Dynamic decentralized monitoring for large-scale industrial processes using multiblock canonical variate analysis based regression
Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of the p...
Saved in:
Published in: | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-01-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of the process data is a relevant issue which is not usually managed. Here, a new data-driven distributed dynamic monitoring scheme is proposed to deal with this issue, integrating regression to automatically divide the blocks, a multivariate and dynamic statistical analysis (Canonical Variate Analysis, CVA) to perform local monitoring, and Bayesian inference to achieve the decision making. By constructing sub-blocks using regression, it is possible to identify the most commonly associated variables for every block. Three regression methods are proposed: LASSO (Least Absolute Shrinkage and Selection Operator), which forces the coefficients of the less relevant variables towards zero; Elastic-net, a robust method that is a compromise between Ridge and Lasso regression; and, finally, a non-linear regression method based on the Multilayer Perceptron Network (MLP). Then, the CVA model is implemented for each sub-block to consider the dynamic characteristics of the industrial processes and the Bayesian inference provides a global decision for fault detection. The Tennessee Eastman benchmark validates the efficiency and feasibility of the proposed method regarding some state-of-the-art methods. |
---|---|
AbstractList | Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of the process data is a relevant issue which is not usually managed. Here, a new data-driven distributed dynamic monitoring scheme is proposed to deal with this issue, integrating regression to automatically divide the blocks, a multivariate and dynamic statistical analysis (Canonical Variate Analysis, CVA) to perform local monitoring, and Bayesian inference to achieve the decision making. By constructing sub-blocks using regression, it is possible to identify the most commonly associated variables for every block. Three regression methods are proposed: LASSO (Least Absolute Shrinkage and Selection Operator), which forces the coefficients of the less relevant variables towards zero; Elastic-net, a robust method that is a compromise between Ridge and Lasso regression; and, finally, a non-linear regression method based on the Multilayer Perceptron Network (MLP). Then, the CVA model is implemented for each sub-block to consider the dynamic characteristics of the industrial processes and the Bayesian inference provides a global decision for fault detection. The Tennessee Eastman benchmark validates the efficiency and feasibility of the proposed method regarding some state-of-the-art methods. |
Author | Fuente, M.J. Sainz-Palmero, G.I. Galende-Hernandez, M. |
Author_xml | – sequence: 1 givenname: M.J. surname: Fuente fullname: Fuente, M.J. organization: Department of System Engineering and Automatic Control, School of Industrial Engineering, Universidad de Valladolid, Valladolid, Spain – sequence: 2 givenname: G.I. orcidid: 0000-0002-4097-5633 surname: Sainz-Palmero fullname: Sainz-Palmero, G.I. organization: Department of System Engineering and Automatic Control, School of Industrial Engineering, Universidad de Valladolid, Valladolid, Spain – sequence: 3 givenname: M. orcidid: 0000-0001-7397-7742 surname: Galende-Hernandez fullname: Galende-Hernandez, M. organization: Department of System Engineering and Automatic Control, School of Industrial Engineering, Universidad de Valladolid, Valladolid, Spain |
BookMark | eNpNkUFv3CAUhFGUSk3T_IL2gNSzt2CMDcdom6aRIvWQ9owe8Lxi44UU7ErbY3952DqqwgX0NN8MMO_IeUwRCfnA2YZzpj9fb7c3Dw-blrViI1rZD1yfkYuW97oRUvTnr85vyVUpe1aXqiM5XJC_X44RDsFRjw7jnGEKf9DTQ4phTjnEHR1TphPkHTbFwYQ0RL-UOQeY6FNODkvBQpdykh6WaQ52Su6ROqi3DBWgv6FqZ6QQYTqWUKiFUhMy7nJlQ4rvyZsRpoJXL_sl-fn15sf2W3P__fZue33fuI7pudGKdeC9sM72QnllBY7eatHZHrQamEc1KD5KaaFDzQS4duwHKXxnRTfYVlySu9XXJ9ibpxwOkI8mQTD_BinvDOQ5uAmNlcIh95rrFju0g65RHBkqpzw4LarXp9WrfsGvBcts9mnJ9YXFtIPSXS-lOCWKVeVyKiXj-D-VM3PqzqzdmVN35qW7Sn1cqYCIrwjWq7brxTNrLpua |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_pr12020251 crossref_primary_10_1016_j_jprocont_2024_103178 crossref_primary_10_3390_s23198096 crossref_primary_10_3390_chemengineering8010001 |
Cites_doi | 10.1111/j.1467-9868.2005.00503.x 10.1016/j.chemolab.2017.08.004 10.1109/TIE.2015.2466557 10.1007/978-0-387-45528-0 10.1109/TASE.2015.2493564 10.1016/j.chemolab.2017.09.021 10.1021/ie301945s 10.1016/j.jprocont.2017.09.003 10.1109/TII.2009.2033181 10.1016/j.jprocont.2010.03.003 10.1109/ETFA.2015.7301504 10.1016/0098-1354(93)80018-I 10.1007/978-1-4614-6849-3 10.1016/j.isatra.2019.06.002 10.1016/S0169-7439(00)00058-7 10.1109/TIE.2014.2345331 10.1016/j.chemolab.2016.11.015 10.1109/TIE.2020.2972472 10.1016/j.chemolab.2013.04.002 10.1016/j.jtice.2021.02.005 10.1016/j.jprocont.2017.05.002 10.1016/j.chemolab.2015.09.010 10.1021/acs.iecr.9b02391 10.1016/j.isatra.2014.05.031 10.1021/acs.iecr.0c06038 10.1109/ICACA.2016.7887916 10.1002/cem.667 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TIE.2016.2530047 10.1016/j.jprocont.2016.08.006 10.1007/s00521-014-1573-5 10.1016/j.jprocont.2012.02.003 10.1109/TIE.2014.2301773 10.1109/TCST.2017.2765621 10.1016/j.chemolab.2017.01.013 10.1016/j.jprocont.2014.12.001 10.1016/j.ifacol.2015.08.199 10.1002/cem.3158 10.1109/TIE.2020.2989708 10.1109/TCST.2019.2932682 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3256719 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Explore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ESBDL name: IEEE Xplore Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_b53ce1d9192e4eb79efd1e0e8c8dac93 10_1109_ACCESS_2023_3256719 10068246 |
Genre | orig-research |
GrantInformation_xml | – fundername: Spanish goverment MICINN/AIE grantid: PID2019-105434RB-C32-AEI/10.13039/501100011033 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS 4.4 AAYXX CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-9804add3bcb638d8b3efdb934b6a9870de8781f55ba4e903ac2f6753d4b347b23 |
IEDL.DBID | ESBDL |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:15:35 EDT 2024 Thu Oct 10 18:27:14 EDT 2024 Fri Aug 23 03:12:48 EDT 2024 Mon Nov 04 12:04:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-9804add3bcb638d8b3efdb934b6a9870de8781f55ba4e903ac2f6753d4b347b23 |
ORCID | 0000-0001-7397-7742 0000-0002-4097-5633 0000-0001-6551-9952 |
OpenAccessLink | https://ieeexplore.ieee.org/document/10068246 |
PQID | 2789465532 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10068246 crossref_primary_10_1109_ACCESS_2023_3256719 proquest_journals_2789465532 doaj_primary_oai_doaj_org_article_b53ce1d9192e4eb79efd1e0e8c8dac93 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 Larimore (ref21) 1997 ref28 ref27 Chakour (ref4) 2015; 9 ref29 ref8 ref7 ref9 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref42 doi: 10.1111/j.1467-9868.2005.00503.x – volume: 9 start-page: 1833 issue: 4 year: 2015 ident: ref4 article-title: New adaptive kernel principal component analysis for nonlinear dynamic process monitoring publication-title: Appl. Math. Inf. Sci. contributor: fullname: Chakour – ident: ref37 doi: 10.1016/j.chemolab.2017.08.004 – ident: ref18 doi: 10.1109/TIE.2015.2466557 – ident: ref3 doi: 10.1007/978-0-387-45528-0 – ident: ref35 doi: 10.1109/TASE.2015.2493564 – ident: ref9 doi: 10.1016/j.chemolab.2017.09.021 – ident: ref10 doi: 10.1021/ie301945s – ident: ref16 doi: 10.1016/j.jprocont.2017.09.003 – ident: ref40 doi: 10.1109/TII.2009.2033181 – ident: ref11 doi: 10.1016/j.jprocont.2010.03.003 – ident: ref28 doi: 10.1109/ETFA.2015.7301504 – ident: ref8 doi: 10.1016/0098-1354(93)80018-I – ident: ref20 doi: 10.1007/978-1-4614-6849-3 – ident: ref31 doi: 10.1016/j.isatra.2019.06.002 – ident: ref27 doi: 10.1016/S0169-7439(00)00058-7 – ident: ref39 doi: 10.1109/TIE.2014.2345331 – ident: ref33 doi: 10.1016/j.chemolab.2016.11.015 – ident: ref29 doi: 10.1109/TIE.2020.2972472 – ident: ref26 doi: 10.1016/j.chemolab.2013.04.002 – ident: ref13 doi: 10.1016/j.jtice.2021.02.005 – ident: ref7 doi: 10.1016/j.jprocont.2017.05.002 – ident: ref14 doi: 10.1016/j.chemolab.2015.09.010 – ident: ref24 doi: 10.1021/acs.iecr.9b02391 – ident: ref17 doi: 10.1016/j.isatra.2014.05.031 – ident: ref22 doi: 10.1021/acs.iecr.0c06038 – ident: ref23 doi: 10.1109/ICACA.2016.7887916 – ident: ref25 doi: 10.1002/cem.667 – ident: ref32 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref34 doi: 10.1109/TIE.2016.2530047 – ident: ref19 doi: 10.1016/j.jprocont.2016.08.006 – ident: ref6 doi: 10.1007/s00521-014-1573-5 – ident: ref12 doi: 10.1016/j.jprocont.2012.02.003 – ident: ref38 doi: 10.1109/TIE.2014.2301773 – start-page: 83 volume-title: Statistical Methods in Control and Signal Processing year: 1997 ident: ref21 contributor: fullname: Larimore – ident: ref36 doi: 10.1109/TCST.2017.2765621 – ident: ref1 doi: 10.1016/j.chemolab.2017.01.013 – ident: ref15 doi: 10.1016/j.jprocont.2014.12.001 – ident: ref2 doi: 10.1016/j.ifacol.2015.08.199 – ident: ref30 doi: 10.1002/cem.3158 – ident: ref5 doi: 10.1109/TIE.2020.2989708 – ident: ref41 doi: 10.1109/TCST.2019.2932682 |
SSID | ssj0000816957 |
Score | 2.3552432 |
Snippet | Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Bayes methods Bayesian analysis Bayesian inference Canonical Variate Analysis Correlation Decentralized process monitoring Decision making Dynamic characteristics Fault detection Industrial plants Monitoring Multilayer perceptrons Principal component analysis Process monitoring Process variables Regression Robustness (mathematics) Statistical analysis Statistical inference |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECZST8lQ5Ik6L3DoGMWUSPExJnIMD0WHOim6ESJ5KooCbhAnS8f88h4fdgx06NJVoEDqvjvenXD3HSEfhVAePQervGvaSoSeV6aBvmrlAHEYvFAudiPPF-rzNz29izQ5m1FfsSYs0wNnwU1cyz3UwWAkAgKcMjCEGhhor0PvTeb5ZHIrmUp3sK6laVWhGaqZmdx0HX7RdZwWfs3Rz6vIrbPlihJjfxmx8te9nJzNbJ-8L1EivcmnOyA7sDwke1vcgUfkdZpnydMplALLH78h0GyjcQnFcJR-ioXe1QKBAPo2pYOW9gBY0VQyQFMbrkO_9pN2_fJX6pWkXzGNxkiUrnlL6C16vEC_wPdcO7s8Jg-zu_tuXpWBCpXHNO65MpoJvM-48w7NLmjHUZjOcOFkb9BwA2il66FtXS_AMN77ZsCEggfhOILW8BMywjPAB0L72su2Vmrg0mNM440WrQLmtZcaX1NjcrWWrX3MvBk25RvM2AyFjVDYAsWY3Eb5b5ZG0uv0AFXBFlWw_1KFMTmO6G3tx6RuhByT8zWctljoysYO4Mgdx5vT_7H3GdmN35N_zpyT0fPTC1yQd6vwcpk08w-jNOke priority: 102 providerName: Directory of Open Access Journals |
Title | Dynamic decentralized monitoring for large-scale industrial processes using multiblock canonical variate analysis based regression |
URI | https://ieeexplore.ieee.org/document/10068246 https://www.proquest.com/docview/2789465532 https://doaj.org/article/b53ce1d9192e4eb79efd1e0e8c8dac93 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QUOlEcRC2XlA0e8JLET28d2d6seEJeCxM2K7UlVAW3V7XLgyC9nxnFXK1UcuEWRrUz0ZTyPzHwD8F5rE8lyVDKGppU69Uq6BnvZdgPyMHhtAncjn52bz9_scsU0OXLbC4OIufgM53yZ_-Wn67jhVBlpeNXZRnd7sN8YcpwnsL86P1l-2iZVeIqEa01hF6or9_F4saAXmfOQ8Lki826YUmfHAmWi_jJZ5cFxnG3M6cF_SvcMnhZnUhyP6D-HR3j1Ap7sUAy-hD_LceS8SFjqMC9_YxI_syrzEkFeq_jB9eByTXihuNwO8xA3YxcBrgWXx1-IXH0YyPx9F4TIdW6pFL8o2iaHVfSF3kSwYUziFi_GEturQ_h6uvqyOJNl7oKMFO3dSWcrTceeCjGQdiYbFA4pOKVD1zvS74TW2Hpo29BrdJXqYzNQ3KGSDoqwbdQrmJAM-BpEX8eurY0ZVBfJ9YnO6tZgFW3sLG0zU_hwj4W_Gek1fA5LKudH6DxD5wt0UzhhvLZLmRs73yAgfFE1H1oVsU6OfFfUGIwj6Wus0Eab-ujUFA4ZvJ3njbhN4egefl8Uee25UZgp5lTz5h_b3sJjFnFMyxzB5O52g-9gb502sxzgz8pHOsu9hX8BG5LqIg |
link.rule.ids | 315,782,786,798,866,2106,27642,27933,27934,54767,54942 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QE48CxioYAPHMmSxE5sH9vdrRax9NIicbNie1JVhbbqdjlw5Jcz47irlRAHblFkKxN9Gc8jM98AvFdKB7IcZRF83RQqdrKwNXZF0_bIw-CV9tyNvDjRx9_MbM40OcWmFwYRU_EZTvgy_cuPV2HNqTLS8LI1tWp3YJfCGlWPYHd-cjhbbpIqPEXCNjqzC1Wl_XgwndKLTHhI-ESSeddMqbNlgRJRf56s8tdxnGzM0eP_lO4JPMrOpDgY0H8K9_DyGTzcohh8Dr9nw8h5ETHXYZ7_wih-JFXmJYK8VvGd68GLFeGF4nwzzENcD10EuBJcHn8mUvWhJ_N3IQiRq9RSKX5StE0Oq-gyvYlgwxjFDZ4NJbaXe_D1aH46XRR57kIRKNq7LawpFR170gdP2hmNl9hHb6XybWdJvyMabaq-aXyn0JayC3VPcYeMykvCtpYvYEQy4EsQXRXaptK6l20g1ydYoxqNZTChNbRNj-HDHRbueqDXcCksKa0boHMMncvQjeGQ8dosZW7sdIOAcFnVnG9kwCpa8l1RodeWpK-wRBNM7IKVY9hj8LaeN-A2hv07-F1W5JXjRmGmmJP1q39sewf3F6dflm756fjza3jA4g4pmn0Y3d6s8Q3srOL6bf5U_wA61esZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+decentralized+monitoring+for+large-scale+industrial+processes+using+multiblock+canonical+variate+analysis+based+regression&rft.jtitle=IEEE+access&rft.au=Fuente%2C+M.J.&rft.au=Sainz-Palmero%2C+G.I.&rft.au=Galende-Hernandez%2C+M.&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3256719&rft.externalDocID=10068246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |