Two Parallel Queues with Infinite Servers and Join the Shortest Queue Discipline
We study the stationary distribution of a system of two parallel M/M/∞ queues managed by the Join the Shortest Queue load balancing policy; one motivation for characterizing the efficiency of that policy is its potential application to resource allocation issues in cloud computing. For the general s...
Saved in:
Published in: | Stochastic models Vol. 31; no. 4; pp. 636 - 672 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
Taylor & Francis
02-10-2015
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We study the stationary distribution of a system of two parallel M/M/∞ queues managed by the Join the Shortest Queue load balancing policy; one motivation for characterizing the efficiency of that policy is its potential application to resource allocation issues in cloud computing. For the general system with distinct service rates, we first show that the tail of each marginal queue length distribution exhibits a much faster decay than that of a Poisson distribution. Second, the determination of the joint stationary distribution is shown to reduce to the resolution of a pair of linear integral equations. In the case when service rates are identical ("symmetric case"), that pair of integral equations simplifies to a single Fredholm integral equation of the first kind whose solution is explicitly given in terms of Legendre polynomials; this enables us to entirely determine the stationary distribution of the system. We provide, in particular, asymptotics for the second moment and the tail of the queue length distribution. |
---|---|
AbstractList | We study the stationary distribution of a system of two parallel M/M/∞ queues managed by the Join the Shortest Queue load balancing policy; one motivation for characterizing the efficiency of that policy is its potential application to resource allocation issues in cloud computing. For the general system with distinct service rates, we first show that the tail of each marginal queue length distribution exhibits a much faster decay than that of a Poisson distribution. Second, the determination of the joint stationary distribution is shown to reduce to the resolution of a pair of linear integral equations. In the case when service rates are identical ("symmetric case"), that pair of integral equations simplifies to a single Fredholm integral equation of the first kind whose solution is explicitly given in terms of Legendre polynomials; this enables us to entirely determine the stationary distribution of the system. We provide, in particular, asymptotics for the second moment and the tail of the queue length distribution. |
Author | Guillemin, F. Olivier, P. Simonian, A. Tanguy, C. |
Author_xml | – sequence: 1 givenname: F. surname: Guillemin fullname: Guillemin, F. organization: Orange Labs OLN/CNC – sequence: 2 givenname: P. surname: Olivier fullname: Olivier, P. organization: Orange Labs OLN/NMP – sequence: 3 givenname: A. surname: Simonian fullname: Simonian, A. email: alain.simonian@orange.com organization: Orange Labs OLN/NMP – sequence: 4 givenname: C. surname: Tanguy fullname: Tanguy, C. organization: Orange Labs OLN/NMP |
BookMark | eNp9UE1LAzEQDaJgW_0JQsDz1iSb_bop9atSsGI9h-zuhKZsk5qklv57s2y9OoeZ4fHem-GN0bmxBhC6oWRKSUnuaJayPOXVlBGaRSinnJMzNOrxhDPKz097T7pEY-83JDKLshyh5epg8VI62XXQ4Y897MHjgw5rPDdKGx0Af4L7AeexNC1-s9rgsI7g2roAPgwS_Kh9o3edNnCFLpTsPFyf5gR9PT-tZq_J4v1lPntYJA0nZUhqptIWUsWzQtJUFW1Fq5ypHGKreU3yHFgRq1FVrdKMsBZI1kJZQg0VpW06QbeD787Z7_h0EBu7dyaeFLRgtCoyVhaRlQ2sxlnvHSixc3or3VFQIvrwxF94og9PnMKLuvtBp42ybisP1nWtCPLYWaecNI32Iv3f4hd_6Xdo |
CitedBy_id | crossref_primary_10_1080_15326349_2016_1269291 crossref_primary_10_1007_s40305_021_00382_5 |
Cites_doi | 10.1007/978-3-662-13052-0 10.1145/1012888.1005729 10.1214/00911790500000710 10.1007/s13174-010-0007-6 10.1142/0653 10.1007/s11134-006-5500-z 10.1007/978-1-4757-3069-2 10.1111/j.1467-9590.2007.00399.x 10.1007/978-1-4614-9593-2 10.1081/STM-200046493 |
ContentType | Journal Article |
Copyright | Copyright © Taylor & Francis Group, LLC 2015 Copyright © Taylor & Francis Group, LLC |
Copyright_xml | – notice: Copyright © Taylor & Francis Group, LLC 2015 – notice: Copyright © Taylor & Francis Group, LLC |
DBID | AAYXX CITATION |
DOI | 10.1080/15326349.2015.1061440 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1532-4214 |
EndPage | 672 |
ExternalDocumentID | 3835663421 10_1080_15326349_2015_1061440 1061440 |
Genre | Original Articles Feature |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 5VS 8V8 AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBR EBS EBU EJD EMK EPL EST ESX E~A E~B FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NHB NY~ O9- RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TH9 TN5 TTHFI TUS TWF UT5 UU3 V1K ZGOLN ~S~ AAYXX ABJNI ABPAQ ABXYU AHDZW CITATION K1G TBQAZ TDBHL TUROJ |
ID | FETCH-LOGICAL-c408t-b2f3de3f457a13f7d91962f6e62fb4b066e27777cf9bf3502de05de88ebe911d3 |
IEDL.DBID | TFW |
ISSN | 1532-6349 |
IngestDate | Thu Oct 10 21:59:52 EDT 2024 Fri Aug 23 01:07:54 EDT 2024 Tue Jun 13 19:49:42 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-b2f3de3f457a13f7d91962f6e62fb4b066e27777cf9bf3502de05de88ebe911d3 |
PQID | 1721975287 |
PQPubID | 216161 |
PageCount | 37 |
ParticipantIDs | crossref_primary_10_1080_15326349_2015_1061440 proquest_journals_1721975287 informaworld_taylorfrancis_310_1080_15326349_2015_1061440 |
PublicationCentury | 2000 |
PublicationDate | 2015-10-02 |
PublicationDateYYYYMMDD | 2015-10-02 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Stochastic models |
PublicationYear | 2015 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0011 cit0012 Williams W.E. (cit0013) 1980 Lebedev N.N. (cit0006) 1972 Abramowitz M. (cit0001) 1972 Gradshteyn I.S. (cit0004) 2007 Riordan J. (cit0010) 1979 Mitzenmacher M. (cit0009) cit0017 cit0007 cit0015 cit0005 cit0016 cit0002 cit0003 Maguluri S.T. (cit0008) cit0014 |
References_xml | – volume-title: Handbook of Mathematical Functions year: 1972 ident: cit0001 contributor: fullname: Abramowitz M. – ident: cit0011 doi: 10.1007/978-3-662-13052-0 – volume-title: Special Functions and Their Applications year: 1972 ident: cit0006 contributor: fullname: Lebedev N.N. – ident: cit0003 doi: 10.1145/1012888.1005729 – ident: cit0007 doi: 10.1214/00911790500000710 – volume-title: Combinatorial Identities year: 1979 ident: cit0010 contributor: fullname: Riordan J. – start-page: 255 volume-title: Handbook of Randomized Computing ident: cit0009 contributor: fullname: Mitzenmacher M. – ident: cit0017 doi: 10.1007/s13174-010-0007-6 – start-page: 702 ident: cit0008 publication-title: INFOCOM, 2012 Proceedings IEEE contributor: fullname: Maguluri S.T. – ident: cit0012 doi: 10.1142/0653 – ident: cit0016 doi: 10.1007/s11134-006-5500-z – ident: cit0002 doi: 10.1007/978-1-4757-3069-2 – volume-title: Partial Differential Equations year: 1980 ident: cit0013 contributor: fullname: Williams W.E. – ident: cit0014 doi: 10.1111/j.1467-9590.2007.00399.x – volume-title: Table of Integrals, Series, and Products year: 2007 ident: cit0004 contributor: fullname: Gradshteyn I.S. – ident: cit0005 doi: 10.1007/978-1-4614-9593-2 – ident: cit0015 doi: 10.1081/STM-200046493 |
SSID | ssj0015788 |
Score | 2.0762331 |
Snippet | We study the stationary distribution of a system of two parallel M/M/∞ queues managed by the Join the Shortest Queue load balancing policy; one motivation for... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 636 |
SubjectTerms | Fredholm integral equations Integral equations Markov analysis Markov processes Network performance evaluation Orthogonal polynomials Queuing Theory Scheduling Stochastic models |
Title | Two Parallel Queues with Infinite Servers and Join the Shortest Queue Discipline |
URI | https://www.tandfonline.com/doi/abs/10.1080/15326349.2015.1061440 https://www.proquest.com/docview/1721975287 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-6p_ngx1ScTsmDr51t0_TjcbgNFZTJJvoWmibBgXSydvjve9e0wyHig_ah0IeEcLm73u9y9wshl0ZqgMnSOKlk2gk4A5vDJE4WhmkE-pBwm7qYRg8v8XCENDmDphcGyyoRQxtLFFH5ajTuVBZNRdwVGKkfsgDbTDzet5gGUbsHwQBo9Gz8vD5HAH2MLWOq7-CQpofnp1k2_k4b3KXffHX1Axrv_cPS98luHX3SgVWXA7Kl8w7ZuV9TtxYd0sbw07I3H5LJ7GNBJ-kSL1x5o48rDQujmLqlt7mZY7hK0dlACElhSfRuMc8pzEWnr1jDW5R2CB02rb_6iDyNR7PrG6e-g8HJAjcuHekbpjQzAY9Sj5lIJWCyvgk1vGQgIWDRfgRPZhJpGHd9pV2udByDcoAfVeyYtPJFrk8IzVzf8MSEXqgUoDqZMo8bEEio8AjdC7uk38hevFuqDeHVDKaN3ATKTdRy65Lk6w6JsspxGHshiWC_jO012ylqqy0EwuEk4gAiT_8w9Rlp42dV8ef3SKtcrvQ52S7U6qJSzk-5Ct53 |
link.rule.ids | 315,783,787,1456,1510,27936,27937,58025,59738,60527 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gHIADjwFiMCAHrh1r0_RxRGzTBts0tCK4Re2SiEmoQ-sm_j52005MCHGAHnqpEkWO7fpz7C-EXOtEAUxOtBUnTFkuZ2BzmMSZeF7sgz6E3KQuxv7wJWi1kSZn1QuDZZWIobUhish9NRo3JqPLkrgbsFLHYy72mdi8YUANwPYtCI4ZlnVFnefVSQJoZGA4Ux0Lx5RdPD9Ns_Z_WmMv_eat819QZ_8_Fn9A9ooAlN4ajTkkGyqtkt3Bir01q5IdjEANgfMRGUUfMzqK53jnyht9XCpYGcXsLe2leooRK0V_A1EkhTXR-9k0pTAXHb9iGW-2MENoq-z-VcfkqdOO7rpWcQ2DNXGbwcJKHM2kYtrlfmwz7csQrNbRnoJX4iYQsyjHh2eiw0Qz3nSkanKpggD0A1ypZCekks5SdUropOloHmrP9qQEYJfEzOYaBOJJPEW3vRpplMIX74ZtQ9gFiWkpN4FyE4XcaiT8ukVikac5tLmTRLBfxtbL_RSF4WYCEXHoc8CRZ3-Y-opsd6NBX_R7w4dzsoOf8gJAp04qi_lSXZDNTC4vc039BOWk4p4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gSGgceAwQgwE5cO1Ym6aP48Q2MR7T0IbgFrVLIiahblo78fexm3ZiQogD9NBL5TRybMd27C-EXOlYQZgcayuKmbJczkDnMIkz8bzIB3kIuUldjPzBa9DpIkxOu-yFwbJKjKG1AYrIbTUq91zqsiLuGpTU8ZiLbSY2b5qYBqL2LQ5_waq-ce9ldZAAAhkYyFTHQpqyieenYda2pzXw0m_GOt-Benv_MPd9slu4n7Rt5OWAbKikRnYeV9itaY1U0f808M2HZDj-mNFhtMAbV97p01LBxCjmbmk_0VP0VylaG_AhKUyJ3s2mCYWx6OgNi3jTzJDQTtn7q47Ic687vrm1iksYrInbCjIrdjSTimmX-5HNtC9D0FlHewpesRuDx6IcH56JDmPNeMuRqsWlCgKQDjCkkh2TSjJL1Amhk5ajeag925MSwro4YjbXwBBP4hm67dVJs-S9mBusDWEXEKYl3wTyTRR8q5Pw6wqJLE9yaHMjiWC_0DbK5RSF2qYC4-HQ5xBFnv5h6EuyPez0xEN_cH9Gqvglr_5zGqSSLZbqnGymcnmRy-knIvLhQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Parallel+Queues+with+Infinite+Servers+and+Join+the+Shortest+Queue+Discipline&rft.jtitle=Stochastic+models&rft.au=Guillemin%2C+F.&rft.au=Olivier%2C+P.&rft.au=Simonian%2C+A.&rft.au=Tanguy%2C+C.&rft.date=2015-10-02&rft.pub=Taylor+%26+Francis&rft.issn=1532-6349&rft.eissn=1532-4214&rft.volume=31&rft.issue=4&rft.spage=636&rft.epage=672&rft_id=info:doi/10.1080%2F15326349.2015.1061440&rft.externalDocID=1061440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-6349&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-6349&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-6349&client=summon |