A novel algorithm for fast representation of a Pareto front with adaptive resolution: Application to multi-objective optimization of a chemical reactor

•A novel algorithm for the representation of the Pareto front is presented.•Large overhead of the smart filter approach is avoided.•Algorithm revolves around a divide and conquer approach.•Decision maker can decide a priori the resolution of the Pareto front.•Illustrated with multi-objective bench m...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering Vol. 106; pp. 544 - 558
Main Authors: Hashem, I., Telen, D., Nimmegeers, P., Logist, F., Van Impe, J.
Format: Journal Article
Language:English
Published: Elsevier Ltd 02-11-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel algorithm for the representation of the Pareto front is presented.•Large overhead of the smart filter approach is avoided.•Algorithm revolves around a divide and conquer approach.•Decision maker can decide a priori the resolution of the Pareto front.•Illustrated with multi-objective bench mark problems. Solving a multi-objective optimization problem yields an infinite set of points in which no objective can be improved without worsening at least another objective. This set is called the Pareto front. A Pareto front with adaptive resolution is a representation where the number of points at any segment of the Pareto front is directly proportional to the curvature of this segment. Such representations are attractive since steep segments, i.e., knees, are more significant to the decision maker as they have high trade-off level compared to the more flat segments of the solution curve. A simple way to obtain such representation is the a posteriori analysis of a dense Pareto front by a smart filter to keep only the points with significant trade-offs among them. However, this method suffers from the production of a large overhead of insignificant points as well as the absence of a clear criterion for determining the required density of the initial dense representation of the Pareto front. This paper's contribution is a novel algorithm for obtaining a Pareto front with adaptive resolution. The algorithm overcomes the pitfalls of the smart filter strategy by obtaining the Pareto points recursively while calculating the trade-off level between the obtained points before moving to a deeper recursive call. By using this approach, once a segment of trade-offs insignificant to the decision maker's needs is identified, the algorithm stops exploring it further. The improved speed of the proposed algorithm along with its intuitively simple solution process make it a more attractive route to solve multi-objective optimization problems in a way that better suits the decision maker's needs.
AbstractList •A novel algorithm for the representation of the Pareto front is presented.•Large overhead of the smart filter approach is avoided.•Algorithm revolves around a divide and conquer approach.•Decision maker can decide a priori the resolution of the Pareto front.•Illustrated with multi-objective bench mark problems. Solving a multi-objective optimization problem yields an infinite set of points in which no objective can be improved without worsening at least another objective. This set is called the Pareto front. A Pareto front with adaptive resolution is a representation where the number of points at any segment of the Pareto front is directly proportional to the curvature of this segment. Such representations are attractive since steep segments, i.e., knees, are more significant to the decision maker as they have high trade-off level compared to the more flat segments of the solution curve. A simple way to obtain such representation is the a posteriori analysis of a dense Pareto front by a smart filter to keep only the points with significant trade-offs among them. However, this method suffers from the production of a large overhead of insignificant points as well as the absence of a clear criterion for determining the required density of the initial dense representation of the Pareto front. This paper's contribution is a novel algorithm for obtaining a Pareto front with adaptive resolution. The algorithm overcomes the pitfalls of the smart filter strategy by obtaining the Pareto points recursively while calculating the trade-off level between the obtained points before moving to a deeper recursive call. By using this approach, once a segment of trade-offs insignificant to the decision maker's needs is identified, the algorithm stops exploring it further. The improved speed of the proposed algorithm along with its intuitively simple solution process make it a more attractive route to solve multi-objective optimization problems in a way that better suits the decision maker's needs.
Author Telen, D.
Nimmegeers, P.
Hashem, I.
Logist, F.
Van Impe, J.
Author_xml – sequence: 1
  givenname: I.
  surname: Hashem
  fullname: Hashem, I.
– sequence: 2
  givenname: D.
  surname: Telen
  fullname: Telen, D.
– sequence: 3
  givenname: P.
  surname: Nimmegeers
  fullname: Nimmegeers, P.
– sequence: 4
  givenname: F.
  surname: Logist
  fullname: Logist, F.
– sequence: 5
  givenname: J.
  surname: Van Impe
  fullname: Van Impe, J.
  email: jan.vanimpe@kuleuven.be
BookMark eNqNkM1O4zAURi1UJFqGdzAPkMx1HCcpu6qaH6RKw4JZW8a5F1wlcWSbjoYX4XVxpyy6nJU353zyPSu2mPyEjN0KKAWI5uu-tH6c7QuOOD2XFYi2hKaECi7YUnStLGrZqgVbAqy7QkhVX7FVjHsAqOquW7L3DZ_8AQduhmcfXHoZOfnAycTEA84BI07JJOcn7okb_mACJs8p-CnxP5nnpjdzcgfMePTD6xG945t5Hpw9eRkfX4fkCv-0R_sP9dkY3dvZ7vGCLAx5xdjkwxd2SWaIePP5XrPf3789bn8Wu18_7rebXWFrWKeioqomY3pqSfSobEV9oxokKSV0iuoO5FoQkWpt1wD0VBkhrVWqFSoXMfKarU-7NvgYA5KegxtN-KsF6GNhvddnhfWxsIZG58LZ3Z5czB88OAw6WoeTxd6FfKjuvfuPlQ-d4pE-
CitedBy_id crossref_primary_10_1016_j_compchemeng_2018_03_013
crossref_primary_10_1002_cite_201800082
crossref_primary_10_1109_ACCESS_2021_3104935
crossref_primary_10_1016_j_ifacol_2022_09_129
crossref_primary_10_1007_s12243_023_01006_0
crossref_primary_10_1016_j_compchemeng_2022_108099
crossref_primary_10_1186_s42162_021_00162_8
crossref_primary_10_1016_j_ifacol_2020_12_319
crossref_primary_10_3390_pr9050873
crossref_primary_10_1016_j_jwpe_2023_103935
crossref_primary_10_3389_fceng_2021_582123
crossref_primary_10_3389_frfst_2023_1154305
crossref_primary_10_1002_cite_202200130
crossref_primary_10_1109_ACCESS_2021_3095847
crossref_primary_10_1002_nadc_20204097163
crossref_primary_10_1109_ACCESS_2021_3056755
Cites_doi 10.1016/j.compchemeng.2014.12.012
10.1186/1752-0509-8-1
10.1007/s00158-003-0368-6
10.1137/S1052623496307510
10.1080/0305215042000274942
10.1162/evco.1999.7.3.205
10.1016/j.ces.2012.05.002
10.1016/B978-0-444-63428-3.50333-7
10.1007/s00158-010-0506-x
10.1007/s10107-004-0559-y
10.1186/s12918-016-0328-6
10.1007/s00158-011-0698-8
10.1016/j.compchemeng.2011.11.002
10.1007/s00158-007-0185-4
10.1016/j.compchemeng.2015.07.004
10.1016/j.compchemeng.2013.09.015
10.1007/s00158-015-1237-9
10.1137/080714518
10.1007/BF01197559
10.1057/palgrave.jors.2601012
10.1007/s00158-002-0276-1
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2017.06.020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
EndPage 558
ExternalDocumentID 10_1016_j_compchemeng_2017_06_020
S0098135417302661
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SST
SSZ
T5K
~G-
29F
AAQXK
AAXKI
AAYXX
ABFNM
ABTAH
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AI.
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
FEDTE
FGOYB
HLY
HLZ
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c409t-2f24faadf7f1de5c2fd656ef333085f480391fff57c8600df2a13cc55715098a3
ISSN 0098-1354
IngestDate Thu Sep 26 17:11:21 EDT 2024
Fri Feb 23 02:26:07 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Pareto front representation
Dynamic optimization
Divide and conquer strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-2f24faadf7f1de5c2fd656ef333085f480391fff57c8600df2a13cc55715098a3
OpenAccessLink https://lirias.kuleuven.be/bitstream/123456789/585456/3/Hashem2017.pdf
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_compchemeng_2017_06_020
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2017_06_020
PublicationCentury 2000
PublicationDate 2017-11-02
PublicationDateYYYYMMDD 2017-11-02
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-02
  day: 02
PublicationDecade 2010
PublicationTitle Computers & chemical engineering
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Andersson, Akesson, Diehl (bib0005) 2012
Branke, Deb, Dierolf, Osswald (bib0035) 2004
Logist, Houska, Diehl, Van Impe (bib0090) 2010; 42
Sanchis, Martinez, Blasco, Salcedo (bib0130) 2008; 36
Telen, Logist, Vanderlinden, Van Impe (bib0140) 2012; 78
Senechal (bib0135) 1995
Miettinen (bib0120) 1999
Deb (bib0065) 2001
Deb, Thiele, Laumanns, Zitzler (bib0070) 2002
Antipova, Pozo, Gosalbez, Boer, Cabeza, Jimenez (bib0010) 2015; 74
Barnsley, Hutchinson, Stenflo (bib0015) 2003
Marler, Arora (bib0105) 2004; 26
Wächter, Biegler (bib0150) 2006; 106
Logist, Van Impe (bib0100) 2012; 45
Biegler (bib0025) 2010
Williams, Otto (bib0155) 1960; 79
Hancock, Nysetvold, Mattson (bib0080) 2015; 52
Bhonsale, Vallerio, Telen, Vercammen, Logist, Van Impe (bib0020) 2016
Deb (bib0060) 1999; 7
Dias, Clímaco (bib0075) 2000
Das, Dennis (bib0040) 1997; 14
de Hijas-Liste, Klipp, Balsa-Canto, Banga (bib0050) 2014; 8
Nimmegeers, Telen, Logist, Impe (bib0125) 2016; 10
Messac, Ismail-Yahaya, Mattson (bib0115) 2003; 25
de Motta, Afonso, Lyra (bib0055) 2012
Bortz, Burger, Asprion, Blagov, Böttcher, Nowak, Scheithauer, Welke, Küfer, Hasse (bib0030) 2014; 60
Logist, Vallerio, Houska, Diehl, Van Impe (bib0095) 2012; 37
Vallerio, Vercammen, Van Impe, Logist (bib0145) 2015; 82
Hannemann, Marquardt (bib0085) 2010; 31
Mattson, Mullur, Messac (bib0110) 2004; 36
Das, Dennis (bib0045) 1998; 8
Dias (10.1016/j.compchemeng.2017.06.020_bib0075) 2000
Das (10.1016/j.compchemeng.2017.06.020_bib0040) 1997; 14
Bhonsale (10.1016/j.compchemeng.2017.06.020_bib0020) 2016
de Hijas-Liste (10.1016/j.compchemeng.2017.06.020_bib0050) 2014; 8
Williams (10.1016/j.compchemeng.2017.06.020_bib0155) 1960; 79
Logist (10.1016/j.compchemeng.2017.06.020_bib0095) 2012; 37
Nimmegeers (10.1016/j.compchemeng.2017.06.020_bib0125) 2016; 10
Senechal (10.1016/j.compchemeng.2017.06.020_bib0135) 1995
Barnsley (10.1016/j.compchemeng.2017.06.020_bib0015) 2003
Deb (10.1016/j.compchemeng.2017.06.020_bib0060) 1999; 7
Logist (10.1016/j.compchemeng.2017.06.020_bib0090) 2010; 42
Wächter (10.1016/j.compchemeng.2017.06.020_bib0150) 2006; 106
Messac (10.1016/j.compchemeng.2017.06.020_bib0115) 2003; 25
Hannemann (10.1016/j.compchemeng.2017.06.020_bib0085) 2010; 31
Deb (10.1016/j.compchemeng.2017.06.020_bib0065) 2001
Vallerio (10.1016/j.compchemeng.2017.06.020_bib0145) 2015; 82
Logist (10.1016/j.compchemeng.2017.06.020_bib0100) 2012; 45
de Motta (10.1016/j.compchemeng.2017.06.020_bib0055) 2012
Bortz (10.1016/j.compchemeng.2017.06.020_bib0030) 2014; 60
Deb (10.1016/j.compchemeng.2017.06.020_bib0070) 2002
Branke (10.1016/j.compchemeng.2017.06.020_bib0035) 2004
Biegler (10.1016/j.compchemeng.2017.06.020_bib0025) 2010
Hancock (10.1016/j.compchemeng.2017.06.020_bib0080) 2015; 52
Andersson (10.1016/j.compchemeng.2017.06.020_bib0005) 2012
Mattson (10.1016/j.compchemeng.2017.06.020_bib0110) 2004; 36
Antipova (10.1016/j.compchemeng.2017.06.020_bib0010) 2015; 74
Telen (10.1016/j.compchemeng.2017.06.020_bib0140) 2012; 78
Miettinen (10.1016/j.compchemeng.2017.06.020_bib0120) 1999
Marler (10.1016/j.compchemeng.2017.06.020_bib0105) 2004; 26
Sanchis (10.1016/j.compchemeng.2017.06.020_bib0130) 2008; 36
Das (10.1016/j.compchemeng.2017.06.020_bib0045) 1998; 8
References_xml – volume: 26
  start-page: 369
  year: 2004
  end-page: 395
  ident: bib0105
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct. Multidiscip. Optim.
  contributor:
    fullname: Arora
– start-page: 1
  year: 2003
  end-page: 17
  ident: bib0015
  article-title: V-variable fractals and superfractals
  contributor:
    fullname: Stenflo
– start-page: 825
  year: 2002
  end-page: 830
  ident: bib0070
  article-title: Scalable multi-objective optimization test problems
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02, vol. 1
  contributor:
    fullname: Zitzler
– volume: 37
  start-page: 191
  year: 2012
  end-page: 199
  ident: bib0095
  article-title: Multi-objective optimal control of chemical processes using ACADO toolkit
  publication-title: Comput. Chem. Eng.
  contributor:
    fullname: Van Impe
– volume: 31
  start-page: 4675
  year: 2010
  end-page: 4695
  ident: bib0085
  article-title: Continuous and discrete composite adjoints for the Hessian of the Lagrangian in shooting algorithms for dynamic optimization
  publication-title: SIAM J. Sci. Comput.
  contributor:
    fullname: Marquardt
– start-page: 1
  year: 2012
  end-page: 21
  ident: bib0055
  article-title: A modified nbi and nc method for the solution of n-multiobjective optimization problems
  publication-title: Struct. Multidiscip. Optim.
  contributor:
    fullname: Lyra
– volume: 74
  start-page: 48
  year: 2015
  end-page: 58
  ident: bib0010
  article-title: On the use of filters to facilitate the post-optimal analysis of the Pareto solutions in multi-objective optimization
  publication-title: Comput. Chem. Eng.
  contributor:
    fullname: Jimenez
– start-page: 1971
  year: 2016
  end-page: 1976
  ident: bib0020
  article-title: Solace: an open source package for nonlinear model predictive control and state estimation for (bio)chemical processes
  publication-title: Proceedings of European Symposium on Computer Aided Process Engineering (ESCAPE)
  contributor:
    fullname: Van Impe
– volume: 45
  start-page: 417
  year: 2012
  end-page: 431
  ident: bib0100
  article-title: Novel insights for multi-objective optimisation in engineering using normal boundary intersection and (enhanced) normalised normal constraint
  publication-title: Struct. Multidiscip. Optim.
  contributor:
    fullname: Van Impe
– volume: 36
  start-page: 721
  year: 2004
  end-page: 740
  ident: bib0110
  article-title: Smart Pareto filter: obtaining a minimal representation of multiobjective design space
  publication-title: Eng. Optim.
  contributor:
    fullname: Messac
– start-page: S
  year: 2010
  end-page: SIAM
  ident: bib0025
  article-title: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
  contributor:
    fullname: Biegler
– volume: 7
  start-page: 205
  year: 1999
  end-page: 230
  ident: bib0060
  article-title: Multi-objective genetic algorithms: Problem difficulties and construction of test problems
  publication-title: Evolut. Comput.
  contributor:
    fullname: Deb
– volume: 36
  start-page: 537
  year: 2008
  end-page: 546
  ident: bib0130
  article-title: A new perspective on multiobjective optimization by enhanced normalized normal constraint method
  publication-title: Struct. Multidiscip. Optim.
  contributor:
    fullname: Salcedo
– year: 2012
  ident: bib0005
  article-title: CasADi – a symbolic package for automatic differentiation and optimal control
  publication-title: Proceedings of the 6th International Conference on Automatic Differentiation
  contributor:
    fullname: Diehl
– year: 1999
  ident: bib0120
  article-title: Nonlinear Multiobjective Optimization
  contributor:
    fullname: Miettinen
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: bib0045
  article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  contributor:
    fullname: Dennis
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  ident: bib0150
  article-title: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming
  publication-title: Math. Program.
  contributor:
    fullname: Biegler
– volume: 60
  start-page: 354
  year: 2014
  end-page: 363
  ident: bib0030
  article-title: Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets
  publication-title: Comput. Chem. Eng.
  contributor:
    fullname: Hasse
– volume: 14
  start-page: 63
  year: 1997
  end-page: 69
  ident: bib0040
  article-title: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems
  publication-title: Struct. Optim.
  contributor:
    fullname: Dennis
– year: 1995
  ident: bib0135
  article-title: Quasicrystals and Geometry
  contributor:
    fullname: Senechal
– start-page: 722
  year: 2004
  end-page: 731
  ident: bib0035
  article-title: Finding knees in multi-objective optimization
  publication-title: Parallel Problem Solving from Nature-PPSN VIII
  contributor:
    fullname: Osswald
– year: 2001
  ident: bib0065
  article-title: Multi-Objective optimization Using Evolutionary Algorithms
  contributor:
    fullname: Deb
– volume: 25
  start-page: 86
  year: 2003
  end-page: 98
  ident: bib0115
  article-title: The normalized normal constraint method for generating the Pareto frontier
  publication-title: Struct. Multidiscip. Optim.
  contributor:
    fullname: Mattson
– start-page: 1070
  year: 2000
  end-page: 1082
  ident: bib0075
  article-title: Additive aggregation with variable interdependent parameters: the vip analysis software
  publication-title: J. Oper. Res. Soc.
  contributor:
    fullname: Clímaco
– volume: 8
  year: 2014
  ident: bib0050
  article-title: Global dynamic optimization approach to predict activation in metabolic pathways
  publication-title: BMC Syst. Biol.
  contributor:
    fullname: Banga
– volume: 42
  start-page: 591
  year: 2010
  end-page: 603
  ident: bib0090
  article-title: Fast pareto set generation for nonlinear optimal control problems with multiple objectives
  publication-title: Struct. Multidiscip. Optim.
  contributor:
    fullname: Van Impe
– volume: 10
  start-page: 1
  year: 2016
  end-page: 20
  ident: bib0125
  article-title: Dynamic optimization of biological networks under parametric uncertainty
  publication-title: BMC Syst. Biol.
  contributor:
    fullname: Impe
– volume: 52
  start-page: 269
  year: 2015
  end-page: 279
  ident: bib0080
  article-title: L-dominance: an approximate-domination mechanism for adaptive resolution of Pareto Frontiers
  publication-title: Struct. Multidiscip. Optim.
  contributor:
    fullname: Mattson
– volume: 78
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib0140
  article-title: Optimal experiment design for dynamic bioprocesses: a multi-objective approach
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Van Impe
– volume: 82
  start-page: 186
  year: 2015
  end-page: 201
  ident: bib0145
  article-title: Interactive NBI and ENNC methods for the progressive exploration of the criteria space in multi-objective optimization and optimal control
  publication-title: Comput. Chem. Eng.
  contributor:
    fullname: Logist
– volume: 79
  start-page: 458
  year: 1960
  end-page: 473
  ident: bib0155
  article-title: A generalized chemical processing model for the investigation of computer control
  publication-title: Trans. Am. Inst. Electr. Eng. I: Commun. Electron.
  contributor:
    fullname: Otto
– volume: 74
  start-page: 48
  year: 2015
  ident: 10.1016/j.compchemeng.2017.06.020_bib0010
  article-title: On the use of filters to facilitate the post-optimal analysis of the Pareto solutions in multi-objective optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.12.012
  contributor:
    fullname: Antipova
– volume: 8
  issue: 1
  year: 2014
  ident: 10.1016/j.compchemeng.2017.06.020_bib0050
  article-title: Global dynamic optimization approach to predict activation in metabolic pathways
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-8-1
  contributor:
    fullname: de Hijas-Liste
– volume: 26
  start-page: 369
  year: 2004
  ident: 10.1016/j.compchemeng.2017.06.020_bib0105
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-003-0368-6
  contributor:
    fullname: Marler
– volume: 8
  start-page: 631
  year: 1998
  ident: 10.1016/j.compchemeng.2017.06.020_bib0045
  article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
  contributor:
    fullname: Das
– volume: 36
  start-page: 721
  issue: 6
  year: 2004
  ident: 10.1016/j.compchemeng.2017.06.020_bib0110
  article-title: Smart Pareto filter: obtaining a minimal representation of multiobjective design space
  publication-title: Eng. Optim.
  doi: 10.1080/0305215042000274942
  contributor:
    fullname: Mattson
– year: 2012
  ident: 10.1016/j.compchemeng.2017.06.020_bib0005
  article-title: CasADi – a symbolic package for automatic differentiation and optimal control
  publication-title: Proceedings of the 6th International Conference on Automatic Differentiation
  contributor:
    fullname: Andersson
– volume: 7
  start-page: 205
  issue: 3
  year: 1999
  ident: 10.1016/j.compchemeng.2017.06.020_bib0060
  article-title: Multi-objective genetic algorithms: Problem difficulties and construction of test problems
  publication-title: Evolut. Comput.
  doi: 10.1162/evco.1999.7.3.205
  contributor:
    fullname: Deb
– year: 1999
  ident: 10.1016/j.compchemeng.2017.06.020_bib0120
  contributor:
    fullname: Miettinen
– volume: 78
  start-page: 82
  year: 2012
  ident: 10.1016/j.compchemeng.2017.06.020_bib0140
  article-title: Optimal experiment design for dynamic bioprocesses: a multi-objective approach
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.05.002
  contributor:
    fullname: Telen
– volume: 79
  start-page: 458
  issue: 5
  year: 1960
  ident: 10.1016/j.compchemeng.2017.06.020_bib0155
  article-title: A generalized chemical processing model for the investigation of computer control
  publication-title: Trans. Am. Inst. Electr. Eng. I: Commun. Electron.
  contributor:
    fullname: Williams
– start-page: 1971
  year: 2016
  ident: 10.1016/j.compchemeng.2017.06.020_bib0020
  article-title: Solace: an open source package for nonlinear model predictive control and state estimation for (bio)chemical processes
  publication-title: Proceedings of European Symposium on Computer Aided Process Engineering (ESCAPE)
  doi: 10.1016/B978-0-444-63428-3.50333-7
  contributor:
    fullname: Bhonsale
– volume: 42
  start-page: 591
  year: 2010
  ident: 10.1016/j.compchemeng.2017.06.020_bib0090
  article-title: Fast pareto set generation for nonlinear optimal control problems with multiple objectives
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0506-x
  contributor:
    fullname: Logist
– year: 2001
  ident: 10.1016/j.compchemeng.2017.06.020_bib0065
  contributor:
    fullname: Deb
– start-page: S
  year: 2010
  ident: 10.1016/j.compchemeng.2017.06.020_bib0025
  contributor:
    fullname: Biegler
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 10.1016/j.compchemeng.2017.06.020_bib0150
  article-title: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
  contributor:
    fullname: Wächter
– start-page: 1
  year: 2012
  ident: 10.1016/j.compchemeng.2017.06.020_bib0055
  article-title: A modified nbi and nc method for the solution of n-multiobjective optimization problems
  publication-title: Struct. Multidiscip. Optim.
  contributor:
    fullname: de Motta
– volume: 10
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.compchemeng.2017.06.020_bib0125
  article-title: Dynamic optimization of biological networks under parametric uncertainty
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-016-0328-6
  contributor:
    fullname: Nimmegeers
– volume: 45
  start-page: 417
  issue: 3
  year: 2012
  ident: 10.1016/j.compchemeng.2017.06.020_bib0100
  article-title: Novel insights for multi-objective optimisation in engineering using normal boundary intersection and (enhanced) normalised normal constraint
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-011-0698-8
  contributor:
    fullname: Logist
– volume: 37
  start-page: 191
  year: 2012
  ident: 10.1016/j.compchemeng.2017.06.020_bib0095
  article-title: Multi-objective optimal control of chemical processes using ACADO toolkit
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2011.11.002
  contributor:
    fullname: Logist
– year: 1995
  ident: 10.1016/j.compchemeng.2017.06.020_bib0135
  contributor:
    fullname: Senechal
– volume: 36
  start-page: 537
  year: 2008
  ident: 10.1016/j.compchemeng.2017.06.020_bib0130
  article-title: A new perspective on multiobjective optimization by enhanced normalized normal constraint method
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-007-0185-4
  contributor:
    fullname: Sanchis
– volume: 82
  start-page: 186
  year: 2015
  ident: 10.1016/j.compchemeng.2017.06.020_bib0145
  article-title: Interactive NBI and ENNC methods for the progressive exploration of the criteria space in multi-objective optimization and optimal control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.07.004
  contributor:
    fullname: Vallerio
– start-page: 722
  year: 2004
  ident: 10.1016/j.compchemeng.2017.06.020_bib0035
  article-title: Finding knees in multi-objective optimization
  contributor:
    fullname: Branke
– start-page: 825
  year: 2002
  ident: 10.1016/j.compchemeng.2017.06.020_bib0070
  article-title: Scalable multi-objective optimization test problems
  contributor:
    fullname: Deb
– volume: 60
  start-page: 354
  year: 2014
  ident: 10.1016/j.compchemeng.2017.06.020_bib0030
  article-title: Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.09.015
  contributor:
    fullname: Bortz
– volume: 52
  start-page: 269
  issue: 2
  year: 2015
  ident: 10.1016/j.compchemeng.2017.06.020_bib0080
  article-title: L-dominance: an approximate-domination mechanism for adaptive resolution of Pareto Frontiers
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1237-9
  contributor:
    fullname: Hancock
– start-page: 1
  year: 2003
  ident: 10.1016/j.compchemeng.2017.06.020_bib0015
  contributor:
    fullname: Barnsley
– volume: 31
  start-page: 4675
  issue: 6
  year: 2010
  ident: 10.1016/j.compchemeng.2017.06.020_bib0085
  article-title: Continuous and discrete composite adjoints for the Hessian of the Lagrangian in shooting algorithms for dynamic optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080714518
  contributor:
    fullname: Hannemann
– volume: 14
  start-page: 63
  year: 1997
  ident: 10.1016/j.compchemeng.2017.06.020_bib0040
  article-title: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems
  publication-title: Struct. Optim.
  doi: 10.1007/BF01197559
  contributor:
    fullname: Das
– start-page: 1070
  year: 2000
  ident: 10.1016/j.compchemeng.2017.06.020_bib0075
  article-title: Additive aggregation with variable interdependent parameters: the vip analysis software
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601012
  contributor:
    fullname: Dias
– volume: 25
  start-page: 86
  year: 2003
  ident: 10.1016/j.compchemeng.2017.06.020_bib0115
  article-title: The normalized normal constraint method for generating the Pareto frontier
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-002-0276-1
  contributor:
    fullname: Messac
SSID ssj0002488
Score 2.3812914
Snippet •A novel algorithm for the representation of the Pareto front is presented.•Large overhead of the smart filter approach is avoided.•Algorithm revolves around a...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 544
SubjectTerms Divide and conquer strategy
Dynamic optimization
Multi-objective optimization
Pareto front representation
Title A novel algorithm for fast representation of a Pareto front with adaptive resolution: Application to multi-objective optimization of a chemical reactor
URI https://dx.doi.org/10.1016/j.compchemeng.2017.06.020
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6TULwgLhqwEBG4q1KlTjO4iBeqlE0EJombUh7ixJfBpWaVGvHX-Hvco7t2OEmQIiXqHLt1M35-p1z3HMh5AWIVVdt1iRpm6uEV4csqYpCJLBpoTLV5Eyho3h8Vp5ciNcLvphMhvz7OPZfJQ1jIGvMnP0LaYebwgC8BpnDFaQO1z-S-3za9Z81xh1f9uD4f1zZQELTbLZTW8BySDbqXGbkKXa57THLpNv6RDfVrG08Ecz1O7Wnh_GfbrRXbSBi0rdLR5jTHtasfE6nz7kcShGAWSpdTeNYE8H3kthY5IWZOhZHjMy4gXctk83CKQOqSkuWYejk02qlL7Vv-HYaxt_bBCdroc_GBxygNPHQNrrDIfMmhjlZJq_A-81dAeqZduQtyjzhuevEEtg9HfNzwflI1ReuavwPWsQdaCwRBWt8BPDtMQiwtJVeWRpVZwhoPMP94HYyYEy0eXbIHgPqA-bdm79dXLwL1gHjQgx1XHHBDfI8xhz-4gN_bjON7KDzO-S2d2Do3CHvLpno7h65NSpreZ98mVOLQRowSAGDFDFIv8Ug7Q1tqMMgtRikiEE6YJBGDL6kIwRSmP4dAukYge6-A66oR-AD8uHN4vzoOPENQBLJ02qbMMO4aRplSpMpXUhmFLgf2uR5Dp6C4QLbGxhjilIKMNyVYU2WS1kUJbg5lWjyh2S36zu9T6jkujQyrYxmmreqqGSrskow3paHXMj0EWHDI67Xrs5LPQRALuuRXGqUS43BoAwWvRqEUXuD1RmiNSDp98sf_9vyJ-Rm_LkckN3t1bV-SnY26vqZB91Xn1TF9w
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+algorithm+for+fast+representation+of+a+Pareto+front+with+adaptive+resolution%3A+Application+to+multi-objective+optimization+of+a+chemical+reactor&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Hashem%2C+I.&rft.au=Telen%2C+D.&rft.au=Nimmegeers%2C+P.&rft.au=Logist%2C+F.&rft.date=2017-11-02&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=106&rft.spage=544&rft.epage=558&rft_id=info:doi/10.1016%2Fj.compchemeng.2017.06.020&rft.externalDocID=S0098135417302661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon