Abrasively Immobilised Multiwalled Carbon Nanotube Agglomerates: A Novel Electrode Material Approach for the Analytical Sensing of pH
We demonstrate for the first time that agglomerates of multiwalled carbon nanotubes (MWCNTs) can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid. Two separate agglomerates were formed by dissolving 9,10‐phenanthraquinone (PAQ) or 1,2‐napthaquinone (NQ) in ac...
Saved in:
Published in: | Chemphyschem Vol. 5; no. 5; pp. 669 - 677 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
17-05-2004
WILEY‐VCH Verlag Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We demonstrate for the first time that agglomerates of multiwalled carbon nanotubes (MWCNTs) can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid. Two separate agglomerates were formed by dissolving 9,10‐phenanthraquinone (PAQ) or 1,2‐napthaquinone (NQ) in acetone together with MWCNTs and adding an excess of aqueous solution to cause precipitation of agglomerates, approximately 10 µ;m in dimension, which consist of bundles of nanotubes running into and throughout the amorphous molecular solid that binds the agglomerate together. The nature of this structure, when immobilised on a substrate electrode and in contact with aqueous electrolyte solutions, gives rise to many three‐phase boundaries, electrolyte|agglomerate|conductor, which is advantageous to the solid‐state analytical electrochemistry of such a material as it imparts a larger electroactive surface area than other modified carbon electrodes.
The two agglomerates each gave a voltammetrically measurable response to changes in pH; when abrasively immobilised on a basal plane pyrolitic graphite electrode a plot of peak potential against pH produced a linear response for both MWCNT–PAQ and MWCNT–NQ agglomerates over the pH range pH 1–12 and over the temperature range 20–70 °C.
Many three‐phase boundaries: The authors demonstrate for the first time that agglomerates of multiwalled carbon nanotubes can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid (see picture). The nature of this structure, when immobilised on a substrate electrode and in contact with aqueous electrolyte solutions, gives rise to many three‐phase boundaries, which imparts a larger electroactive surface area than other modified carbon electrodes. |
---|---|
AbstractList | We demonstrate for the first time that agglomerates of multiwalled carbon nanotubes (MWCNTs) can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid. Two separate agglomerates were formed by dissolving 9,10‐phenanthraquinone (PAQ) or 1,2‐napthaquinone (NQ) in acetone together with MWCNTs and adding an excess of aqueous solution to cause precipitation of agglomerates, approximately 10 µ;m in dimension, which consist of bundles of nanotubes running into and throughout the amorphous molecular solid that binds the agglomerate together. The nature of this structure, when immobilised on a substrate electrode and in contact with aqueous electrolyte solutions, gives rise to many three‐phase boundaries, electrolyte|agglomerate|conductor, which is advantageous to the solid‐state analytical electrochemistry of such a material as it imparts a larger electroactive surface area than other modified carbon electrodes.
The two agglomerates each gave a voltammetrically measurable response to changes in pH; when abrasively immobilised on a basal plane pyrolitic graphite electrode a plot of peak potential against pH produced a linear response for both MWCNT–PAQ and MWCNT–NQ agglomerates over the pH range pH 1–12 and over the temperature range 20–70 °C.
Many three‐phase boundaries: The authors demonstrate for the first time that agglomerates of multiwalled carbon nanotubes can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid (see picture). The nature of this structure, when immobilised on a substrate electrode and in contact with aqueous electrolyte solutions, gives rise to many three‐phase boundaries, which imparts a larger electroactive surface area than other modified carbon electrodes. We demonstrate for the first time that agglomerates of multiwalled carbon nanotubes (MWCNTs) can be formed in which the binder in the agglomerate is itself a redox-active molecular solid. Two separate agglomerates were formed by dissolving 9,10-phenanthraquinone (PAQ) or 1,2-napthaquinone (NQ) in acetone together with MWCNTs and adding an excess of aqueous solution to cause precipitation of agglomerates, approximately 10 microns in dimension, which consist of bundles of nanotubes running into and throughout the amorphous molecular solid that binds the agglomerate together. The nature of this structure, when immobilised on a substrate electrode and in contact with aqueous electrolyte solutions, gives rise to many three-phase boundaries, electrolyte|agglomerate|conductor, which is advantageous to the solid-state analytical electrochemistry of such a material as it imparts a larger electroactive surface area than other modified carbon electrodes. The two agglomerates each gave a voltammetrically measurable response to changes in pH; when abrasively immobilised on a basal plane pyrolitic graphite electrode a plot of peak potential against pH produced a linear response for both MWCNT-PAQ and MWCNT-NQ agglomerates over the pH range pH 1-12 and over the temperature range 20-70 degrees C. We demonstrate for the first time that agglomerates of multiwalled carbon nanotubes (MWCNTs) can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid. Two separate agglomerates were formed by dissolving 9,10‐phenanthraquinone (PAQ) or 1,2‐napthaquinone (NQ) in acetone together with MWCNTs and adding an excess of aqueous solution to cause precipitation of agglomerates, approximately 10 µ;m in dimension, which consist of bundles of nanotubes running into and throughout the amorphous molecular solid that binds the agglomerate together. The nature of this structure, when immobilised on a substrate electrode and in contact with aqueous electrolyte solutions, gives rise to many three‐phase boundaries, electrolyte|agglomerate|conductor, which is advantageous to the solid‐state analytical electrochemistry of such a material as it imparts a larger electroactive surface area than other modified carbon electrodes. The two agglomerates each gave a voltammetrically measurable response to changes in pH; when abrasively immobilised on a basal plane pyrolitic graphite electrode a plot of peak potential against pH produced a linear response for both MWCNT–PAQ and MWCNT–NQ agglomerates over the pH range pH 1–12 and over the temperature range 20–70 ° C. |
Author | Leventis, Henry C. Compton, Richard G. Jiang, Li Lawrence, Nathan S. Wilkins, Shelley J. Jones, Timothy G. J. Streeter, Ian Wildgoose, Gregory G. |
Author_xml | – sequence: 1 givenname: Gregory G. surname: Wildgoose fullname: Wildgoose, Gregory G. organization: Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, U.K., Fax:(+44) 1865-275410 – sequence: 2 givenname: Henry C. surname: Leventis fullname: Leventis, Henry C. organization: Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, U.K., Fax:(+44) 1865-275410 – sequence: 3 givenname: Ian surname: Streeter fullname: Streeter, Ian organization: Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, U.K., Fax:(+44) 1865-275410 – sequence: 4 givenname: Nathan S. surname: Lawrence fullname: Lawrence, Nathan S. organization: Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, U.K., Fax:(+44) 1865-275410 – sequence: 5 givenname: Shelley J. surname: Wilkins fullname: Wilkins, Shelley J. organization: Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, U.K – sequence: 6 givenname: Li surname: Jiang fullname: Jiang, Li organization: Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge, CB3 0EL, U.K – sequence: 7 givenname: Timothy G. J. surname: Jones fullname: Jones, Timothy G. J. organization: Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge, CB3 0EL, U.K – sequence: 8 givenname: Richard G. surname: Compton fullname: Compton, Richard G. email: richard.compton@chem.ox.ac.uk organization: Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, U.K., Fax:(+44) 1865-275410 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15749667$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15179719$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1v1DAQhi1URD_gyhH5wjFb23HimFuISreoXZBaqMTFsrOTXYMTR3aWdn9A_3dd7ar0xmlGmueZsd9jdDD4ARB6T8mMEsJO23HdzhghnBCSk1foiPJcZqLk9GDfc5YXh-g4xt8JqYigb9AhLaiQgsoj9FCboKP9C26LL_reG-tshCW-2rjJ3mnnUt_oYPyAF3rw08YArlcr53sIeoL4Cdd44ZOOzxy0U_BLwFdpEKx2uB7H4HW7xp0PeFonc9BuO9k2za5hiHZYYd_hcf4Wve60i_BuX0_Qjy9nN808u_x2ftHUl1nLiSRZXnQGpCTGML3kUOUFMFNBSQ2ThghtCtkyzqiRHS8qkSdLlAkypAPDWJGfoNlubxt8jAE6NQbb67BVlKinPNVTnuo5zyR82AnjxvSw_IfvA0zAxz2gY_pWF_TQ2viCE1yWpUic3HF31sH2P2dV833evHxEtnNtnOD-2dXhj0qbRaFuF-dKfv15W33-lSuePwJMo6EG |
CitedBy_id | crossref_primary_10_1016_j_bios_2006_06_009 crossref_primary_10_1039_b821027f crossref_primary_10_3390_s22093286 crossref_primary_10_1021_cm071412a crossref_primary_10_1039_b9ay00025a crossref_primary_10_1002_cphc_200400369 crossref_primary_10_1002_cphc_200400403 crossref_primary_10_1016_j_matchemphys_2010_03_048 crossref_primary_10_1016_j_elecom_2008_02_030 crossref_primary_10_1016_j_electacta_2006_10_022 crossref_primary_10_1039_b413177k crossref_primary_10_1142_S1088424608000674 crossref_primary_10_1016_j_jelechem_2008_10_009 crossref_primary_10_1002_elan_200603725 crossref_primary_10_1021_ac051787k crossref_primary_10_1016_j_elecom_2006_04_003 crossref_primary_10_1016_j_elecom_2011_11_019 crossref_primary_10_1016_j_trac_2005_11_008 crossref_primary_10_1016_j_elecom_2005_03_011 crossref_primary_10_1007_s10008_021_05017_6 crossref_primary_10_1002_cphc_200500687 crossref_primary_10_1007_s11581_012_0794_9 crossref_primary_10_1039_D0AN01405B crossref_primary_10_1021_ac051997x crossref_primary_10_1021_la0470535 crossref_primary_10_2116_analsci_21_1383 crossref_primary_10_1002_cphc_200400536 crossref_primary_10_1007_s10008_007_0470_6 crossref_primary_10_1007_s00604_005_0449_x crossref_primary_10_1021_la703330q crossref_primary_10_1016_j_apsusc_2008_01_148 crossref_primary_10_1016_j_snb_2009_06_016 crossref_primary_10_1016_S1452_3981_23_15430_7 crossref_primary_10_1039_b700867h crossref_primary_10_1016_j_jelechem_2006_09_002 crossref_primary_10_1039_b702492d crossref_primary_10_1021_ac0512397 crossref_primary_10_1021_acs_analchem_1c04755 |
Cites_doi | 10.1039/b300336c 10.1016/S1388-2481(02)00451-4 10.1016/j.elecom.2004.01.003 10.1142/p080 10.1126/science.1060928 10.1021/ja026104m 10.1002/(SICI)1521-4095(199908)11:12<1028::AID-ADMA1028>3.0.CO;2-N 10.1002/1439-7641(20010216)2:2<78::AID-CPHC78>3.0.CO;2-7 10.1021/ac010978u 10.1039/cs9942300341 10.1021/ja028951v 10.1021/om00024a063 10.1016/j.elecom.2003.11.010 10.1021/ja010172b 10.1002/1521-3773(20020415)41:8<1353::AID-ANIE1353>3.0.CO;2-I 10.1016/S0039-9140(03)00150-4 10.1002/1521-3757(20020415)114:8<1409::AID-ANGE1409>3.0.CO;2-7 10.1016/S0039-9140(02)00318-1 10.1016/0022-0728(95)04387-X 10.1039/b209711g 10.1016/S0009-2614(01)00490-0 10.1021/ja0272989 10.1039/FT9969203925 10.1002/elan.200290000 10.1016/0302-4598(96)05078-7 10.1088/0957-4484/13/5/303 10.1351/pac198557030531 |
ContentType | Journal Article |
Copyright | Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2004 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2004 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1002/cphc.200400030 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-7641 |
EndPage | 677 |
ExternalDocumentID | 10_1002_cphc_200400030 15179719 15749667 CPHC200400030 ark_67375_WNG_9JVW8BZ3_4 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 53G 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ QRW R.K RNS ROL RWI RX1 SUPJJ UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~S- .GJ 31~ AAJUZ AAPBV ABCVL ABHUG ADDAD AGJLS AI. EBD EMOBN HF~ IQODW SV3 VH1 XFK XSW ZGI CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-c4090-35fbe990bb2ad4e835e2b8e61b29b07ab59c2421b9f45873c407635eb0feb2253 |
IEDL.DBID | 33P |
ISSN | 1439-4235 |
IngestDate | Thu Nov 21 22:09:34 EST 2024 Sat Sep 28 07:42:28 EDT 2024 Sun Oct 22 16:07:51 EDT 2023 Sat Aug 24 01:03:00 EDT 2024 Wed Oct 30 09:52:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Scanning electron microscopy electrochemistry Quinone Carbon nanotubes modified carbon electrodes Electrode material Chemical sensor nanostructures Surface structure Electrodes multiwalled carbon nanotubes sensors Morphology pH Naphthoquinone Modified material |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4090-35fbe990bb2ad4e835e2b8e61b29b07ab59c2421b9f45873c407635eb0feb2253 |
Notes | ArticleID:CPHC200400030 istex:E0DF3F5AA6BCE5FD3F9BE5723773AE29A70A7527 ark:/67375/WNG-9JVW8BZ3-4 |
PMID | 15179719 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1002_cphc_200400030 pubmed_primary_15179719 pascalfrancis_primary_15749667 wiley_primary_10_1002_cphc_200400030_CPHC200400030 istex_primary_ark_67375_WNG_9JVW8BZ3_4 |
PublicationCentury | 2000 |
PublicationDate | May 17, 2004 |
PublicationDateYYYYMMDD | 2004-05-17 |
PublicationDate_xml | – month: 05 year: 2004 text: May 17, 2004 day: 17 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Chemphyschem |
PublicationTitleAlternate | ChemPhysChem |
PublicationYear | 2004 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | C. N. Rao, B. C. Satishkumar, A. Govindaraj, M. Nath, ChemPhysChem 2001, 2, 79. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998. R. P. Deo, J. Wang, Electrochem. Commun. 2004, 6, 284. A. K. Covington, R. G. Bates, R. A. Durst, Pure Appl. Chem. 1985, 57, 531. H. C. Leventis, I. Streeter, G. G. Wildgoose, N. S. Lawrence, L. Jiang, T. G. J. Jones, R. G. Compton, Talanta 2004, in press.. S. Iijima, Nature 1991, 56, 354. M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, R. E. Smalley, Chem. Phys. Lett. 2001, 342, 265. P. J. Britto, K. S. Santhanam, P. M. Ajayan, Bioelectrochem. Bioenerg. 1996, 41, 121. S. J. Shaw, F. Marken, A. M. Bond, J. Electroanal. Chem. 1996, 404, 227. F. Scholz, B. Meyer, Chem. Soc. Rev. 1994, 23, 341. A. M. Bond, R. Colton, F. Marken, J. N. Walter, Organometallics 1994, 13, 5122. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, G. C. Walker, J. Am. Chem. Soc. 2002, 124, 9034. C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, S. V. Santhanam, Adv. Mater. 1999, 11, 1028. M. Musameh, J. Wang, A. Merkoci, Y. Lin, Electrochem. Commun. 2002, 4, 743. R. H. Haughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787. D. D. Perkin, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworth, London, 1965. M. Pandurangappa, N. S. Lawrence, R. G. Compton, Analyst 2002, 127, 1568. S. E. Kooi, U. Schlecht, M. Burghard, K. Kern, Angew. Chem. 2002, 114, 1409 J. Wang, M. Musameh, Y. Lin, J. Am. Chem. Soc. 2003, 125, 2408. B. R. Azamian, J. J. Davis, K. S. Coleman, C. B. Bagshaw, M. L. H. Green, J. Am. Chem. Soc. 2002, 124, 12 664. J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Anal. Chem. 2002, 74, 1993. J. Wang, S. B. Hocevar, B. Ogorevc, Electrochem. Commun. 2004, 6, 176. A. M. Bond, S. Fletcher, F. Marken, S. J. Shaw, P. G. J. Symons, J. Chem. Soc. Faraday Trans. 1996, 92, 3925. A. G. Elie, C. Lei, R. H. Baughman, Nanotechnology 2002, 13, 559. F. Scholz, B. Meyer, Electroanal. Chem. 1998, 20, 1. Q. Zhao, Z. H. Gan, Q. K. Zhuang, Electroanalysis 2002, 11, 1609. Y. Zhao, W. D. Zheng, H. Chen, Q. M. Luo, Talanta 2002, 58, 529. R. J. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc. 2001, 123, 3838. M. Pandurangappa, N. S. Lawrence, L. Jiang, T. G. J. Jones, R. G. Compton, Analyst 2003, 128, 473. A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker, New York, 1985. G. G. Wildgoose, M. Pandurangappa, N. S. Lawrence, L. Jiang, T. G. J. Jones, R. G. Compton, Talanta, 2003, 60, 887. Angew. Chem. Int. Ed. 2002, 41, 1353 2001; 342 2002; 58 2001; 123 2002 2002; 114 41 1991; 56 2002; 74 2002; 297 2002; 13 2002; 11 1998 1994; 23 2004; 6 2002; 4 2004 1996; 92 1998; 20 1996; 404 2003; 128 2002; 124 1965 1996; 41 1999; 11 1985 1994; 13 2002; 127 2001; 2 2003; 60 2003; 125 1985; 57 Leventis H. C. (e_1_2_6_19_2) 2004 e_1_2_6_31_2 e_1_2_6_30_2 Iijima S. (e_1_2_6_1_2) 1991; 56 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_14_3 e_1_2_6_15_2 Bard A. J. (e_1_2_6_32_2) 1985 e_1_2_6_8_2 Scholz F. (e_1_2_6_18_2) 1998; 20 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 Perkin D. D. (e_1_2_6_20_2) 1965 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – volume: 342 start-page: 265 year: 2001 publication-title: Chem. Phys. Lett. – year: 1985 – volume: 13 start-page: 559 year: 2002 publication-title: Nanotechnology – volume: 127 start-page: 1568 year: 2002 publication-title: Analyst – volume: 57 start-page: 531 year: 1985 publication-title: Pure Appl. Chem. – year: 2004 publication-title: Talanta – volume: 297 start-page: 787 year: 2002 publication-title: Science – volume: 128 start-page: 473 year: 2003 publication-title: Analyst – volume: 125 start-page: 2408 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 9034 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 341 year: 1994 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 1 year: 1998 publication-title: Electroanal. Chem. – volume: 13 start-page: 5122 year: 1994 publication-title: Organometallics – volume: 60 start-page: 887 year: 2003 publication-title: Talanta – volume: 6 start-page: 284 year: 2004 publication-title: Electrochem. Commun. – volume: 123 start-page: 3838 year: 2001 publication-title: J. Am. Chem. Soc. – year: 1998 – volume: 404 start-page: 227 year: 1996 publication-title: J. Electroanal. Chem. – volume: 2 start-page: 79 year: 2001 publication-title: ChemPhysChem – volume: 11 start-page: 1609 year: 2002 publication-title: Electroanalysis – volume: 58 start-page: 529 year: 2002 publication-title: Talanta – year: 1965 – volume: 56 start-page: 354 year: 1991 publication-title: Nature – volume: 4 start-page: 743 year: 2002 publication-title: Electrochem. Commun. – volume: 74 start-page: 1993 year: 2002 publication-title: Anal. Chem. – volume: 11 start-page: 1028 year: 1999 publication-title: Adv. Mater. – volume: 6 start-page: 176 year: 2004 publication-title: Electrochem. Commun. – volume: 124 start-page: 12 664 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 114 41 start-page: 1409 1353 year: 2002 2002 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 41 start-page: 121 year: 1996 publication-title: Bioelectrochem. Bioenerg. – volume: 92 start-page: 3925 year: 1996 publication-title: J. Chem. Soc. Faraday Trans. – volume: 20 start-page: 1 year: 1998 ident: e_1_2_6_18_2 publication-title: Electroanal. Chem. contributor: fullname: Scholz F. – ident: e_1_2_6_23_2 doi: 10.1039/b300336c – ident: e_1_2_6_5_2 doi: 10.1016/S1388-2481(02)00451-4 – ident: e_1_2_6_6_2 doi: 10.1016/j.elecom.2004.01.003 – ident: e_1_2_6_22_2 doi: 10.1142/p080 – ident: e_1_2_6_8_2 doi: 10.1126/science.1060928 – ident: e_1_2_6_16_2 doi: 10.1021/ja026104m – ident: e_1_2_6_21_2 doi: 10.1002/(SICI)1521-4095(199908)11:12<1028::AID-ADMA1028>3.0.CO;2-N – year: 2004 ident: e_1_2_6_19_2 publication-title: Talanta contributor: fullname: Leventis H. C. – ident: e_1_2_6_7_2 doi: 10.1002/1439-7641(20010216)2:2<78::AID-CPHC78>3.0.CO;2-7 – ident: e_1_2_6_10_2 doi: 10.1021/ac010978u – ident: e_1_2_6_24_2 doi: 10.1039/cs9942300341 – ident: e_1_2_6_11_2 doi: 10.1021/ja028951v – ident: e_1_2_6_25_2 doi: 10.1021/om00024a063 – ident: e_1_2_6_13_2 doi: 10.1016/j.elecom.2003.11.010 – ident: e_1_2_6_17_2 doi: 10.1021/ja010172b – ident: e_1_2_6_14_3 doi: 10.1002/1521-3773(20020415)41:8<1353::AID-ANIE1353>3.0.CO;2-I – ident: e_1_2_6_29_2 doi: 10.1016/S0039-9140(03)00150-4 – ident: e_1_2_6_14_2 doi: 10.1002/1521-3757(20020415)114:8<1409::AID-ANGE1409>3.0.CO;2-7 – ident: e_1_2_6_12_2 doi: 10.1016/S0039-9140(02)00318-1 – ident: e_1_2_6_26_2 doi: 10.1016/0022-0728(95)04387-X – ident: e_1_2_6_28_2 doi: 10.1039/b209711g – ident: e_1_2_6_15_2 doi: 10.1016/S0009-2614(01)00490-0 – ident: e_1_2_6_3_2 doi: 10.1021/ja0272989 – volume: 56 start-page: 354 year: 1991 ident: e_1_2_6_1_2 publication-title: Nature contributor: fullname: Iijima S. – ident: e_1_2_6_27_2 doi: 10.1039/FT9969203925 – ident: e_1_2_6_2_2 doi: 10.1002/elan.200290000 – ident: e_1_2_6_9_2 doi: 10.1016/0302-4598(96)05078-7 – ident: e_1_2_6_4_2 doi: 10.1088/0957-4484/13/5/303 – volume-title: Standard Potentials in Aqueous Solution year: 1985 ident: e_1_2_6_32_2 contributor: fullname: Bard A. J. – volume-title: Dissociation Constants of Organic Bases in Aqueous Solution year: 1965 ident: e_1_2_6_20_2 contributor: fullname: Perkin D. D. – ident: e_1_2_6_30_2 – ident: e_1_2_6_31_2 doi: 10.1351/pac198557030531 |
SSID | ssj0008071 |
Score | 1.9744602 |
Snippet | We demonstrate for the first time that agglomerates of multiwalled carbon nanotubes (MWCNTs) can be formed in which the binder in the agglomerate is itself a... |
SourceID | crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 669 |
SubjectTerms | Analytical chemistry Chemistry Chemistry, Physical - methods Electrochemistry Electrons Exact sciences and technology General, instrumentation Hydrogen-Ion Concentration Microscopy, Electron, Scanning Models, Molecular modified carbon electrodes multiwalled carbon nanotubes nanostructures Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure Naphthoquinones - chemistry Oxidation-Reduction Phenanthrenes - chemistry sensors Temperature |
Title | Abrasively Immobilised Multiwalled Carbon Nanotube Agglomerates: A Novel Electrode Material Approach for the Analytical Sensing of pH |
URI | https://api.istex.fr/ark:/67375/WNG-9JVW8BZ3-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.200400030 https://www.ncbi.nlm.nih.gov/pubmed/15179719 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKe4ALlJZHoFRzqOgpauJHnfSWplsWJFaVChRxiezYWSSqZLUPAT-g_5uxvZvunpDgGCUTJTPjeXn8DSFHWp9qQaWNbWpljB4qjXPNUSA1kw1PDVW-Djm8lqOv2cXAweT0p_gDPkRfcHMrw9trt8CVnp3cg4bWk-8egpD7sB6NMKYK_gwHu-pNcZaEjIu77U7KxAq1MaEnm-QbXmnHMfiX65JUM2RUEyZcrLmo9TDW-6HLJ___B7vk8TIGhSIozVOyZds98rBcjX7bJ3cFvtb1td_-hveoqK6BdmYN-NO6P930FQOlmuquBbTO3XyhLRTj8W3nKlwYu55BAaMOyWEQpuwYCx_V3Cs7FEsUc8BwGTD8BI-L4kvqcO3a6dsxdA1Mhs_I58vBp3IYL-c1xDVmiWjORaMtejetqTLcYmxnqc7saapprhOptMhrtwOt84aLTDKkcnB4VicN5vdUsOdku-1a-5KAodwwobO8NoozxXLTpEZiaJnUtWCNisjxSl7VJMByVAGAmVaOrVXP1oi89eLsH1PTH66ZTYrqZvSuyj98ucnOv7GKR-RwQ9737xWSY1IoI_IiKMDaHTRnMs0jQr2c__IpVXk1LPurV_9C9Jo8Cq1DIk7lAdmeTxf2DXkwM4tDr_l_AI24Ac0 |
link.rule.ids | 315,782,786,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7R9lAuvB-BUnxAcIqa-LFOuKVhSwrtqlILRVwiO3YWiSpZ7UPAD-j_7tjZTXdPSIhjlEyUzIzn5fE3AG-0HmhBpQ1tbGWIHioOU81RIBWTNY8NVb4OWZzL0bfkw9DB5GSrszAdPkRfcHMrw9trt8BdQfrgFjW0mvzwGITcx_VbsMMHPHGKzdhZb4yTqMu5uNvwpEyscBsjerBJv-GXdhyLf7s-STVDVtXdjIs1J7UeyHpPdHT_P_zDA7i3DENJ1unNQ7hjm0ewm6-mvz2G6wzf61rbr_6QY9RV10M7s4b4A7u_3AAWQ3I11W1D0EC384W2JBuPr1pX5MLw9T3JyKhFcjLsBu0YS07V3Os7yZZA5gQjZoIRKPHQKL6qTs5dR30zJm1NJsUT-HI0vMiLcDmyIawwUUSLLmpt0cFpTZXhFsM7S3ViB7GmqY6k0iKt3Ca0TmsuEsmQyiHiWR3VmOJTwZ7CdtM29jkQQ7lhQidpZRRniqWmjo3E6DKqKsFqFcC7lcDKSYfMUXYYzLR0bC17tgbw1suzf0xNf7p-NinKy9HHMv309TI5_M5KHsD-hsBv3yskx7xQBvCs04C1O2jRZJwGQL2g__IpZX5W5P3Vi38heg27xcXpSXlyPPr8Eu52nUQijOUebM-nC_sKtmZmse-XwQ3eOgX2 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuxJw4f0Ij8UHBKdoEz_WCbeQbenyqCotsIhLZMd2kVglVR8CfgD_m7HTZtsTEhyjxFEyY898Mx5_A_Bc62MtqLSxTa2M0UOlca45KqRm0vHUUBXykKMzOf6SnQw8TU5_ir_jh-gTbn5lBHvtF_jMuKNL0tB69i1QEPIA6_fggCMW90V9jE16W5wlXcjF_X4nZWJD25jQo93xO27pwEv4py-TVAuUlOtaXGz5qG0cGxzR8Ob__8ItuLEGoaToZs1tuGKbO3Ct3PR-uwu_C3ytL2y_-EVOcab6CtqFNSQc1_3h268YUqq5bhuC5rldrrQlxXR60foUF4LXV6Qg4xaHk0HXZsdY8kEtw2wnxZrGnCBeJog_SSBGCTl1cubr6ZspaR2Zje7Bp-HgYzmK1w0b4hrDRLTnwmmL7k1rqgy3CO4s1Zk9TjXNdSKVFnntt6B17rjIJMNRng_P6sRhgE8Fuw_7TdvYh0AM5YYJneW1UZwplhuXGonYMqlrwZyK4OVGX9Ws4-WoOgZmWnmxVr1YI3gR1Nk_pubffTWbFNX5-E2Vv_18nr3-yioeweGOvi_fKyTHqFBG8KCbAFt30J7JNI-ABj3_5VOqcjIq-6tH_zLoGVydnAyr96fjd4_heldGJOJUPoH95Xxln8LewqwOwyL4A6GFBJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abrasively+Immobilised+Multiwalled+Carbon+Nanotube+Agglomerates%3A+A+Novel+Electrode+Material+Approach+for+the+Analytical+Sensing+of+pH&rft.jtitle=Chemphyschem&rft.au=Wildgoose%2C+Gregory+G.&rft.au=Leventis%2C+Henry+C.&rft.au=Streeter%2C+Ian&rft.au=Lawrence%2C+Nathan+S.&rft.date=2004-05-17&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=5&rft.issue=5&rft.spage=669&rft.epage=677&rft_id=info:doi/10.1002%2Fcphc.200400030&rft.externalDBID=10.1002%252Fcphc.200400030&rft.externalDocID=CPHC200400030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |