Multi-scale Attention and Structural Relation Graph for Local Feature Matching

Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be ignored. Local features are often not enough to disambiguate similar regions without global features. Computing relevant features between images...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 10; p. 1
Main Authors: Nan, Xiaohu, Ding, Lei
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be ignored. Local features are often not enough to disambiguate similar regions without global features. Computing relevant features between images require structural relationship and the importance of local features. For that, We propose novel multi-scale attention and structural relation graph (MASRG) for local feature matching. The MASRG adopts an overall architecture that first builds coarse-level matches on a coarse feature map and then refines fine matches on a fine-level feature map. We propose a structural relation graph module and a multi-scale attention module. We introduce global context information into the overall architecture. Using global information to separately assist in learning the structural information between local descriptors, the features of different receptive fields, and the importance of modeling single local information, a limited number of possible matches can be obtained with high confidence. Finally, the matching relationship is predicted. In this way, the network significantly improves the matching reliability and localization accuracy. Our proposed method has 5.6%, 6.7%, and 6.3% performance increases over the baseline method(See I) under different conditions in the HPatches. Extensive experiments on three large-scale datasets (i.e., HPatches, InLoc, and Aachen Day-Night v1.1) demonstrate that our proposed MASRG method is superior to state-of-the-art local feature matching approaches.
AbstractList Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be ignored. Local features are often not enough to disambiguate similar regions without global features. Computing relevant features between images requires structural relationship and the importance of local features. For that, We propose novel multi-scale attention and structural relation graph (MASRG) for local feature matching. The MASRG adopts an overall architecture that first builds coarse-level matches on a coarse feature map and then refines fine matches on a fine-level feature map. We propose a structural relation graph module and a multi-scale attention module. We introduce global context information into the overall architecture. Using global information to separately assist in learning the structural information between local descriptors, the features of different receptive fields, and the importance of modeling single local information, a limited number of possible matches can be obtained with high confidence. Finally, the matching relationship is predicted. In this way, the network significantly improves the matching reliability and localization accuracy. Our proposed method has 5.6%, 6.7%, and 6.3% performance increases over the baseline method(See I) under different conditions in the HPatches. Extensive experiments on three large-scale datasets (i.e., HPatches, InLoc, and Aachen Day-Night v1.1) demonstrate that our proposed MASRG method is superior to state-of-the-art local feature matching approaches.
Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be ignored. Local features are often not enough to disambiguate similar regions without global features. Computing relevant features between images require structural relationship and the importance of local features. For that, We propose novel multi-scale attention and structural relation graph (MASRG) for local feature matching. The MASRG adopts an overall architecture that first builds coarse-level matches on a coarse feature map and then refines fine matches on a fine-level feature map. We propose a structural relation graph module and a multi-scale attention module. We introduce global context information into the overall architecture. Using global information to separately assist in learning the structural information between local descriptors, the features of different receptive fields, and the importance of modeling single local information, a limited number of possible matches can be obtained with high confidence. Finally, the matching relationship is predicted. In this way, the network significantly improves the matching reliability and localization accuracy. Our proposed method has 5.6%, 6.7%, and 6.3% performance increases over the baseline method(See I) under different conditions in the HPatches. Extensive experiments on three large-scale datasets (i.e., HPatches, InLoc, and Aachen Day-Night v1.1) demonstrate that our proposed MASRG method is superior to state-of-the-art local feature matching approaches.
Author Nan, Xiaohu
Ding, Lei
Author_xml – sequence: 1
  givenname: Xiaohu
  orcidid: 0000-0003-4201-2854
  surname: Nan
  fullname: Nan, Xiaohu
  organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
– sequence: 2
  givenname: Lei
  surname: Ding
  fullname: Ding, Lei
  organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
BookMark eNpNkd1LwzAUxYNM8Gt_wV4KPnfmq0n6OIbOwVRw-hzS9EY7ajPT9MH_3mwd4n3J5fA75wbOFZp0vgOEZgTPCcHl3WK5vN9u5xRTOmeUFESoM3RJiShzVjAx-bdfoGnf73AalaRCXqLnp6GNTd5b00K2iBG62PguM12dbWMYbByCabNXaM1RXwWz_8ycD9nGJ0v2ACYRkD2ZaD-b7uMGnTvT9jA9vdfo_eH-bfmYb15W6-Vik1uOVcyVrS1WTFhHVF1bU1W4soJaibkkpRUKLC4JKwvKMSQMF1RhYksqnOAAmF2j9Zhbe7PT-9B8mfCjvWn0UfDhQ5sQG9uC5kZSEI5xUxkOmCruQDolHGV1BZynrNsxax_89wB91Ds_hC59X1NJVSGxLGSi2EjZ4Ps-gPu7SrA-9KDHHvShB33qIblmo6sBgD9HWVKSAPYLAL2Etg
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3324492
Cites_doi 10.1109/TIT.1967.1053964
10.1109/TPAMI.2020.3016711
10.1109/CVPR.2017.302
10.1109/ICCV.2017.203
10.1109/TITS.2021.3086142
10.1007/s11042-021-11449-z
10.1109/TNNLS.2018.2888757
10.1109/ICRA.2017.7989305
10.1109/TPAMI.2007.1049
10.1109/CVPR.2019.01127
10.1007/11744023_34
10.1109/ICRA48506.2021.9560987
10.1109/cvpr.2017.700
10.1007/978-3-030-58452-8_44
10.1109/TRO.2015.2463671
10.1155/2022/1797471
10.1109/cvpr.2018.00897
10.1109/CVPR42600.2020.01021
10.1145/2001269.2001293
10.1109/JIOT.2021.3119525
10.1109/CVPR.2018.00752
10.1109/ICCV48922.2021.00615
10.1007/978-3-319-46466-4_28
10.1109/CVPR.2019.00828
10.1109/CVPR.2018.00218
10.1109/CVPRW.2018.00060
10.1109/CVPR.2016.445
10.1109/ICCV.2019.00210
10.1371/journal.pone.0256500
10.1145/1141911.1141964
10.1109/CVPR.2007.383198
10.1109/CVPR.2019.00238
10.1109/cvpr.2017.410
10.1109/ICCV.2019.00034
10.1007/978-3-030-58545-7_35
10.1109/ICCV.2011.6126544
10.1109/TGRS.2021.3062498
10.1109/CVPR.2019.00263
10.1109/TPAMI.2018.2846566
10.1109/ICIVC47709.2019.8981065
10.1109/ICME52920.2022.9859883
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3215168
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_4a72e6f34aba4e0284fe7f86f23dbe44
10_1109_ACCESS_2022_3215168
9921215
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8cdc0836cf18ddcabb0bc62c704719c68ec091395240e36c052801c926f64ee03
IEDL.DBID ESBDL
ISSN 2169-3536
IngestDate Tue Oct 22 15:17:03 EDT 2024
Thu Oct 10 16:29:28 EDT 2024
Fri Aug 23 03:12:36 EDT 2024
Mon Nov 04 12:05:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8cdc0836cf18ddcabb0bc62c704719c68ec091395240e36c052801c926f64ee03
ORCID 0000-0003-4201-2854
OpenAccessLink https://ieeexplore.ieee.org/document/9921215
PQID 2728570757
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2728570757
ieee_primary_9921215
crossref_primary_10_1109_ACCESS_2022_3215168
doaj_primary_oai_doaj_org_article_4a72e6f34aba4e0284fe7f86f23dbe44
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref59
ref14
Truong (ref44) 2020
ref58
ref11
Xie (ref63) 2016
Agarap (ref53) 2018
ref17
ref16
Zhou (ref40) 2020
ref19
ref18
Shen (ref33) 2021
ref51
ref50
Truong (ref43) 2019
ref46
ref45
Lin (ref47) 2016
Yu (ref62) 2017
ref42
DeTone (ref39) 2017
Ono (ref28) 2018
ref7
Liu (ref27) 2019
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref32
Bhowmik (ref15) 2019
ref2
ref1
ref38
Revaud (ref10) 2019
He (ref48) 2015
Tyszkiewicz (ref8) 2020
Ba (ref52) 2016
Russakovsky (ref55) 2014
Li (ref23) 2020
Ioffe (ref49) 2015
ref26
ref25
ref20
ref22
ref21
Kipf (ref24) 2016
ref29
Zhang (ref64) 2020
ref60
Ummenhofer (ref41) 2016
ref61
Pennington (ref54) 2017
References_xml – ident: ref58
  doi: 10.1109/TIT.1967.1053964
– ident: ref21
  doi: 10.1109/TPAMI.2020.3016711
– ident: ref16
  doi: 10.1109/CVPR.2017.302
– ident: ref17
  doi: 10.1109/ICCV.2017.203
– year: 2019
  ident: ref15
  article-title: Reinforced feature points: Optimizing feature detection and description for a high-level task
  publication-title: arXiv:1912.00623
  contributor:
    fullname: Bhowmik
– ident: ref20
  doi: 10.1109/TITS.2021.3086142
– ident: ref30
  doi: 10.1007/s11042-021-11449-z
– year: 2020
  ident: ref8
  article-title: DISK: Learning local features with policy gradient
  publication-title: arXiv:2006.13566
  contributor:
    fullname: Tyszkiewicz
– ident: ref34
  doi: 10.1109/TNNLS.2018.2888757
– year: 2016
  ident: ref24
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv:1609.02907
  contributor:
    fullname: Kipf
– year: 2021
  ident: ref33
  article-title: GiT: Graph interactive transformer for vehicle re-identification
  publication-title: arXiv:2107.05475
  contributor:
    fullname: Shen
– ident: ref2
  doi: 10.1109/ICRA.2017.7989305
– ident: ref6
  doi: 10.1109/TPAMI.2007.1049
– year: 2016
  ident: ref41
  article-title: DeMoN: Depth and motion network for learning monocular stereo
  publication-title: arXiv:1612.02401
  contributor:
    fullname: Ummenhofer
– ident: ref12
  doi: 10.1109/CVPR.2019.01127
– ident: ref25
  doi: 10.1007/11744023_34
– ident: ref61
  doi: 10.1109/ICRA48506.2021.9560987
– ident: ref42
  doi: 10.1109/cvpr.2017.700
– ident: ref38
  doi: 10.1007/978-3-030-58452-8_44
– ident: ref7
  doi: 10.1109/TRO.2015.2463671
– ident: ref32
  doi: 10.1155/2022/1797471
– ident: ref1
  doi: 10.1109/cvpr.2018.00897
– year: 2019
  ident: ref10
  article-title: R2D2: Repeatable and reliable detector and descriptor
  publication-title: arXiv:1906.06195
  contributor:
    fullname: Revaud
– year: 2020
  ident: ref23
  article-title: Dual-resolution correspondence networks
  publication-title: arXiv:2006.08844
  contributor:
    fullname: Li
– ident: ref46
  doi: 10.1109/CVPR42600.2020.01021
– ident: ref4
  doi: 10.1145/2001269.2001293
– ident: ref13
  doi: 10.1109/JIOT.2021.3119525
– ident: ref59
  doi: 10.1109/CVPR.2018.00752
– year: 2014
  ident: ref55
  article-title: ImageNet large scale visual recognition challenge
  publication-title: arXiv:1409.0575
  contributor:
    fullname: Russakovsky
– ident: ref60
  doi: 10.1109/ICCV48922.2021.00615
– ident: ref29
  doi: 10.1007/978-3-319-46466-4_28
– year: 2019
  ident: ref27
  article-title: GIFT: Learning transformation-invariant dense visual descriptors via group CNNs
  publication-title: arXiv:1911.05932
  contributor:
    fullname: Liu
– year: 2017
  ident: ref54
  article-title: Resurrecting the sigmoid in deep learning through dynamical isometry: Theory and practice
  publication-title: arXiv:1711.04735
  contributor:
    fullname: Pennington
– year: 2017
  ident: ref39
  article-title: Toward geometric deep SLAM
  publication-title: arXiv:1707.07410
  contributor:
    fullname: DeTone
– year: 2020
  ident: ref44
  article-title: GOCor: Bringing globally optimized correspondence volumes into your neural network
  publication-title: arXiv:2009.07823
  contributor:
    fullname: Truong
– ident: ref9
  doi: 10.1109/CVPR.2019.00828
– year: 2016
  ident: ref52
  article-title: Layer normalization
  publication-title: arXiv:1607.06450
  contributor:
    fullname: Ba
– year: 2020
  ident: ref40
  article-title: Patch2Pix: Epipolar-guided pixel-level correspondences
  publication-title: arXiv:2012.01909
  contributor:
    fullname: Zhou
– ident: ref56
  doi: 10.1109/CVPR.2018.00218
– ident: ref14
  doi: 10.1109/CVPRW.2018.00060
– year: 2019
  ident: ref43
  article-title: GLU-Net: Global-local universal network for dense flow and correspondences
  publication-title: arXiv:1912.05524
  contributor:
    fullname: Truong
– ident: ref5
  doi: 10.1109/CVPR.2016.445
– year: 2016
  ident: ref47
  article-title: Feature pyramid networks for object detection
  publication-title: arXiv:1612.03144
  contributor:
    fullname: Lin
– ident: ref45
  doi: 10.1109/ICCV.2019.00210
– year: 2017
  ident: ref62
  article-title: Deep layer aggregation
  publication-title: arXiv:1707.06484
  contributor:
    fullname: Yu
– year: 2015
  ident: ref48
  article-title: Deep residual learning for image recognition
  publication-title: arXiv:1512.03385
  contributor:
    fullname: He
– ident: ref31
  doi: 10.1371/journal.pone.0256500
– year: 2020
  ident: ref64
  article-title: ResNeSt: Split-attention networks
  publication-title: arXiv:2004.08955
  contributor:
    fullname: Zhang
– year: 2015
  ident: ref49
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv:1502.03167
  contributor:
    fullname: Ioffe
– ident: ref3
  doi: 10.1145/1141911.1141964
– ident: ref50
  doi: 10.1109/CVPR.2007.383198
– ident: ref18
  doi: 10.1109/CVPR.2019.00238
– year: 2018
  ident: ref53
  article-title: Deep learning using rectified linear units (ReLU)
  publication-title: arXiv:1803.08375
  contributor:
    fullname: Agarap
– ident: ref57
  doi: 10.1109/cvpr.2017.410
– ident: ref37
  doi: 10.1109/ICCV.2019.00034
– ident: ref22
  doi: 10.1007/978-3-030-58545-7_35
– year: 2018
  ident: ref28
  article-title: LF-Net: Learning local features from images
  publication-title: arXiv:1805.09662
  contributor:
    fullname: Ono
– year: 2016
  ident: ref63
  article-title: Aggregated residual transformations for deep neural networks
  publication-title: arXiv:1611.05431
  contributor:
    fullname: Xie
– ident: ref26
  doi: 10.1109/ICCV.2011.6126544
– ident: ref35
  doi: 10.1109/TGRS.2021.3062498
– ident: ref36
  doi: 10.1109/CVPR.2019.00263
– ident: ref51
  doi: 10.1109/TPAMI.2018.2846566
– ident: ref11
  doi: 10.1109/ICIVC47709.2019.8981065
– ident: ref19
  doi: 10.1109/ICME52920.2022.9859883
SSID ssj0000816957
Score 2.2874959
Snippet Building a dense correspondence between two images is a fundamental vision problem. Most existing methods use local features, but global features cannot be...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms attention
Computer architecture
Convolutional neural networks
Deep learning
Feature extraction
Feature maps
graph convolution network
Graph neural networks
Image matching
Matching
Modules
Network reliability
Tensors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYt6AQDAgqiUJAHRkwdx_HHWEoLA3QpSGxW4pzHgGj7__E5aVWJgYU1spL4vcTv2bKfI-Q2r7wSQXomRRaYzLVnFnzGhM9V5pWprE-lExZ6_mEep4jJ2Zb6wj1hLR64FW4kSy1AhVyWVSkhuqEMoINRQeR1BbIlgXK1M5lKY7DJlC10hxnKuB2NJ5PYozghFOI-R59DuOqOFSVif1di5de4nMxmdkyOuiyRjtu3OyF70JySwx12YJ_M09FZtogaAx2vVu22RVo2NV0kJizyNOhmrxt9QjA1jRkqfUH3opj6rb-BvsahGBehzsj7bPo2eWZdcQTmJTcrZnztkSztQ2bq2pdVxVF2r3m0GxtVBp-Qn0W0bIjNeCGiGXkrVFASgOfnpNd8NnBBqAUpyph6KeBV9LTKFLo0OQQQRVlowQfkbqOT-2oZGC7NHbh1rawOZXWdrAPygFpumyLAOl2IYXVdWN1fYR2QPkZiexNrBXIwBmS4iYzrfralE1ogpl8X-vI_Hn1FDrA77TrLkPRizOCa7C_r9U36yH4ALIbTAg
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-scale Attention and Structural Relation Graph for Local Feature Matching
URI https://ieeexplore.ieee.org/document/9921215
https://www.proquest.com/docview/2728570757
https://doaj.org/article/4a72e6f34aba4e0284fe7f86f23dbe44
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIZPUBYY-EYUSuWBkVDHceJ47BcwAEtBYrMS5zy2iLb_H5_jVkiwsEVREjl-Y7_ni_0Y4DarbSGctIkUqUtkpmyi0aaJsFmR2qKstQ1bJ8zU60c5mRIm5267FgYRw-QzvKfD8C-_Wdg1pcoGWguCIezCnlA-bu7A3nQ2mjxvcyq0iYTOVYQLpVwPhuOxfw8_DBTiPiN3I6TqDwMKnP64scqv3jhYzMPR_wp3DIcxlGTDVvsT2MH5KRz8AAyewWtYX5ssvRDIhqtVO7eRVfOGzQI4lqAbbDMhjj0SvZr5MJY9k8Uxig_XX8hefH9NmapzeH-Yvo2fkriDQmIlL1dJaRtL-Gnr0rJpbFXXnLSxintP0l4KtIELmntfR38Zz4V3LKtF4QqJyLML6MwXc7wEplGKysdnBfLaG19d5qoqM3Qo8ipXgnfhblOt5rMFZZgwwODatCoYUsFEFbowoqrfXkqU63DC16mJjcbISgksXCarupLoIyHpULmycCJrapSyC2ekw_YhUYIu9DZCmtgil0YoQSx_laurv--6hn0qYJte6UHHq4A3sLts1v0wUO_Hr60f1gh-AwEQ0sk
link.rule.ids 315,782,786,798,866,2106,4028,27642,27932,27933,27934,54767,54942
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ27T8MwEMZPUAZg4I0oTw-MBBzHieOxlPIQpUtBYrMS5zwWRNv_H5_jVkiwsEVREjn-Yn_ni_0zwGVW20I4aRMpUpfITNlEo00TYbMitUVZaxu2Thir0Xt5NyBMztVyLQwihslneE2H4V9-82HnlCq70VoQDGEV1vyoRooOrA3Gt3fDZU6FNpHQuYpwoZTrm16_79_DDwOFuM7I3Qip-sOAAqc_bqzyqzcOFnO__b_C7cBWDCVZr9V-F1ZwsgebPwCD-zAK62uTqRcCWW82a-c2smrSsHEAxxJ0gy0mxLEHolczH8ayIVkco_hw_oXsxffXlKk6gLf7wWv_MYk7KCRW8nKWlLaxhJ-2Li2bxlZ1zUkbq7j3JO2lQBu4oLn3dfSX8Vx4x7JaFK6QiDw7hM7kY4JHwDRKUfn4rEBee-Ory1xVZYYORV7lSvAuXC2q1Xy2oAwTBhhcm1YFQyqYqEIXbqnql5cS5Tqc8HVqYqMxslICC5fJqq4k-khIOlSuLJzImhql7MI-6bB8SJSgC6cLIU1skVMjlCCWv8rV8d93XcD64-vL0AyfRs8nsEGFbVMtp9DxiuAZrE6b-Xn85r4BH7rTwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+Attention+and+Structural+Relation+Graph+for+Local+Feature+Matching&rft.jtitle=IEEE+access&rft.au=Nan%2C+Xiaohu&rft.au=Ding%2C+Lei&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3215168&rft.externalDocID=9921215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon