Lipopolysaccharide Binding Protein Potentiates Airway Reactivity in a Murine Model of Allergic Asthma
The development of allergic asthma is influenced by both genetic and environmental factors. Epidemiologic data often show no clear relationship between the levels of allergen and clinical symptoms. Recent data suggest that bacterial LPS may be a risk factor related to asthma severity. Airborne LPS i...
Saved in:
Published in: | The Journal of immunology (1950) Vol. 166; no. 3; pp. 2063 - 2070 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Am Assoc Immnol
01-02-2001
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of allergic asthma is influenced by both genetic and environmental factors. Epidemiologic data often show no clear relationship between the levels of allergen and clinical symptoms. Recent data suggest that bacterial LPS may be a risk factor related to asthma severity. Airborne LPS is typically present at levels that are insufficient to activate alveolar macrophages in the absence of the accessory molecule LPS binding protein (LBP). LBP levels are markedly elevated in bronchoalveolar lavage fluids obtained from asthmatic subjects compared with those in normal controls. We hypothesized that LBP present in the lung could augment the pulmonary inflammation and airway reactivity associated with allergic asthma by sensitizing alveolar macrophages to LPS or other bacterial products and triggering them to release proinflammatory mediators. We compared wild-type (WT) and LBP-deficient mice using a defined Ag immunization and aerosol challenge model of allergic asthma. Immunized LBP-deficient mice did not develop substantial Ag-induced airway reactivity, whereas WT mice developed marked bronchoconstriction following aerosol Ag sensitization and challenge with methacholine. Similarly, production of NO synthase 2 protein and the NO catabolite peroxynitrite was dramatically higher in the lungs of WT mice following challenge compared with that in LBP-deficient mice. Thus, NO production appears to correlate with airway reactivity. In contrast, both mice developed similar pulmonary inflammatory cell infiltrates and elevated mucin production. Thus, LBP appears to participate in the development of Ag-induced airway reactivity and peroxynitrite production, but does not seem to be required for the development of pulmonary inflammation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.166.3.2063 |