Two Parallel Queues with Infinite Servers and Join the Shortest Queue Discipline

We study the stationary distribution of a system of two parallel M/M/∞ queues managed by the Join the Shortest Queue load balancing policy; one motivation for characterizing the efficiency of that policy is its potential application to resource allocation issues in cloud computing. For the general s...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic models Vol. 31; no. 4; pp. 636 - 672
Main Authors: Guillemin, F., Olivier, P., Simonian, A., Tanguy, C.
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 02-10-2015
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the stationary distribution of a system of two parallel M/M/∞ queues managed by the Join the Shortest Queue load balancing policy; one motivation for characterizing the efficiency of that policy is its potential application to resource allocation issues in cloud computing. For the general system with distinct service rates, we first show that the tail of each marginal queue length distribution exhibits a much faster decay than that of a Poisson distribution. Second, the determination of the joint stationary distribution is shown to reduce to the resolution of a pair of linear integral equations. In the case when service rates are identical ("symmetric case"), that pair of integral equations simplifies to a single Fredholm integral equation of the first kind whose solution is explicitly given in terms of Legendre polynomials; this enables us to entirely determine the stationary distribution of the system. We provide, in particular, asymptotics for the second moment and the tail of the queue length distribution.
AbstractList We study the stationary distribution of a system of two parallel M/M/∞ queues managed by the Join the Shortest Queue load balancing policy; one motivation for characterizing the efficiency of that policy is its potential application to resource allocation issues in cloud computing. For the general system with distinct service rates, we first show that the tail of each marginal queue length distribution exhibits a much faster decay than that of a Poisson distribution. Second, the determination of the joint stationary distribution is shown to reduce to the resolution of a pair of linear integral equations. In the case when service rates are identical ("symmetric case"), that pair of integral equations simplifies to a single Fredholm integral equation of the first kind whose solution is explicitly given in terms of Legendre polynomials; this enables us to entirely determine the stationary distribution of the system. We provide, in particular, asymptotics for the second moment and the tail of the queue length distribution.
Author Guillemin, F.
Olivier, P.
Simonian, A.
Tanguy, C.
Author_xml – sequence: 1
  givenname: F.
  surname: Guillemin
  fullname: Guillemin, F.
  organization: Orange Labs OLN/CNC
– sequence: 2
  givenname: P.
  surname: Olivier
  fullname: Olivier, P.
  organization: Orange Labs OLN/NMP
– sequence: 3
  givenname: A.
  surname: Simonian
  fullname: Simonian, A.
  email: alain.simonian@orange.com
  organization: Orange Labs OLN/NMP
– sequence: 4
  givenname: C.
  surname: Tanguy
  fullname: Tanguy, C.
  organization: Orange Labs OLN/NMP
BookMark eNp9UE1LAzEQDaJgW_0JQsDz1iSb_bop9atSsGI9h-zuhKZsk5qklv57s2y9OoeZ4fHem-GN0bmxBhC6oWRKSUnuaJayPOXVlBGaRSinnJMzNOrxhDPKz097T7pEY-83JDKLshyh5epg8VI62XXQ4Y897MHjgw5rPDdKGx0Af4L7AeexNC1-s9rgsI7g2roAPgwS_Kh9o3edNnCFLpTsPFyf5gR9PT-tZq_J4v1lPntYJA0nZUhqptIWUsWzQtJUFW1Fq5ypHGKreU3yHFgRq1FVrdKMsBZI1kJZQg0VpW06QbeD787Z7_h0EBu7dyaeFLRgtCoyVhaRlQ2sxlnvHSixc3or3VFQIvrwxF94og9PnMKLuvtBp42ybisP1nWtCPLYWaecNI32Iv3f4hd_6Xdo
CitedBy_id crossref_primary_10_1080_15326349_2016_1269291
crossref_primary_10_1007_s40305_021_00382_5
Cites_doi 10.1007/978-3-662-13052-0
10.1145/1012888.1005729
10.1214/00911790500000710
10.1007/s13174-010-0007-6
10.1142/0653
10.1007/s11134-006-5500-z
10.1007/978-1-4757-3069-2
10.1111/j.1467-9590.2007.00399.x
10.1007/978-1-4614-9593-2
10.1081/STM-200046493
ContentType Journal Article
Copyright Copyright © Taylor & Francis Group, LLC 2015
Copyright © Taylor & Francis Group, LLC
Copyright_xml – notice: Copyright © Taylor & Francis Group, LLC 2015
– notice: Copyright © Taylor & Francis Group, LLC
DBID AAYXX
CITATION
DOI 10.1080/15326349.2015.1061440
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-4214
EndPage 672
ExternalDocumentID 3835663421
10_1080_15326349_2015_1061440
1061440
Genre Original Articles
Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29Q
30N
4.4
5VS
8V8
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBR
EBS
EBU
EJD
EMK
EPL
EST
ESX
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NHB
NY~
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUS
TWF
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
CITATION
K1G
TBQAZ
TDBHL
TUROJ
ID FETCH-LOGICAL-c408t-b2f3de3f457a13f7d91962f6e62fb4b066e27777cf9bf3502de05de88ebe911d3
IEDL.DBID TFW
ISSN 1532-6349
IngestDate Thu Oct 10 21:59:52 EDT 2024
Fri Aug 23 01:07:54 EDT 2024
Tue Jun 13 19:49:42 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b2f3de3f457a13f7d91962f6e62fb4b066e27777cf9bf3502de05de88ebe911d3
PQID 1721975287
PQPubID 216161
PageCount 37
ParticipantIDs crossref_primary_10_1080_15326349_2015_1061440
proquest_journals_1721975287
informaworld_taylorfrancis_310_1080_15326349_2015_1061440
PublicationCentury 2000
PublicationDate 2015-10-02
PublicationDateYYYYMMDD 2015-10-02
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-02
  day: 02
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Stochastic models
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0012
Williams W.E. (cit0013) 1980
Lebedev N.N. (cit0006) 1972
Abramowitz M. (cit0001) 1972
Gradshteyn I.S. (cit0004) 2007
Riordan J. (cit0010) 1979
Mitzenmacher M. (cit0009)
cit0017
cit0007
cit0015
cit0005
cit0016
cit0002
cit0003
Maguluri S.T. (cit0008)
cit0014
References_xml – volume-title: Handbook of Mathematical Functions
  year: 1972
  ident: cit0001
  contributor:
    fullname: Abramowitz M.
– ident: cit0011
  doi: 10.1007/978-3-662-13052-0
– volume-title: Special Functions and Their Applications
  year: 1972
  ident: cit0006
  contributor:
    fullname: Lebedev N.N.
– ident: cit0003
  doi: 10.1145/1012888.1005729
– ident: cit0007
  doi: 10.1214/00911790500000710
– volume-title: Combinatorial Identities
  year: 1979
  ident: cit0010
  contributor:
    fullname: Riordan J.
– start-page: 255
  volume-title: Handbook of Randomized Computing
  ident: cit0009
  contributor:
    fullname: Mitzenmacher M.
– ident: cit0017
  doi: 10.1007/s13174-010-0007-6
– start-page: 702
  ident: cit0008
  publication-title: INFOCOM, 2012 Proceedings IEEE
  contributor:
    fullname: Maguluri S.T.
– ident: cit0012
  doi: 10.1142/0653
– ident: cit0016
  doi: 10.1007/s11134-006-5500-z
– ident: cit0002
  doi: 10.1007/978-1-4757-3069-2
– volume-title: Partial Differential Equations
  year: 1980
  ident: cit0013
  contributor:
    fullname: Williams W.E.
– ident: cit0014
  doi: 10.1111/j.1467-9590.2007.00399.x
– volume-title: Table of Integrals, Series, and Products
  year: 2007
  ident: cit0004
  contributor:
    fullname: Gradshteyn I.S.
– ident: cit0005
  doi: 10.1007/978-1-4614-9593-2
– ident: cit0015
  doi: 10.1081/STM-200046493
SSID ssj0015788
Score 2.0762331
Snippet We study the stationary distribution of a system of two parallel M/M/∞ queues managed by the Join the Shortest Queue load balancing policy; one motivation for...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 636
SubjectTerms Fredholm integral equations
Integral equations
Markov analysis
Markov processes
Network performance evaluation
Orthogonal polynomials
Queuing Theory
Scheduling
Stochastic models
Title Two Parallel Queues with Infinite Servers and Join the Shortest Queue Discipline
URI https://www.tandfonline.com/doi/abs/10.1080/15326349.2015.1061440
https://www.proquest.com/docview/1721975287
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-6p_ngx1ScTsmDr51t0_TjcbgNFZTJJvoWmibBgXSydvjve9e0wyHig_ah0IeEcLm73u9y9wshl0ZqgMnSOKlk2gk4A5vDJE4WhmkE-pBwm7qYRg8v8XCENDmDphcGyyoRQxtLFFH5ajTuVBZNRdwVGKkfsgDbTDzet5gGUbsHwQBo9Gz8vD5HAH2MLWOq7-CQpofnp1k2_k4b3KXffHX1Axrv_cPS98luHX3SgVWXA7Kl8w7ZuV9TtxYd0sbw07I3H5LJ7GNBJ-kSL1x5o48rDQujmLqlt7mZY7hK0dlACElhSfRuMc8pzEWnr1jDW5R2CB02rb_6iDyNR7PrG6e-g8HJAjcuHekbpjQzAY9Sj5lIJWCyvgk1vGQgIWDRfgRPZhJpGHd9pV2udByDcoAfVeyYtPJFrk8IzVzf8MSEXqgUoDqZMo8bEEio8AjdC7uk38hevFuqDeHVDKaN3ATKTdRy65Lk6w6JsspxGHshiWC_jO012ylqqy0EwuEk4gAiT_8w9Rlp42dV8ef3SKtcrvQ52S7U6qJSzk-5Ct53
link.rule.ids 315,783,787,1456,1510,27936,27937,58025,59738,60527
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gHIADjwFiMCAHrh1r0_RxRGzTBts0tCK4Re2SiEmoQ-sm_j52005MCHGAHnqpEkWO7fpz7C-EXOtEAUxOtBUnTFkuZ2BzmMSZeF7sgz6E3KQuxv7wJWi1kSZn1QuDZZWIobUhish9NRo3JqPLkrgbsFLHYy72mdi8YUANwPYtCI4ZlnVFnefVSQJoZGA4Ux0Lx5RdPD9Ns_Z_WmMv_eat819QZ_8_Fn9A9ooAlN4ajTkkGyqtkt3Bir01q5IdjEANgfMRGUUfMzqK53jnyht9XCpYGcXsLe2leooRK0V_A1EkhTXR-9k0pTAXHb9iGW-2MENoq-z-VcfkqdOO7rpWcQ2DNXGbwcJKHM2kYtrlfmwz7csQrNbRnoJX4iYQsyjHh2eiw0Qz3nSkanKpggD0A1ypZCekks5SdUropOloHmrP9qQEYJfEzOYaBOJJPEW3vRpplMIX74ZtQ9gFiWkpN4FyE4XcaiT8ukVikac5tLmTRLBfxtbL_RSF4WYCEXHoc8CRZ3-Y-opsd6NBX_R7w4dzsoOf8gJAp04qi_lSXZDNTC4vc039BOWk4p4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gSGgceAwQgwE5cO1Ym6aP48Q2MR7T0IbgFrVLIiahblo78fexm3ZiQogD9NBL5TRybMd27C-EXOlYQZgcayuKmbJczkDnMIkz8bzIB3kIuUldjPzBa9DpIkxOu-yFwbJKjKG1AYrIbTUq91zqsiLuGpTU8ZiLbSY2b5qYBqL2LQ5_waq-ce9ldZAAAhkYyFTHQpqyieenYda2pzXw0m_GOt-Benv_MPd9slu4n7Rt5OWAbKikRnYeV9itaY1U0f808M2HZDj-mNFhtMAbV97p01LBxCjmbmk_0VP0VylaG_AhKUyJ3s2mCYWx6OgNi3jTzJDQTtn7q47Ic687vrm1iksYrInbCjIrdjSTimmX-5HNtC9D0FlHewpesRuDx6IcH56JDmPNeMuRqsWlCgKQDjCkkh2TSjJL1Amhk5ajeag925MSwro4YjbXwBBP4hm67dVJs-S9mBusDWEXEKYl3wTyTRR8q5Pw6wqJLE9yaHMjiWC_0DbK5RSF2qYC4-HQ5xBFnv5h6EuyPez0xEN_cH9Gqvglr_5zGqSSLZbqnGymcnmRy-knIvLhQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Parallel+Queues+with+Infinite+Servers+and+Join+the+Shortest+Queue+Discipline&rft.jtitle=Stochastic+models&rft.au=Guillemin%2C+F.&rft.au=Olivier%2C+P.&rft.au=Simonian%2C+A.&rft.au=Tanguy%2C+C.&rft.date=2015-10-02&rft.pub=Taylor+%26+Francis&rft.issn=1532-6349&rft.eissn=1532-4214&rft.volume=31&rft.issue=4&rft.spage=636&rft.epage=672&rft_id=info:doi/10.1080%2F15326349.2015.1061440&rft.externalDocID=1061440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-6349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-6349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-6349&client=summon