacromolecules – volume: 119 start-page: 46 3989 year: 2007 2007 end-page: 3917 3991 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 2924 year: 2015 end-page: 2933 publication-title: J. Mater. Chem. A – volume: 4 start-page: 10939 year: 2019 end-page: 10949 publication-title: ACS Omega – volume: 7 start-page: 15207 year: 2019 end-page: 15214 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1063 year: 2020 end-page: 1073 publication-title: Food and Bioprocess Technology – volume: 2 year: 2015 publication-title: Cogent. Eng. – volume: 11 start-page: 12105 year: 2019 end-page: 12113 publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 5362 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 11482 year: 2019 end-page: 11490 publication-title: Langmuir. – volume: 9 start-page: 3040 year: 2017 end-page: 3049 publication-title: ACS Appl. Mater. Interfaces – volume: C33 start-page: 239 year: 1993 publication-title: J. Macromol. Sci. Rev. Macromol. Chem. Phys. – volume: 10 start-page: 35533 year: 2018 end-page: 35538 publication-title: ACS Appl. Mater. Interfaces – volume: 111 start-page: 2127 year: 2009 end-page: 2133 publication-title: Appl. Polym. Sci. – volume: 68 start-page: 90 year: 2015 end-page: 103 publication-title: Eur. Polym. J. – volume: 24 start-page: 1235 year: 2014 end-page: 1242 publication-title: Adv. Funct. Mater. – year: 2018 publication-title: Adv. Mater. Interfaces – volume: 114 start-page: 8163 year: 2017 end-page: 8168 publication-title: Proc. Natl. Acad. Sci. USA – volume: 115 start-page: 7196 year: 2015 end-page: 7239 publication-title: Chem. Rev. – volume: 328 start-page: 216 year: 2010 end-page: 220 publication-title: Science – volume: 125 start-page: 3896 year: 2003 end-page: 3900 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 2536 year: 2011 end-page: 2541 publication-title: Macromolecules – volume: 34 start-page: 581 year: 2009 end-page: 604 publication-title: Prog. Polym. Sci. – start-page: 410 year: 2019 end-page: 419 publication-title: Carbohydr. Polym. – volume: 123 start-page: 28427 year: 2019 end-page: 28436 publication-title: J. Phys. Chem. C. – volume: 11 start-page: 2122 year: 2019 publication-title: Polymer – volume: 164 start-page: 79 year: 2019 end-page: 85 publication-title: Polymer – volume: 41 start-page: 589 year: 2005 end-page: 598 publication-title: Eur. Polym. J. – volume: 56 start-page: 4381 year: 2020 end-page: 4395 publication-title: Chem. Commun. – volume: 3 start-page: 19662 year: 2015 end-page: 19668 publication-title: J. Mater. Chem. A – volume: 51 start-page: 6377 year: 2015 end-page: 6380 publication-title: Chem. Commun. – volume: 98 start-page: 1743 year: 1998 end-page: 1754 publication-title: Chem. Rev. – volume: 377 year: 2018 publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 134 start-page: 8424 year: 2012 end-page: 8427 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 2578 year: 2012 end-page: 2581 publication-title: Adv. Mater. – volume: 52 start-page: 4169 year: 2019 end-page: 4184 publication-title: Macromolecules – volume: 112 start-page: 5525 year: 1990 publication-title: J. Am. Chem. Soc. – volume: 268 start-page: 1 year: 2014 end-page: 22 publication-title: Coord. Chem. Rev. – volume: 22 start-page: 5424 year: 2010 end-page: 5430 publication-title: Adv. Mater. – volume: 137 start-page: 6492 year: 2015 end-page: 6495 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 5893 year: 2016 end-page: 5902 publication-title: Macromolecules – volume: 18 start-page: 1356 year: 2017 end-page: 1364 publication-title: Biomacromolecules – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 126 year: 2007 publication-title: . J. Chem. Phys. – volume: 36 start-page: 161 year: 2007 end-page: 171 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 5776 year: 2016 end-page: 5784 publication-title: ACS Sustainable Chem. Eng. – volume: 123 start-page: 23995 year: 2019 end-page: 24006 publication-title: J. Phys. Chem. C. – volume: 23 start-page: 741 year: 1984 end-page: 742 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 34 start-page: 436 year: 2013 end-page: 443 publication-title: Food Control – volume: 65 start-page: 2466 year: 2005 end-page: 73 publication-title: Compos. Sci. Technol. – volume: 11 start-page: 33356 year: 2019 end-page: 33363 publication-title: ACS Appl. Mater. Interfaces – volume: 302 year: 2017 publication-title: Macromol. Mater. Eng. – volume: 30 start-page: 393 year: 1997 end-page: 401 publication-title: Acc. Chem. Res. – volume: 5 start-page: 1902 year: 2020 end-page: 1910 publication-title: ACS Omega – volume: 79 start-page: 833 year: 1957 end-page: 838 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 6280 year: 2012 end-page: 6288 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 29363 year: 2017 end-page: 29373 publication-title: ACS Appl. Mater. Interfaces – volume: 58 start-page: 585 year: 2018 end-page: 609 publication-title: Polym. Rev. – volume: 8 start-page: 1006 year: 2019 end-page: 1011 publication-title: ACS Macro Lett. – ident: e_1_2_9_24_1 doi: 10.1002/adma.201801435 – ident: e_1_2_9_4_1 doi: 10.1021/acsami.6b10881 – ident: e_1_2_9_7_1 doi: 10.1002/marc.201600226 – ident: e_1_2_9_44_1 doi: 10.1021/nn9006847 – ident: e_1_2_9_66_1 doi: 10.1038/35057232 – ident: e_1_2_9_6_1 doi: 10.1002/polb.23980 – ident: e_1_2_9_131_1 doi: 10.1021/cr500633b – ident: e_1_2_9_85_1 doi: 10.1039/C5TA05788D – ident: e_1_2_9_126_1 doi: 10.1021/ar950199y – ident: e_1_2_9_73_1 doi: 10.1039/C9TA09158K – ident: e_1_2_9_214_1 doi: 10.1021/acsmacrolett.6b00805 – ident: e_1_2_9_216_1 doi: 10.1039/C9TA13928A – ident: e_1_2_9_84_1 doi: 10.1039/c3py00087g – ident: e_1_2_9_146_1 doi: 10.1039/b910648k – ident: e_1_2_9_62_1 doi: 10.1016/j.compscitech.2006.07.028 – ident: e_1_2_9_75_1 doi: 10.3390/polym10010094 – ident: e_1_2_9_124_1 – ident: e_1_2_9_180_1 doi: 10.1002/marc.201600428 – ident: e_1_2_9_244_1 doi: 10.1016/j.chempr.2018.06.001 – ident: e_1_2_9_125_1 doi: 10.1021/cr990125q – ident: e_1_2_9_39_2 doi: 10.1007/s11947-020-02462-5 – ident: e_1_2_9_153_1 doi: 10.1002/anie.201407402 – ident: e_1_2_9_234_1 doi: 10.1021/ja303356z – ident: e_1_2_9_52_1 doi: 10.1021/acs.jpcc.9b05545 – ident: e_1_2_9_220_1 doi: 10.3390/polym11030490 – ident: e_1_2_9_99_1 doi: 10.1002/mame.201600385 – ident: e_1_2_9_203_1 doi: 10.1039/C7CP03570E – ident: e_1_2_9_250_1 doi: 10.1021/acs.macromol.7b02287 – ident: e_1_2_9_210_1 doi: 10.1021/jacs.8b01682 – ident: e_1_2_9_117_1 doi: 10.1039/D0MH00535E – ident: e_1_2_9_181_1 doi: 10.1038/s41467-018-05285-3 – ident: e_1_2_9_116_1 doi: 10.1038/s41467-020-14911-y – ident: e_1_2_9_17_1 doi: 10.1021/cr990125q – ident: e_1_2_9_227_1 doi: 10.3390/polym12020487 – ident: e_1_2_9_47_1 doi: 10.1039/C9CP04091A – ident: e_1_2_9_242_1 doi: 10.1016/j.mattod.2014.01.020 – ident: e_1_2_9_255_1 doi: 10.1021/ma00205a023 – ident: e_1_2_9_76_1 doi: 10.1039/C6PY01112H – ident: e_1_2_9_86_1 doi: 10.1021/acssuschemeng.6b01760 – ident: e_1_2_9_171_1 doi: 10.1039/D0TA01593H – ident: e_1_2_9_136_1 doi: 10.1016/j.compositesb.2018.08.082 – ident: e_1_2_9_139_1 doi: 10.1021/acsomega.9b03516 – ident: e_1_2_9_9_1 doi: 10.1016/j.carbpol.2018.10.080 – ident: e_1_2_9_16_1 doi: 10.1002/adma201302015 – ident: e_1_2_9_155_2 doi: 10.1002/ange.201712670 – ident: e_1_2_9_40_1 – ident: e_1_2_9_160_1 doi: 10.1073/pnas.1705380114 – ident: e_1_2_9_173_1 doi: 10.2533/chimia.2011.745 – ident: e_1_2_9_179_1 doi: 10.1039/C7TA08255J – ident: e_1_2_9_128_1 doi: 10.1039/C7CS00564D – ident: e_1_2_9_163_1 doi: 10.1016/j.eurpolymj.2017.04.026 – ident: e_1_2_9_45_1 doi: 10.1021/acs.langmuir.9b01847 – ident: e_1_2_9_59_2 doi: 10.1039/c1jm10794a – ident: e_1_2_9_197_1 doi: 10.1016/j.polymer.2019.04.059 – ident: e_1_2_9_103_1 doi: 10.1016/j.polymer.2014.11.052 – ident: e_1_2_9_113_1 doi: 10.1039/B803951H – ident: e_1_2_9_178_1 doi: 10.1002/adma.201903762 – ident: e_1_2_9_205_1 doi: 10.3390/polym12040989 – ident: e_1_2_9_169_1 doi: 10.1002/app.10112 – ident: e_1_2_9_105_1 doi: 10.1016/j.progpolymsci.2015.06.001 – ident: e_1_2_9_238_1 doi: 10.1039/C8TA02102C – ident: e_1_2_9_243_1 doi: 10.1021/ma3023603 – ident: e_1_2_9_37_1 – ident: e_1_2_9_69_1 doi: 10.1021/acsami.8b21197 – ident: e_1_2_9_195_1 doi: 10.1021/acsami.7b19649 – ident: e_1_2_9_207_1 doi: 10.1080/15583724.2018.1454947 – ident: e_1_2_9_92_1 doi: 10.1021/acs.biomac.7b00089 – ident: e_1_2_9_65_1 doi: 10.1002/adma.200400607 – ident: e_1_2_9_156_1 doi: 10.1039/D0CC00672F – ident: e_1_2_9_130_1 doi: 10.1021/ma402368s – ident: e_1_2_9_170_1 doi: 10.1021/acsami.7b09997 – ident: e_1_2_9_157_1 doi: 10.1038/nprot.2017.053 – ident: e_1_2_9_200_1 doi: 10.1021/ma200202w – ident: e_1_2_9_55_1 doi: 10.1021/acsapm.8b00274 – ident: e_1_2_9_97_1 doi: 10.1016/j.polymer.2016.05.004 – start-page: 188 year: 2018 ident: e_1_2_9_12_1 publication-title: J. Foodchem. contributor: fullname: Haili N. – ident: e_1_2_9_38_2 doi: 10.1002/app.29226 – ident: e_1_2_9_159_1 doi: 10.1021/acs.macromol.8b01124 – start-page: 8 year: 2016 ident: e_1_2_9_218_1 publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Chang R. – ident: e_1_2_9_23_1 doi: 10.1002/marc.201200689 – ident: e_1_2_9_71_1 doi: 10.1146/annurev-matsci-070909-104532 – ident: e_1_2_9_29_1 doi: 10.1016/S1369-7021(04)00187-7 – ident: e_1_2_9_102_1 doi: 10.1021/am303015e – ident: e_1_2_9_61_1 doi: 10.1002/adma.200802008 – ident: e_1_2_9_2_1 doi: 10.1021/acs.nanolett.5b03069 – ident: e_1_2_9_256_1 doi: 10.1021/ma902379t – volume-title: Reversible Covalent Bond Formation as a Strategy for Healable Polymer Networks, in RSC Polymer Chemistry Series No. 5, Healable Polymer Systems year: 2013 ident: e_1_2_9_185_1 contributor: fullname: Kloxin C. J. – ident: e_1_2_9_134_1 doi: 10.1063/1.2742385 – ident: e_1_2_9_206_1 doi: 10.3390/polym11122122 – ident: e_1_2_9_226_1 doi: 10.1021/jacs.5b03551 – ident: e_1_2_9_32_1 doi: 10.1002/adfm.201302058 – ident: e_1_2_9_199_1 doi: 10.1021/ma2001492 – ident: e_1_2_9_79_1 doi: 10.1021/acsami.7b18700 – ident: e_1_2_9_240_1 doi: 10.1021/acsami.7b17465 – ident: e_1_2_9_64_1 doi: 10.1023/B:JMSC.0000016173.73733.dc – ident: e_1_2_9_247_1 doi: 10.1002/adma.201203865 – ident: e_1_2_9_192_1 doi: 10.1126/science.1065879 – ident: e_1_2_9_152_1 doi: 10.1039/B603168B – volume-title: A to Z of Thermodynamics year: 1998 ident: e_1_2_9_177_1 contributor: fullname: Pierre P. – ident: e_1_2_9_89_1 doi: 10.1002/marc.201600777 – ident: e_1_2_9_158_1 doi: 10.1039/C5CC00262A – ident: e_1_2_9_209_1 doi: 10.1039/c2py20290e – ident: e_1_2_9_48_1 doi: 10.1021/acs.macromol.7b00022 – ident: e_1_2_9_184_1 doi: 10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H – ident: e_1_2_9_10_1 doi: 10.1039/C9TA01266D – ident: e_1_2_9_222_1 doi: 10.1021/ma9022197 – ident: e_1_2_9_46_1 doi: 10.1016/j.eurpolymj.2016.08.028 – ident: e_1_2_9_194_1 doi: 10.1039/C6TC04715G – ident: e_1_2_9_30_1 doi: 10.1038/nature06669 – volume: 7 start-page: 13948 year: 2019 ident: e_1_2_9_228_1 publication-title: Chem. A contributor: fullname: Guan Q. – ident: e_1_2_9_36_1 doi: 10.1021/acsami.8b20380 – ident: e_1_2_9_60_2 doi: 10.1002/app.38838 – ident: e_1_2_9_58_1 – ident: e_1_2_9_110_2 doi: 10.1002/ange.200700439 – ident: e_1_2_9_18_1 doi: 10.1039/c2sm25144b – ident: e_1_2_9_165_1 doi: 10.1039/C4TA06304J – ident: e_1_2_9_155_1 doi: 10.1002/anie.201712670 – ident: e_1_2_9_196_1 doi: 10.3390/polym12030603 – ident: e_1_2_9_149_1 doi: 10.1021/ja104446r – ident: e_1_2_9_15_1 doi: 10.1021/nn2025397 – ident: e_1_2_9_248_1 doi: 10.1039/C8AY00598B – ident: e_1_2_9_142_1 doi: 10.1039/B917901A – ident: e_1_2_9_176_1 doi: 10.1016/S0040-4039(01)00796-1 – ident: e_1_2_9_224_1 doi: 10.1016/j.ccr.2014.01.016 – ident: e_1_2_9_57_1 doi: 10.1021/acs.macromol.9b00597 – ident: e_1_2_9_154_1 doi: 10.1002/chem.201603753 – volume-title: Thermodynamics of self-healing reactions and their applications in polymeric materials, in RSC Polymer Chemistry Series No. 5, Healable Polymer Systems year: 2013 ident: e_1_2_9_107_1 contributor: fullname: Yang M. W Urban Y. – ident: e_1_2_9_246_1 doi: 10.1039/C5CP02151K – ident: e_1_2_9_56_1 doi: 10.1103/PhysRevLett.122.217801 – ident: e_1_2_9_230_1 doi: 10.1039/C5SC02223A – ident: e_1_2_9_104_1 doi: 10.1039/b912433k – ident: e_1_2_9_43_1 doi: 10.1021/ma401016d – ident: e_1_2_9_143_1 doi: 10.1002/anie.198110511 – ident: e_1_2_9_26_1 doi: 10.1021/acs.macromol.8b02466 – ident: e_1_2_9_20_1 – ident: e_1_2_9_174_1 doi: 10.1007/s10904-006-9075-2 – ident: e_1_2_9_147_1 doi: 10.1016/j.tet.2008.05.077 – ident: e_1_2_9_5_1 doi: 10.1021/acs.macromol.5b02756 – ident: e_1_2_9_111_1 doi: 10.3390/entropy-e10020049 – ident: e_1_2_9_253_1 doi: 10.1021/acsami.5b05041 – ident: e_1_2_9_121_1 doi: 10.1002/adma.201003036 – ident: e_1_2_9_211_1 doi: 10.1016/j.apsusc.2018.05.159 – ident: e_1_2_9_81_1 doi: 10.3390/polym9090431 – ident: e_1_2_9_100_1 doi: 10.1039/C5CC06824J – ident: e_1_2_9_215_1 doi: 10.1021/bm200423f – ident: e_1_2_9_93_1 doi: 10.1021/acsami.6b15476 – ident: e_1_2_9_212_1 doi: 10.1039/c2cs15305j – ident: e_1_2_9_119_1 doi: 10.1021/acsomega.9b01243 – ident: e_1_2_9_41_2 doi: 10.1016/j.compscitech.2020.108271 – ident: e_1_2_9_182_1 doi: 10.1021/jacs.6b02428 – ident: e_1_2_9_258_1 doi: 10.1016/j.eurpolymj.2015.04.021 – ident: e_1_2_9_112_1 doi: 10.1016/j.progpolymsci.2009.10.002 – ident: e_1_2_9_257_1 doi: 10.1021/ma202325k – start-page: 46 year: 2007 ident: e_1_2_9_110_1 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Wang S. – ident: e_1_2_9_162_1 doi: 10.1021/acsapm.0c00250 – ident: e_1_2_9_198_1 doi: 10.1021/ma2015134 – ident: e_1_2_9_213_1 doi: 10.1039/C8NR06348F – ident: e_1_2_9_31_1 doi: 10.1002/marc.201200675 – ident: e_1_2_9_88_1 doi: 10.1021/ma902379t – ident: e_1_2_9_164_1 doi: 10.1039/C6RA28416G – ident: e_1_2_9_254_1 doi: 10.1007/BF01410350 – ident: e_1_2_9_217_1 doi: 10.1073/pnas.0401885101 – ident: e_1_2_9_101_1 doi: 10.1021/acs.biomac.6b01841 – ident: e_1_2_9_239_1 doi: 10.1021/acs.macromol.6b00826 – ident: e_1_2_9_33_1 doi: 10.1039/c4ta02079k – ident: e_1_2_9_34_1 doi: 10.1002/adma.201303652 – ident: e_1_2_9_249_1 doi: 10.1016/j.foodcont.2013.05.004 – ident: e_1_2_9_193_1 doi: 10.1021/acsami.8b13249 – ident: e_1_2_9_172_1 doi: 10.1039/C9PY01630A – ident: e_1_2_9_28_1 doi: 10.1021/ma052691v – ident: e_1_2_9_54_1 doi: 10.1021/acsmacrolett.9b00351 – ident: e_1_2_9_233_1 doi: 10.1038/ncomms14857 – ident: e_1_2_9_70_1 doi: 10.1021/acsami.5b12358 – volume: 2 start-page: 6 year: 2020 ident: e_1_2_9_204_1 publication-title: ACS Appl. Polym. Mater. contributor: fullname: Xu M. – ident: e_1_2_9_91_1 doi: 10.1088/1361-665X/aa71f5 – ident: e_1_2_9_120_1 doi: 10.1021/acsomega.0c02929 – ident: e_1_2_9_231_1 doi: 10.1021/acs.macromol.7b01261 – ident: e_1_2_9_53_1 doi: 10.1021/acsmacrolett.8b00411 – ident: e_1_2_9_137_1 doi: 10.1039/C5TA01915J – volume: 59 start-page: 21 year: 2020 ident: e_1_2_9_188_1 publication-title: Ind. Eng. Chem. Res. contributor: fullname: Huang J. – ident: e_1_2_9_42_2 doi: 10.1021/nn200201u – ident: e_1_2_9_72_1 doi: 10.1021/ma401111n – ident: e_1_2_9_166_1 doi: 10.1021/acsami.6b05941 – ident: e_1_2_9_96_1 doi: 10.1002/smll.201604077 – ident: e_1_2_9_1_1 doi: 10.1038/ncomms1521 – ident: e_1_2_9_145_1 doi: 10.1039/b900859d – volume: 11 start-page: 17 year: 2019 ident: e_1_2_9_82_1 publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Li F. – ident: e_1_2_9_133_1 doi: 10.1021/acsami.7b13309 – ident: e_1_2_9_67_1 doi: 10.1016/j.compscitech.2005.04.020 – ident: e_1_2_9_94_1 doi: 10.1002/pola.27655 – ident: e_1_2_9_241_1 doi: 10.1039/C8TA09866B – ident: e_1_2_9_138_1 doi: 10.1039/C9TA03775F – ident: e_1_2_9_151_1 doi: 10.1021/cr970022c – ident: e_1_2_9_98_1 doi: 10.1002/adma.201500140 – ident: e_1_2_9_225_1 doi: 10.1002/anie.198407411 – volume-title: Annual Meeting & Exhibition Supplemental Proceedings ident: e_1_2_9_115_1 contributor: fullname: Hossain S. – ident: e_1_2_9_14_1 doi: 10.1039/c2cs35091b – ident: e_1_2_9_229_1 doi: 10.1126/science.1212648 – ident: e_1_2_9_77_1 doi: 10.1039/C6SC02354A – ident: e_1_2_9_95_1 doi: 10.1039/C4TB00862F – ident: e_1_2_9_51_1 doi: 10.1021/acs.macromol.9b00830 – ident: e_1_2_9_108_1 doi: 10.1039/c3cs60109a – ident: e_1_2_9_123_1 doi: 10.1016/j.progpolymsci.2005.06.002 – ident: e_1_2_9_252_1 doi: 10.1002/macp.201700327 – ident: e_1_2_9_63_1 doi: 10.1016/j.compscitech.2007.07.021 – ident: e_1_2_9_259_1 doi: 10.1021/acsami.6b02259 – ident: e_1_2_9_161_1 doi: 10.1021/acsami.9b00626 – ident: e_1_2_9_22_2 doi: 10.1038/nmat858 – ident: e_1_2_9_237_1 doi: 10.1021/acs.macromol.6b01443 – ident: e_1_2_9_175_1 doi: 10.1038/nature09963 – ident: e_1_2_9_189_1 doi: 10.1021/cr60110a002 – ident: e_1_2_9_83_1 doi: 10.1021/acsami.0c05083 – ident: e_1_2_9_191_1 doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 – ident: e_1_2_9_221_1 doi: 10.1039/C7SM00916J – ident: e_1_2_9_78_1 doi: 10.1002/anie.201705462 – ident: e_1_2_9_21_2 doi: 10.1038/nmat952 – ident: e_1_2_9_135_1 doi: 10.1016/j.polymer.2019.122003 – ident: e_1_2_9_190_1 doi: 10.1088/1757-899X/377/1/012007 – start-page: 2 ident: e_1_2_9_245_1 publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Geitner R. – ident: e_1_2_9_236_1 doi: 10.1039/C6MH00029K – ident: e_1_2_9_87_1 doi: 10.1021/am301879z – ident: e_1_2_9_235_1 doi: 10.1021/jacs.8b03257 – ident: e_1_2_9_148_1 doi: 10.1021/cm102963k – ident: e_1_2_9_186_1 doi: 10.1080/15321799308021436 – ident: e_1_2_9_202_1 doi: 10.1021/ja00256a040 – ident: e_1_2_9_132_1 doi: 10.1039/C7NR05011A – ident: e_1_2_9_35_1 doi: 10.1021/ja500205v – ident: e_1_2_9_187_1 doi: 10.1021/ma902596s – volume: 75 start-page: 1 year: 2018 ident: e_1_2_9_11_1 publication-title: J. Foodhyd contributor: fullname: Shengju G. – ident: e_1_2_9_25_1 doi: 10.1021/acs.accounts.7b00371 – ident: e_1_2_9_8_1 doi: 10.1021/acs.macromol.6b01576 – ident: e_1_2_9_106_1 doi: 10.1002/admi.201800051 – ident: e_1_2_9_208_1 doi: 10.1016/j.chempr.2017.07.017 – ident: e_1_2_9_49_1 doi: 10.1021/acs.macromol.5b02214 – ident: e_1_2_9_168_1 doi: 10.1016/j.eurpolymj.2004.10.012 – ident: e_1_2_9_251_1 doi: 10.1021/acs.macromol.9b00159 – ident: e_1_2_9_144_1 doi: 10.1039/p29850000607 – ident: e_1_2_9_201_1 doi: 10.1021/ja01561a014 – ident: e_1_2_9_80_1 doi: 10.1021/acsami.9b11166 – ident: e_1_2_9_68_1 doi: 10.1002/adma.201200196 – ident: e_1_2_9_27_1 doi: 10.1021/acsami.9b12264 – ident: e_1_2_9_127_1 doi: 10.1021/ja9756331 – ident: e_1_2_9_3_1 doi: 10.1039/b711716g – ident: e_1_2_9_232_1 doi: 10.1021/jacs.5b02653 – ident: e_1_2_9_74_1 doi: 10.1016/j.polymer.2019.01.010 – ident: e_1_2_9_140_1 doi: 10.1021/acsapm.9b01095 – ident: e_1_2_9_122_1 doi: 10.1021/cr990125q – ident: e_1_2_9_183_1 doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E – ident: e_1_2_9_50_1 doi: 10.1021/acs.jpcc.9b07247 – ident: e_1_2_9_219_1 doi: 10.1016/j.progpolymsci.2009.03.001 – ident: e_1_2_9_141_1 doi: 10.1021/ja00170a016 – ident: e_1_2_9_13_1 doi: 10.1016/j.ijbiomac.2014.03.013 – ident: e_1_2_9_114_1 doi: 10.1021/ja0279693 – ident: e_1_2_9_167_1 doi: 10.1021/acs.iecr.6b00612 – ident: e_1_2_9_90_1 doi: 10.1021/acs.macromol.5b00210 – ident: e_1_2_9_223_1 doi: 10.1021/mz200195n – ident: e_1_2_9_19_1 doi: 10.1126/science.1181044 – ident: e_1_2_9_129_1 doi: 10.1080/23311916.2015.1075686 – ident: e_1_2_9_109_1 doi: 10.1002/marc.201700739 – ident: e_1_2_9_118_1 doi: 10.1039/C9SM00254E – ident: e_1_2_9_150_1 doi: 10.1021/ja300050x |
SSID | ssj0052098 |
Score | 2.434137 |
SecondaryResourceType | review_article |
Snippet | Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent environmental... Abstract Polymers and polymer nanocomposites (PNCs) are extensively used in daily life. However, the growing requirement of advanced PNCs laid persistent... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4215 |
SubjectTerms | broadband dielectric spectroscopy Chemistry Covalence Covalent bonds Damage dynamic bonds Fillers glass transition Healing interface Mechanical properties mechanical strength Molecular conformation Nanocomposites Nanoparticles non-bonding interactions Parameters Polymer nanocomposites Polymers Reconstruction segmental dynamics self-healing supramolecular network |
Title | Design Principles of Interfacial Dynamic Bonds in Self‐Healing Materials: What are the Parameters? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202001157 https://www.ncbi.nlm.nih.gov/pubmed/33137223 https://www.proquest.com/docview/2470188932 https://search.proquest.com/docview/2457280867 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZtLu2lrzSp07QoEOjJxHpYlnMJSzahPTQsbAu9mVk9oFC8Zb1770_Ib8wvyYy8dllyKKRHY8uSNSPpm_HMN4ydQlFLJyyg8oYi17osc_CFzwmLeONKEXUqYjuvbn7Y6RXR5IxZ_D0_xOhwo5WR9mta4LDozv6ShlKSIdp3MoEaSidHUyHlcKjZsBVTiEfKhbMGDaVK2oG1sZBnu813T6UHUHMXuaaj5_rl_w_6FXuxhZ180uvJa_YktG_Ys8uh2ts-89MUysFng_O948vIk78wArnV-bSvXc-pEHHHf7Z8Hn7Fuz-3lMiE5x__Cutem8858YFzWAWO6JLPgOK_iMTz4i37fn317fJzvq3AkDuNdmHuPErMgvIOKlGG6LBHE4UkzndnEOvV4GurXVkvSqEAPESrrBbaB-vBGnXA9tplG94xHh1-tjFWLyJCHtBQSO_R-ApltLV1JmOfBgk0v3uijaanVJYNzVozzlrGjgcBNdsF1zVSV4WwCL5kxk7G2ziH9P8D2rDc0DMlFeOyBl9x2At27EopoSqEShmTSX7_GEMzmX-ZjFdHj2n0nj2XlEohZC7VMdtbrzbhA3va-c3HpMT3PrnwFw |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB4a9-Be0nfjNm23UMhJRPvQatVLMXFCQpNgsAO5ick-oFDkEtv3_IT8xv6S7qwsFZNDofSox0qrndndb0Yz3wB8xrwSlhuMyuvzTKmiyNDlLiMs4rQteFCpiO2svLw2k2OiyRl3uTAtP0TvcKOZkdZrmuDkkD78wxpKWYbRwBMJ1ZQ78FhpVVH1Bimn3WJMQR4pG87oaCqVwnS8jbk43G6_vS89AJvb2DVtPidP_0O3n8HuBnmycasqz-GRb17A8Kgr-PYS3CRFc7Bp539fskVgyWUYkDzrbNKWr2dUi3jJvjds5n-EX3f3lMsUt0B2gatWob8wogRneOtZBJhsihQCRjyeX1_B1cnx_Og02xRhyKyKpmFmXRSaQekslrzwwcY36sAF0b5bHeFeha4yyhbVTcElosNgpFFcOW8cGi1fw6BZNH4PWLDxs7U26iZE1IMKc-FctL98EUxlrB7BQSeC-mfLtVG3rMqiplGr-1EbwX4noXoz55a1UGXOTcRfYgSf-stxDOkXCDZ-saZ7CqrHZXR8xJtWsv2rpOSyjGhpBCIJ8C99qMezs3F_9PZfGn2E4en84rw-P7v89g6e0HmKlOFqHwar27V_DztLt_6QNPo3ZSf0Ng |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkCgXSqHQLdAaqRKniNhxHKcXtGJZgQpopW2l3qLBDwkJZRHL3vsT-hv7S_A4m6BVD0hwzMOJ4xnb30xmvgH4hmkpDNcYlNeliZR5nqBNbUJYxCqTcy9jEdtxcf1bD86IJqfL4m_4ITqHG82MuF7TBL-3_viZNJSSDIN9JyKoKZZhVRIWpySObNSuxRTjEZPhtAqWUiF0S9uYiuPF9ovb0n9YcxG6xr1n-P7tvd6EjTnuZP1GUT7Akqu34N1pW-5tG-wgxnKwUet9n7KJZ9Fh6JH86mzQFK9nVIl4ym5rNnZ3_t-fv5TJFDZAdoWPjTp_Z0QIzvDBsQAv2QgpAIxYPE8-wq_h2c_T82RegiExMhiGibFBZBoza7DgufMmvFF5Loj03agA9kq0pZYmL29yniFa9DrTkkvrtEWtsh1YqSe1-wTMm_DZSml54wPmQYmpsDZYXy73utRG9eColUB13zBtVA2nsqho1Kpu1Hqw3wqoms-4aSVkkXId0JfowWF3OYwh_QDB2k1mdE9O1bi0Co_YbQTbvSrLeFYErNQDEeX3Qh-q_vii3x19fk2jr7A2Ggyry4vrH3uwTqcpTIbLfVh5fJi5A1ie2tmXqM9Phffy5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+of+Interfacial+Dynamic+Bonds+in+Self%E2%80%90Healing+Materials%3A+What+are+the+Parameters%3F&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Sattar%2C+Mohammad+Abdul&rft.au=Patnaik%2C+Archita&rft.date=2020-12-14&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=15&rft.issue=24&rft.spage=4215&rft.epage=4240&rft_id=info:doi/10.1002%2Fasia.202001157&rft.externalDBID=10.1002%252Fasia.202001157&rft.externalDocID=ASIA202001157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |