Multi-scale Attention and Structural Relation Graph for Local Feature Matching
Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be ignored. Local features are often not enough to disambiguate similar regions without global features. Computing relevant features between images...
Saved in:
Published in: | IEEE access Vol. 10; p. 1 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be ignored. Local features are often not enough to disambiguate similar regions without global features. Computing relevant features between images require structural relationship and the importance of local features. For that, We propose novel multi-scale attention and structural relation graph (MASRG) for local feature matching. The MASRG adopts an overall architecture that first builds coarse-level matches on a coarse feature map and then refines fine matches on a fine-level feature map. We propose a structural relation graph module and a multi-scale attention module. We introduce global context information into the overall architecture. Using global information to separately assist in learning the structural information between local descriptors, the features of different receptive fields, and the importance of modeling single local information, a limited number of possible matches can be obtained with high confidence. Finally, the matching relationship is predicted. In this way, the network significantly improves the matching reliability and localization accuracy. Our proposed method has 5.6%, 6.7%, and 6.3% performance increases over the baseline method(See I) under different conditions in the HPatches. Extensive experiments on three large-scale datasets (i.e., HPatches, InLoc, and Aachen Day-Night v1.1) demonstrate that our proposed MASRG method is superior to state-of-the-art local feature matching approaches. |
---|---|
AbstractList | Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be ignored. Local features are often not enough to disambiguate similar regions without global features. Computing relevant features between images requires structural relationship and the importance of local features. For that, We propose novel multi-scale attention and structural relation graph (MASRG) for local feature matching. The MASRG adopts an overall architecture that first builds coarse-level matches on a coarse feature map and then refines fine matches on a fine-level feature map. We propose a structural relation graph module and a multi-scale attention module. We introduce global context information into the overall architecture. Using global information to separately assist in learning the structural information between local descriptors, the features of different receptive fields, and the importance of modeling single local information, a limited number of possible matches can be obtained with high confidence. Finally, the matching relationship is predicted. In this way, the network significantly improves the matching reliability and localization accuracy. Our proposed method has 5.6%, 6.7%, and 6.3% performance increases over the baseline method(See I) under different conditions in the HPatches. Extensive experiments on three large-scale datasets (i.e., HPatches, InLoc, and Aachen Day-Night v1.1) demonstrate that our proposed MASRG method is superior to state-of-the-art local feature matching approaches. Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be ignored. Local features are often not enough to disambiguate similar regions without global features. Computing relevant features between images require structural relationship and the importance of local features. For that, We propose novel multi-scale attention and structural relation graph (MASRG) for local feature matching. The MASRG adopts an overall architecture that first builds coarse-level matches on a coarse feature map and then refines fine matches on a fine-level feature map. We propose a structural relation graph module and a multi-scale attention module. We introduce global context information into the overall architecture. Using global information to separately assist in learning the structural information between local descriptors, the features of different receptive fields, and the importance of modeling single local information, a limited number of possible matches can be obtained with high confidence. Finally, the matching relationship is predicted. In this way, the network significantly improves the matching reliability and localization accuracy. Our proposed method has 5.6%, 6.7%, and 6.3% performance increases over the baseline method(See I) under different conditions in the HPatches. Extensive experiments on three large-scale datasets (i.e., HPatches, InLoc, and Aachen Day-Night v1.1) demonstrate that our proposed MASRG method is superior to state-of-the-art local feature matching approaches. |
Author | Nan, Xiaohu Ding, Lei |
Author_xml | – sequence: 1 givenname: Xiaohu orcidid: 0000-0003-4201-2854 surname: Nan fullname: Nan, Xiaohu organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China – sequence: 2 givenname: Lei surname: Ding fullname: Ding, Lei organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China |
BookMark | eNpNkd1LwzAUxYNM8Gt_wV4KPnfmq0n6OIbOwVRw-hzS9EY7ajPT9MH_3mwd4n3J5fA75wbOFZp0vgOEZgTPCcHl3WK5vN9u5xRTOmeUFESoM3RJiShzVjAx-bdfoGnf73AalaRCXqLnp6GNTd5b00K2iBG62PguM12dbWMYbByCabNXaM1RXwWz_8ycD9nGJ0v2ACYRkD2ZaD-b7uMGnTvT9jA9vdfo_eH-bfmYb15W6-Vik1uOVcyVrS1WTFhHVF1bU1W4soJaibkkpRUKLC4JKwvKMSQMF1RhYksqnOAAmF2j9Zhbe7PT-9B8mfCjvWn0UfDhQ5sQG9uC5kZSEI5xUxkOmCruQDolHGV1BZynrNsxax_89wB91Ds_hC59X1NJVSGxLGSi2EjZ4Ps-gPu7SrA-9KDHHvShB33qIblmo6sBgD9HWVKSAPYLAL2Etg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3324492 |
Cites_doi | 10.1109/TIT.1967.1053964 10.1109/TPAMI.2020.3016711 10.1109/CVPR.2017.302 10.1109/ICCV.2017.203 10.1109/TITS.2021.3086142 10.1007/s11042-021-11449-z 10.1109/TNNLS.2018.2888757 10.1109/ICRA.2017.7989305 10.1109/TPAMI.2007.1049 10.1109/CVPR.2019.01127 10.1007/11744023_34 10.1109/ICRA48506.2021.9560987 10.1109/cvpr.2017.700 10.1007/978-3-030-58452-8_44 10.1109/TRO.2015.2463671 10.1155/2022/1797471 10.1109/cvpr.2018.00897 10.1109/CVPR42600.2020.01021 10.1145/2001269.2001293 10.1109/JIOT.2021.3119525 10.1109/CVPR.2018.00752 10.1109/ICCV48922.2021.00615 10.1007/978-3-319-46466-4_28 10.1109/CVPR.2019.00828 10.1109/CVPR.2018.00218 10.1109/CVPRW.2018.00060 10.1109/CVPR.2016.445 10.1109/ICCV.2019.00210 10.1371/journal.pone.0256500 10.1145/1141911.1141964 10.1109/CVPR.2007.383198 10.1109/CVPR.2019.00238 10.1109/cvpr.2017.410 10.1109/ICCV.2019.00034 10.1007/978-3-030-58545-7_35 10.1109/ICCV.2011.6126544 10.1109/TGRS.2021.3062498 10.1109/CVPR.2019.00263 10.1109/TPAMI.2018.2846566 10.1109/ICIVC47709.2019.8981065 10.1109/ICME52920.2022.9859883 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3215168 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ESBDL name: IEEE Xplore Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_4a72e6f34aba4e0284fe7f86f23dbe44 10_1109_ACCESS_2022_3215168 9921215 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-8cdc0836cf18ddcabb0bc62c704719c68ec091395240e36c052801c926f64ee03 |
IEDL.DBID | ESBDL |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:17:03 EDT 2024 Thu Oct 10 16:29:28 EDT 2024 Fri Aug 23 03:12:36 EDT 2024 Mon Nov 04 12:05:38 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-8cdc0836cf18ddcabb0bc62c704719c68ec091395240e36c052801c926f64ee03 |
ORCID | 0000-0003-4201-2854 |
OpenAccessLink | https://ieeexplore.ieee.org/document/9921215 |
PQID | 2728570757 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2728570757 ieee_primary_9921215 crossref_primary_10_1109_ACCESS_2022_3215168 doaj_primary_oai_doaj_org_article_4a72e6f34aba4e0284fe7f86f23dbe44 |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref59 ref14 Truong (ref44) 2020 ref58 ref11 Xie (ref63) 2016 Agarap (ref53) 2018 ref17 ref16 Zhou (ref40) 2020 ref19 ref18 Shen (ref33) 2021 ref51 ref50 Truong (ref43) 2019 ref46 ref45 Lin (ref47) 2016 Yu (ref62) 2017 ref42 DeTone (ref39) 2017 Ono (ref28) 2018 ref7 Liu (ref27) 2019 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref32 Bhowmik (ref15) 2019 ref2 ref1 ref38 Revaud (ref10) 2019 He (ref48) 2015 Tyszkiewicz (ref8) 2020 Ba (ref52) 2016 Russakovsky (ref55) 2014 Li (ref23) 2020 Ioffe (ref49) 2015 ref26 ref25 ref20 ref22 ref21 Kipf (ref24) 2016 ref29 Zhang (ref64) 2020 ref60 Ummenhofer (ref41) 2016 ref61 Pennington (ref54) 2017 |
References_xml | – ident: ref58 doi: 10.1109/TIT.1967.1053964 – ident: ref21 doi: 10.1109/TPAMI.2020.3016711 – ident: ref16 doi: 10.1109/CVPR.2017.302 – ident: ref17 doi: 10.1109/ICCV.2017.203 – year: 2019 ident: ref15 article-title: Reinforced feature points: Optimizing feature detection and description for a high-level task publication-title: arXiv:1912.00623 contributor: fullname: Bhowmik – ident: ref20 doi: 10.1109/TITS.2021.3086142 – ident: ref30 doi: 10.1007/s11042-021-11449-z – year: 2020 ident: ref8 article-title: DISK: Learning local features with policy gradient publication-title: arXiv:2006.13566 contributor: fullname: Tyszkiewicz – ident: ref34 doi: 10.1109/TNNLS.2018.2888757 – year: 2016 ident: ref24 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv:1609.02907 contributor: fullname: Kipf – year: 2021 ident: ref33 article-title: GiT: Graph interactive transformer for vehicle re-identification publication-title: arXiv:2107.05475 contributor: fullname: Shen – ident: ref2 doi: 10.1109/ICRA.2017.7989305 – ident: ref6 doi: 10.1109/TPAMI.2007.1049 – year: 2016 ident: ref41 article-title: DeMoN: Depth and motion network for learning monocular stereo publication-title: arXiv:1612.02401 contributor: fullname: Ummenhofer – ident: ref12 doi: 10.1109/CVPR.2019.01127 – ident: ref25 doi: 10.1007/11744023_34 – ident: ref61 doi: 10.1109/ICRA48506.2021.9560987 – ident: ref42 doi: 10.1109/cvpr.2017.700 – ident: ref38 doi: 10.1007/978-3-030-58452-8_44 – ident: ref7 doi: 10.1109/TRO.2015.2463671 – ident: ref32 doi: 10.1155/2022/1797471 – ident: ref1 doi: 10.1109/cvpr.2018.00897 – year: 2019 ident: ref10 article-title: R2D2: Repeatable and reliable detector and descriptor publication-title: arXiv:1906.06195 contributor: fullname: Revaud – year: 2020 ident: ref23 article-title: Dual-resolution correspondence networks publication-title: arXiv:2006.08844 contributor: fullname: Li – ident: ref46 doi: 10.1109/CVPR42600.2020.01021 – ident: ref4 doi: 10.1145/2001269.2001293 – ident: ref13 doi: 10.1109/JIOT.2021.3119525 – ident: ref59 doi: 10.1109/CVPR.2018.00752 – year: 2014 ident: ref55 article-title: ImageNet large scale visual recognition challenge publication-title: arXiv:1409.0575 contributor: fullname: Russakovsky – ident: ref60 doi: 10.1109/ICCV48922.2021.00615 – ident: ref29 doi: 10.1007/978-3-319-46466-4_28 – year: 2019 ident: ref27 article-title: GIFT: Learning transformation-invariant dense visual descriptors via group CNNs publication-title: arXiv:1911.05932 contributor: fullname: Liu – year: 2017 ident: ref54 article-title: Resurrecting the sigmoid in deep learning through dynamical isometry: Theory and practice publication-title: arXiv:1711.04735 contributor: fullname: Pennington – year: 2017 ident: ref39 article-title: Toward geometric deep SLAM publication-title: arXiv:1707.07410 contributor: fullname: DeTone – year: 2020 ident: ref44 article-title: GOCor: Bringing globally optimized correspondence volumes into your neural network publication-title: arXiv:2009.07823 contributor: fullname: Truong – ident: ref9 doi: 10.1109/CVPR.2019.00828 – year: 2016 ident: ref52 article-title: Layer normalization publication-title: arXiv:1607.06450 contributor: fullname: Ba – year: 2020 ident: ref40 article-title: Patch2Pix: Epipolar-guided pixel-level correspondences publication-title: arXiv:2012.01909 contributor: fullname: Zhou – ident: ref56 doi: 10.1109/CVPR.2018.00218 – ident: ref14 doi: 10.1109/CVPRW.2018.00060 – year: 2019 ident: ref43 article-title: GLU-Net: Global-local universal network for dense flow and correspondences publication-title: arXiv:1912.05524 contributor: fullname: Truong – ident: ref5 doi: 10.1109/CVPR.2016.445 – year: 2016 ident: ref47 article-title: Feature pyramid networks for object detection publication-title: arXiv:1612.03144 contributor: fullname: Lin – ident: ref45 doi: 10.1109/ICCV.2019.00210 – year: 2017 ident: ref62 article-title: Deep layer aggregation publication-title: arXiv:1707.06484 contributor: fullname: Yu – year: 2015 ident: ref48 article-title: Deep residual learning for image recognition publication-title: arXiv:1512.03385 contributor: fullname: He – ident: ref31 doi: 10.1371/journal.pone.0256500 – year: 2020 ident: ref64 article-title: ResNeSt: Split-attention networks publication-title: arXiv:2004.08955 contributor: fullname: Zhang – year: 2015 ident: ref49 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv:1502.03167 contributor: fullname: Ioffe – ident: ref3 doi: 10.1145/1141911.1141964 – ident: ref50 doi: 10.1109/CVPR.2007.383198 – ident: ref18 doi: 10.1109/CVPR.2019.00238 – year: 2018 ident: ref53 article-title: Deep learning using rectified linear units (ReLU) publication-title: arXiv:1803.08375 contributor: fullname: Agarap – ident: ref57 doi: 10.1109/cvpr.2017.410 – ident: ref37 doi: 10.1109/ICCV.2019.00034 – ident: ref22 doi: 10.1007/978-3-030-58545-7_35 – year: 2018 ident: ref28 article-title: LF-Net: Learning local features from images publication-title: arXiv:1805.09662 contributor: fullname: Ono – year: 2016 ident: ref63 article-title: Aggregated residual transformations for deep neural networks publication-title: arXiv:1611.05431 contributor: fullname: Xie – ident: ref26 doi: 10.1109/ICCV.2011.6126544 – ident: ref35 doi: 10.1109/TGRS.2021.3062498 – ident: ref36 doi: 10.1109/CVPR.2019.00263 – ident: ref51 doi: 10.1109/TPAMI.2018.2846566 – ident: ref11 doi: 10.1109/ICIVC47709.2019.8981065 – ident: ref19 doi: 10.1109/ICME52920.2022.9859883 |
SSID | ssj0000816957 |
Score | 2.2874959 |
Snippet | Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | attention Computer architecture Convolutional neural networks Deep learning Feature extraction Feature maps graph convolution network Graph neural networks Image matching Matching Modules Network reliability Tensors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYt6AQDAgqiUJAHRkwdx_HHWEoLA3QpSGxW4pzHgGj7__E5aVWJgYU1spL4vcTv2bKfI-Q2r7wSQXomRRaYzLVnFnzGhM9V5pWprE-lExZ6_mEep4jJ2Zb6wj1hLR64FW4kSy1AhVyWVSkhuqEMoINRQeR1BbIlgXK1M5lKY7DJlC10hxnKuB2NJ5PYozghFOI-R59DuOqOFSVif1di5de4nMxmdkyOuiyRjtu3OyF70JySwx12YJ_M09FZtogaAx2vVu22RVo2NV0kJizyNOhmrxt9QjA1jRkqfUH3opj6rb-BvsahGBehzsj7bPo2eWZdcQTmJTcrZnztkSztQ2bq2pdVxVF2r3m0GxtVBp-Qn0W0bIjNeCGiGXkrVFASgOfnpNd8NnBBqAUpyph6KeBV9LTKFLo0OQQQRVlowQfkbqOT-2oZGC7NHbh1rawOZXWdrAPygFpumyLAOl2IYXVdWN1fYR2QPkZiexNrBXIwBmS4iYzrfralE1ogpl8X-vI_Hn1FDrA77TrLkPRizOCa7C_r9U36yH4ALIbTAg priority: 102 providerName: Directory of Open Access Journals |
Title | Multi-scale Attention and Structural Relation Graph for Local Feature Matching |
URI | https://ieeexplore.ieee.org/document/9921215 https://www.proquest.com/docview/2728570757 https://doaj.org/article/4a72e6f34aba4e0284fe7f86f23dbe44 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIZPUBYY-EYUSuWBkVDHceJ47BcwAEtBYrMS5zy2iLb_H5_jVkiwsEVREjl-Y7_ni_0Y4DarbSGctIkUqUtkpmyi0aaJsFmR2qKstQ1bJ8zU60c5mRIm5267FgYRw-QzvKfD8C-_Wdg1pcoGWguCIezCnlA-bu7A3nQ2mjxvcyq0iYTOVYQLpVwPhuOxfw8_DBTiPiN3I6TqDwMKnP64scqv3jhYzMPR_wp3DIcxlGTDVvsT2MH5KRz8AAyewWtYX5ssvRDIhqtVO7eRVfOGzQI4lqAbbDMhjj0SvZr5MJY9k8Uxig_XX8hefH9NmapzeH-Yvo2fkriDQmIlL1dJaRtL-Gnr0rJpbFXXnLSxintP0l4KtIELmntfR38Zz4V3LKtF4QqJyLML6MwXc7wEplGKysdnBfLaG19d5qoqM3Qo8ipXgnfhblOt5rMFZZgwwODatCoYUsFEFbowoqrfXkqU63DC16mJjcbISgksXCarupLoIyHpULmycCJrapSyC2ekw_YhUYIu9DZCmtgil0YoQSx_laurv--6hn0qYJte6UHHq4A3sLts1v0wUO_Hr60f1gh-AwEQ0sk |
link.rule.ids | 315,782,786,798,866,2106,4028,27642,27932,27933,27934,54767,54942 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ27T8MwEMZPUAZg4I0oTw-MBBzHieOxlPIQpUtBYrMS5zwWRNv_H5_jVkiwsEVREjn-Yn_ni_0zwGVW20I4aRMpUpfITNlEo00TYbMitUVZaxu2Thir0Xt5NyBMztVyLQwihslneE2H4V9-82HnlCq70VoQDGEV1vyoRooOrA3Gt3fDZU6FNpHQuYpwoZTrm16_79_DDwOFuM7I3Qip-sOAAqc_bqzyqzcOFnO__b_C7cBWDCVZr9V-F1ZwsgebPwCD-zAK62uTqRcCWW82a-c2smrSsHEAxxJ0gy0mxLEHolczH8ayIVkco_hw_oXsxffXlKk6gLf7wWv_MYk7KCRW8nKWlLaxhJ-2Li2bxlZ1zUkbq7j3JO2lQBu4oLn3dfSX8Vx4x7JaFK6QiDw7hM7kY4JHwDRKUfn4rEBee-Ory1xVZYYORV7lSvAuXC2q1Xy2oAwTBhhcm1YFQyqYqEIXbqnql5cS5Tqc8HVqYqMxslICC5fJqq4k-khIOlSuLJzImhql7MI-6bB8SJSgC6cLIU1skVMjlCCWv8rV8d93XcD64-vL0AyfRs8nsEGFbVMtp9DxiuAZrE6b-Xn85r4BH7rTwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+Attention+and+Structural+Relation+Graph+for+Local+Feature+Matching&rft.jtitle=IEEE+access&rft.au=Nan%2C+Xiaohu&rft.au=Ding%2C+Lei&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3215168&rft.externalDocID=9921215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |