Dynamic decentralized monitoring for large-scale industrial processes using multiblock canonical variate analysis based regression

Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of the p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; p. 1
Main Authors: Fuente, M.J., Sainz-Palmero, G.I., Galende-Hernandez, M.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-01-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of the process data is a relevant issue which is not usually managed. Here, a new data-driven distributed dynamic monitoring scheme is proposed to deal with this issue, integrating regression to automatically divide the blocks, a multivariate and dynamic statistical analysis (Canonical Variate Analysis, CVA) to perform local monitoring, and Bayesian inference to achieve the decision making. By constructing sub-blocks using regression, it is possible to identify the most commonly associated variables for every block. Three regression methods are proposed: LASSO (Least Absolute Shrinkage and Selection Operator), which forces the coefficients of the less relevant variables towards zero; Elastic-net, a robust method that is a compromise between Ridge and Lasso regression; and, finally, a non-linear regression method based on the Multilayer Perceptron Network (MLP). Then, the CVA model is implemented for each sub-block to consider the dynamic characteristics of the industrial processes and the Bayesian inference provides a global decision for fault detection. The Tennessee Eastman benchmark validates the efficiency and feasibility of the proposed method regarding some state-of-the-art methods.
AbstractList Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of the process data is a relevant issue which is not usually managed. Here, a new data-driven distributed dynamic monitoring scheme is proposed to deal with this issue, integrating regression to automatically divide the blocks, a multivariate and dynamic statistical analysis (Canonical Variate Analysis, CVA) to perform local monitoring, and Bayesian inference to achieve the decision making. By constructing sub-blocks using regression, it is possible to identify the most commonly associated variables for every block. Three regression methods are proposed: LASSO (Least Absolute Shrinkage and Selection Operator), which forces the coefficients of the less relevant variables towards zero; Elastic-net, a robust method that is a compromise between Ridge and Lasso regression; and, finally, a non-linear regression method based on the Multilayer Perceptron Network (MLP). Then, the CVA model is implemented for each sub-block to consider the dynamic characteristics of the industrial processes and the Bayesian inference provides a global decision for fault detection. The Tennessee Eastman benchmark validates the efficiency and feasibility of the proposed method regarding some state-of-the-art methods.
Author Fuente, M.J.
Sainz-Palmero, G.I.
Galende-Hernandez, M.
Author_xml – sequence: 1
  givenname: M.J.
  surname: Fuente
  fullname: Fuente, M.J.
  organization: Department of System Engineering and Automatic Control, School of Industrial Engineering, Universidad de Valladolid, Valladolid, Spain
– sequence: 2
  givenname: G.I.
  orcidid: 0000-0002-4097-5633
  surname: Sainz-Palmero
  fullname: Sainz-Palmero, G.I.
  organization: Department of System Engineering and Automatic Control, School of Industrial Engineering, Universidad de Valladolid, Valladolid, Spain
– sequence: 3
  givenname: M.
  orcidid: 0000-0001-7397-7742
  surname: Galende-Hernandez
  fullname: Galende-Hernandez, M.
  organization: Department of System Engineering and Automatic Control, School of Industrial Engineering, Universidad de Valladolid, Valladolid, Spain
BookMark eNpNkUFv3CAUhFGUSk3T_IL2gNSzt2CMDcdom6aRIvWQ9owe8Lxi44UU7ErbY3952DqqwgX0NN8MMO_IeUwRCfnA2YZzpj9fb7c3Dw-blrViI1rZD1yfkYuW97oRUvTnr85vyVUpe1aXqiM5XJC_X44RDsFRjw7jnGEKf9DTQ4phTjnEHR1TphPkHTbFwYQ0RL-UOQeY6FNODkvBQpdykh6WaQ52Su6ROqi3DBWgv6FqZ6QQYTqWUKiFUhMy7nJlQ4rvyZsRpoJXL_sl-fn15sf2W3P__fZue33fuI7pudGKdeC9sM72QnllBY7eatHZHrQamEc1KD5KaaFDzQS4duwHKXxnRTfYVlySu9XXJ9ibpxwOkI8mQTD_BinvDOQ5uAmNlcIh95rrFju0g65RHBkqpzw4LarXp9WrfsGvBcts9mnJ9YXFtIPSXS-lOCWKVeVyKiXj-D-VM3PqzqzdmVN35qW7Sn1cqYCIrwjWq7brxTNrLpua
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_pr12020251
crossref_primary_10_1016_j_jprocont_2024_103178
crossref_primary_10_3390_s23198096
crossref_primary_10_3390_chemengineering8010001
Cites_doi 10.1111/j.1467-9868.2005.00503.x
10.1016/j.chemolab.2017.08.004
10.1109/TIE.2015.2466557
10.1007/978-0-387-45528-0
10.1109/TASE.2015.2493564
10.1016/j.chemolab.2017.09.021
10.1021/ie301945s
10.1016/j.jprocont.2017.09.003
10.1109/TII.2009.2033181
10.1016/j.jprocont.2010.03.003
10.1109/ETFA.2015.7301504
10.1016/0098-1354(93)80018-I
10.1007/978-1-4614-6849-3
10.1016/j.isatra.2019.06.002
10.1016/S0169-7439(00)00058-7
10.1109/TIE.2014.2345331
10.1016/j.chemolab.2016.11.015
10.1109/TIE.2020.2972472
10.1016/j.chemolab.2013.04.002
10.1016/j.jtice.2021.02.005
10.1016/j.jprocont.2017.05.002
10.1016/j.chemolab.2015.09.010
10.1021/acs.iecr.9b02391
10.1016/j.isatra.2014.05.031
10.1021/acs.iecr.0c06038
10.1109/ICACA.2016.7887916
10.1002/cem.667
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TIE.2016.2530047
10.1016/j.jprocont.2016.08.006
10.1007/s00521-014-1573-5
10.1016/j.jprocont.2012.02.003
10.1109/TIE.2014.2301773
10.1109/TCST.2017.2765621
10.1016/j.chemolab.2017.01.013
10.1016/j.jprocont.2014.12.001
10.1016/j.ifacol.2015.08.199
10.1002/cem.3158
10.1109/TIE.2020.2989708
10.1109/TCST.2019.2932682
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3256719
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Explore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_b53ce1d9192e4eb79efd1e0e8c8dac93
10_1109_ACCESS_2023_3256719
10068246
Genre orig-research
GrantInformation_xml – fundername: Spanish goverment MICINN/AIE
  grantid: PID2019-105434RB-C32-AEI/10.13039/501100011033
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
4.4
AAYXX
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-9804add3bcb638d8b3efdb934b6a9870de8781f55ba4e903ac2f6753d4b347b23
IEDL.DBID ESBDL
ISSN 2169-3536
IngestDate Tue Oct 22 15:15:35 EDT 2024
Thu Oct 10 18:27:14 EDT 2024
Fri Aug 23 03:12:48 EDT 2024
Mon Nov 04 12:04:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9804add3bcb638d8b3efdb934b6a9870de8781f55ba4e903ac2f6753d4b347b23
ORCID 0000-0001-7397-7742
0000-0002-4097-5633
0000-0001-6551-9952
OpenAccessLink https://ieeexplore.ieee.org/document/10068246
PQID 2789465532
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_10068246
crossref_primary_10_1109_ACCESS_2023_3256719
proquest_journals_2789465532
doaj_primary_oai_doaj_org_article_b53ce1d9192e4eb79efd1e0e8c8dac93
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
Larimore (ref21) 1997
ref28
ref27
Chakour (ref4) 2015; 9
ref29
ref8
ref7
ref9
ref3
ref6
ref5
ref40
References_xml – ident: ref42
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 9
  start-page: 1833
  issue: 4
  year: 2015
  ident: ref4
  article-title: New adaptive kernel principal component analysis for nonlinear dynamic process monitoring
  publication-title: Appl. Math. Inf. Sci.
  contributor:
    fullname: Chakour
– ident: ref37
  doi: 10.1016/j.chemolab.2017.08.004
– ident: ref18
  doi: 10.1109/TIE.2015.2466557
– ident: ref3
  doi: 10.1007/978-0-387-45528-0
– ident: ref35
  doi: 10.1109/TASE.2015.2493564
– ident: ref9
  doi: 10.1016/j.chemolab.2017.09.021
– ident: ref10
  doi: 10.1021/ie301945s
– ident: ref16
  doi: 10.1016/j.jprocont.2017.09.003
– ident: ref40
  doi: 10.1109/TII.2009.2033181
– ident: ref11
  doi: 10.1016/j.jprocont.2010.03.003
– ident: ref28
  doi: 10.1109/ETFA.2015.7301504
– ident: ref8
  doi: 10.1016/0098-1354(93)80018-I
– ident: ref20
  doi: 10.1007/978-1-4614-6849-3
– ident: ref31
  doi: 10.1016/j.isatra.2019.06.002
– ident: ref27
  doi: 10.1016/S0169-7439(00)00058-7
– ident: ref39
  doi: 10.1109/TIE.2014.2345331
– ident: ref33
  doi: 10.1016/j.chemolab.2016.11.015
– ident: ref29
  doi: 10.1109/TIE.2020.2972472
– ident: ref26
  doi: 10.1016/j.chemolab.2013.04.002
– ident: ref13
  doi: 10.1016/j.jtice.2021.02.005
– ident: ref7
  doi: 10.1016/j.jprocont.2017.05.002
– ident: ref14
  doi: 10.1016/j.chemolab.2015.09.010
– ident: ref24
  doi: 10.1021/acs.iecr.9b02391
– ident: ref17
  doi: 10.1016/j.isatra.2014.05.031
– ident: ref22
  doi: 10.1021/acs.iecr.0c06038
– ident: ref23
  doi: 10.1109/ICACA.2016.7887916
– ident: ref25
  doi: 10.1002/cem.667
– ident: ref32
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref34
  doi: 10.1109/TIE.2016.2530047
– ident: ref19
  doi: 10.1016/j.jprocont.2016.08.006
– ident: ref6
  doi: 10.1007/s00521-014-1573-5
– ident: ref12
  doi: 10.1016/j.jprocont.2012.02.003
– ident: ref38
  doi: 10.1109/TIE.2014.2301773
– start-page: 83
  volume-title: Statistical Methods in Control and Signal Processing
  year: 1997
  ident: ref21
  contributor:
    fullname: Larimore
– ident: ref36
  doi: 10.1109/TCST.2017.2765621
– ident: ref1
  doi: 10.1016/j.chemolab.2017.01.013
– ident: ref15
  doi: 10.1016/j.jprocont.2014.12.001
– ident: ref2
  doi: 10.1016/j.ifacol.2015.08.199
– ident: ref30
  doi: 10.1002/cem.3158
– ident: ref5
  doi: 10.1109/TIE.2020.2989708
– ident: ref41
  doi: 10.1109/TCST.2019.2932682
SSID ssj0000816957
Score 2.3552432
Snippet Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Bayes methods
Bayesian analysis
Bayesian inference
Canonical Variate Analysis
Correlation
Decentralized process monitoring
Decision making
Dynamic characteristics
Fault detection
Industrial plants
Monitoring
Multilayer perceptrons
Principal component analysis
Process monitoring
Process variables
Regression
Robustness (mathematics)
Statistical analysis
Statistical inference
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECZST8lQ5Ik6L3DoGMWUSPExJnIMD0WHOim6ESJ5KooCbhAnS8f88h4fdgx06NJVoEDqvjvenXD3HSEfhVAePQervGvaSoSeV6aBvmrlAHEYvFAudiPPF-rzNz29izQ5m1FfsSYs0wNnwU1cyz3UwWAkAgKcMjCEGhhor0PvTeb5ZHIrmUp3sK6laVWhGaqZmdx0HX7RdZwWfs3Rz6vIrbPlihJjfxmx8te9nJzNbJ-8L1EivcmnOyA7sDwke1vcgUfkdZpnydMplALLH78h0GyjcQnFcJR-ioXe1QKBAPo2pYOW9gBY0VQyQFMbrkO_9pN2_fJX6pWkXzGNxkiUrnlL6C16vEC_wPdcO7s8Jg-zu_tuXpWBCpXHNO65MpoJvM-48w7NLmjHUZjOcOFkb9BwA2il66FtXS_AMN77ZsCEggfhOILW8BMywjPAB0L72su2Vmrg0mNM440WrQLmtZcaX1NjcrWWrX3MvBk25RvM2AyFjVDYAsWY3Eb5b5ZG0uv0AFXBFlWw_1KFMTmO6G3tx6RuhByT8zWctljoysYO4Mgdx5vT_7H3GdmN35N_zpyT0fPTC1yQd6vwcpk08w-jNOke
  priority: 102
  providerName: Directory of Open Access Journals
Title Dynamic decentralized monitoring for large-scale industrial processes using multiblock canonical variate analysis based regression
URI https://ieeexplore.ieee.org/document/10068246
https://www.proquest.com/docview/2789465532
https://doaj.org/article/b53ce1d9192e4eb79efd1e0e8c8dac93
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QUOlEcRC2XlA0e8JLET28d2d6seEJeCxM2K7UlVAW3V7XLgyC9nxnFXK1UcuEWRrUz0ZTyPzHwD8F5rE8lyVDKGppU69Uq6BnvZdgPyMHhtAncjn52bz9_scsU0OXLbC4OIufgM53yZ_-Wn67jhVBlpeNXZRnd7sN8YcpwnsL86P1l-2iZVeIqEa01hF6or9_F4saAXmfOQ8Lki826YUmfHAmWi_jJZ5cFxnG3M6cF_SvcMnhZnUhyP6D-HR3j1Ap7sUAy-hD_LceS8SFjqMC9_YxI_syrzEkFeq_jB9eByTXihuNwO8xA3YxcBrgWXx1-IXH0YyPx9F4TIdW6pFL8o2iaHVfSF3kSwYUziFi_GEturQ_h6uvqyOJNl7oKMFO3dSWcrTceeCjGQdiYbFA4pOKVD1zvS74TW2Hpo29BrdJXqYzNQ3KGSDoqwbdQrmJAM-BpEX8eurY0ZVBfJ9YnO6tZgFW3sLG0zU_hwj4W_Gek1fA5LKudH6DxD5wt0UzhhvLZLmRs73yAgfFE1H1oVsU6OfFfUGIwj6Wus0Eab-ujUFA4ZvJ3njbhN4egefl8Uee25UZgp5lTz5h_b3sJjFnFMyxzB5O52g-9gb502sxzgz8pHOsu9hX8BG5LqIg
link.rule.ids 315,782,786,798,866,2106,27642,27933,27934,54767,54942
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QE48CxioYAPHMmSxE5sH9vdrRax9NIicbNie1JVhbbqdjlw5Jcz47irlRAHblFkKxN9Gc8jM98AvFdKB7IcZRF83RQqdrKwNXZF0_bIw-CV9tyNvDjRx9_MbM40OcWmFwYRU_EZTvgy_cuPV2HNqTLS8LI1tWp3YJfCGlWPYHd-cjhbbpIqPEXCNjqzC1Wl_XgwndKLTHhI-ESSeddMqbNlgRJRf56s8tdxnGzM0eP_lO4JPMrOpDgY0H8K9_DyGTzcohh8Dr9nw8h5ETHXYZ7_wih-JFXmJYK8VvGd68GLFeGF4nwzzENcD10EuBJcHn8mUvWhJ_N3IQiRq9RSKX5StE0Oq-gyvYlgwxjFDZ4NJbaXe_D1aH46XRR57kIRKNq7LawpFR170gdP2hmNl9hHb6XybWdJvyMabaq-aXyn0JayC3VPcYeMykvCtpYvYEQy4EsQXRXaptK6l20g1ydYoxqNZTChNbRNj-HDHRbueqDXcCksKa0boHMMncvQjeGQ8dosZW7sdIOAcFnVnG9kwCpa8l1RodeWpK-wRBNM7IKVY9hj8LaeN-A2hv07-F1W5JXjRmGmmJP1q39sewf3F6dflm756fjza3jA4g4pmn0Y3d6s8Q3srOL6bf5U_wA61esZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+decentralized+monitoring+for+large-scale+industrial+processes+using+multiblock+canonical+variate+analysis+based+regression&rft.jtitle=IEEE+access&rft.au=Fuente%2C+M.J.&rft.au=Sainz-Palmero%2C+G.I.&rft.au=Galende-Hernandez%2C+M.&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3256719&rft.externalDocID=10068246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon