Improved Cross-Label Suppression Dictionary Learning for Face Recognition

Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 6; pp. 48716 - 48725
Main Authors: Zhou, Tian, Yang, Sujuan, Wang, Lei, Yao, Jiming, Gui, Guan
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-01-2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.
AbstractList Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.
Author Zhou, Tian
Yao, Jiming
Wang, Lei
Gui, Guan
Yang, Sujuan
Author_xml – sequence: 1
  givenname: Tian
  surname: Zhou
  fullname: Zhou, Tian
  organization: National Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Sujuan
  surname: Yang
  fullname: Yang, Sujuan
  organization: National Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: National Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 4
  givenname: Jiming
  surname: Yao
  fullname: Yao, Jiming
  organization: Global Energy Interconnection Research Institute Co., Ltd., Beijing, China
– sequence: 5
  givenname: Guan
  orcidid: 0000-0003-3888-2881
  surname: Gui
  fullname: Gui, Guan
  email: guiguan@njupt.edu.cn
  organization: National Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNpNUU1rAjEQDcVCrfUXeFnoeW2-N3uUrbaCUKjtOSTZiazoxma10H_f2BXpXGYY3nt5mXePBm1oAaEJwVNCcPk0q6r5ej2lmKgpVVIRxm7QkBJZ5kwwOfg336Fx121xKpVWohii5XJ_iOEb6qyKoevylbGwy9anwyFC1zWhzZ4bd0zdxJ9sBSa2TbvJfIjZwjjI3sGFTducAQ_o1ptdB-NLH6HPxfyjes1Xby_LarbKHcfqmEtX8kIaKxgFC5xZialkxIGXtuROlGCUoMLgUjpmiefK1zwxrVQUQ-HYCC173TqYrT7EZp-s6WAa_bcIcaNNPDZuB5pbCspJ4rGRXFhrTPo1876QzCQfddJ67LXSDb5O0B31Npxim-xryoUocfJKEor1KHc-UQR_fZVgfY5A9xHocwT6EkFiTXpWAwBXhuKCqpKzX3bGg2M
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2982591
crossref_primary_10_1109_ACCESS_2019_2946298
crossref_primary_10_1109_ACCESS_2019_2933527
crossref_primary_10_1088_1742_6596_2037_1_012004
crossref_primary_10_1109_ACCESS_2019_2909060
crossref_primary_10_1109_ACCESS_2019_2910272
crossref_primary_10_1109_ACCESS_2019_2916155
crossref_primary_10_1007_s10489_021_02601_1
crossref_primary_10_1109_ACCESS_2018_2879324
crossref_primary_10_1109_ACCESS_2019_2912035
crossref_primary_10_1109_ACCESS_2019_2912420
crossref_primary_10_1109_ACCESS_2019_2953184
crossref_primary_10_1109_ACCESS_2019_2899940
crossref_primary_10_1109_ACCESS_2019_2903130
crossref_primary_10_1109_ACCESS_2019_2962859
crossref_primary_10_1109_ACCESS_2018_2887308
crossref_primary_10_1007_s12083_019_00726_2
crossref_primary_10_1109_ACCESS_2019_2927499
crossref_primary_10_1109_ACCESS_2019_2909559
Cites_doi 10.1109/TSP.2006.881199
10.1109/LCOMM.2016.2642922
10.1109/CVPR.2008.4587652
10.1109/CVPR.2008.4587408
10.1109/CVPR.2010.5539964
10.1162/jocn.1991.3.1.71
10.1007/s10915-018-0642-9
10.1109/TPAMI.2008.79
10.1109/TIP.2012.2215620
10.1109/TSP.2017.2728502
10.1007/s11263-015-0833-x
10.1109/TSP.2009.2036477
10.1109/34.927464
10.1016/j.patcog.2013.08.004
10.1109/TIP.2017.2703101
10.1145/2911451.2911489
10.1016/j.patcog.2016.01.028
10.1109/ISCAS.1999.779928
10.1109/TNN.2005.845141
10.1016/S0042-6989(97)00169-7
10.1109/ACCESS.2018.2799984
10.1109/TPAMI.2005.92
10.1109/ICCV.2011.6126286
10.1109/TIP.2014.2324290
10.1109/TPAMI.2013.88
10.1109/TIP.2016.2523340
10.1109/CVPR.2010.5540018
10.3390/s17122920
10.1109/TIP.2013.2290593
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2868133
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 48725
ExternalDocumentID oai_doaj_org_article_4b2e8c61f0a645bbaa1693ff763a6c9d
10_1109_ACCESS_2018_2868133
8452894
Genre orig-research
GrantInformation_xml – fundername: Major Projects of the Natural Science Foundation of the Jiangsu Higher Education Institutions
  grantid: 16KJA510004
– fundername: Open Research Fund of National Mobile Communications Research Laboratory, Southeast University
  grantid: 2016D01
– fundername: Jiangsu Specially Appointed Professor Grant
  grantid: RK002STP16001
– fundername: Research Fund of the Nanjing University of Posts and Telecommunications
  grantid: NY218012
– fundername: Nanjing University of Posts and Telecommunications
  funderid: 10.13039/501100005374
– fundername: National Natural Science Foundation of China
  grantid: 61671253
  funderid: 10.13039/501100001809
– fundername: Innovation and Entrepreneurship of Jiangsu High-Level Talent Grant
  grantid: CZ0010617002
– fundername: Open Research Fund of the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing University of Posts and Telecommunications
  grantid: KFJJ20170305
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:14:58 EDT 2024
Thu Oct 10 16:07:12 EDT 2024
Fri Aug 23 01:48:31 EDT 2024
Wed Jun 26 19:28:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3
ORCID 0000-0003-3888-2881
OpenAccessLink https://ieeexplore.ieee.org/document/8452894
PQID 2455909471
PQPubID 4845423
PageCount 10
ParticipantIDs proquest_journals_2455909471
doaj_primary_oai_doaj_org_article_4b2e8c61f0a645bbaa1693ff763a6c9d
crossref_primary_10_1109_ACCESS_2018_2868133
ieee_primary_8452894
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref37
xie (ref26) 2012
ref36
ref14
pan (ref24) 2017
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
liu (ref22) 2015
ref38
ref16
foroughi (ref30) 2017
lee (ref15) 2006; 19
wen (ref5) 0
boureau (ref13) 2010
zhou (ref18) 2012
ref23
ref20
ref42
ref41
mairal (ref27) 2008
ref21
zhang (ref28) 2010
gao (ref19) 2014; 23
ref29
wang (ref6) 2011
ref8
ref7
huang (ref12) 2007
ref9
ref4
ref3
harandi (ref25) 2015
ref40
References_xml – ident: ref1
  doi: 10.1109/TSP.2006.881199
– ident: ref20
  doi: 10.1109/LCOMM.2016.2642922
– ident: ref9
  doi: 10.1109/CVPR.2008.4587652
– ident: ref35
  doi: 10.1109/CVPR.2008.4587408
– ident: ref17
  doi: 10.1109/CVPR.2010.5539964
– year: 0
  ident: ref5
  article-title: Sharp sufficient conditions for stable recovery of block sparse signals by block orthogonal matching pursuit
  publication-title: Appl Comput Harmon Anal
  contributor:
    fullname: wen
– ident: ref42
  doi: 10.1162/jocn.1991.3.1.71
– volume: 19
  start-page: 801
  year: 2006
  ident: ref15
  article-title: Efficient sparse coding algorithms
  publication-title: Proc Conf Neural Inf Process Syst
  contributor:
    fullname: lee
– ident: ref40
  doi: 10.1007/s10915-018-0642-9
– ident: ref7
  doi: 10.1109/TPAMI.2008.79
– ident: ref21
  doi: 10.1109/TIP.2012.2215620
– ident: ref16
  doi: 10.1109/TSP.2017.2728502
– start-page: 1
  year: 2008
  ident: ref27
  article-title: Supervised dictionary learning
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
  contributor:
    fullname: mairal
– ident: ref29
  doi: 10.1007/s11263-015-0833-x
– ident: ref2
  doi: 10.1109/TSP.2009.2036477
– start-page: 609
  year: 2007
  ident: ref12
  article-title: Sparse representation for signal classification
  publication-title: Proc Conf Neural Inf Process Syst
  contributor:
    fullname: huang
– start-page: 2330
  year: 2017
  ident: ref24
  article-title: Kernel low-rank embedding dictionary learning for face recognition
  publication-title: Proc Int Conf Natural Comput Fuzzy Syst Knowl Discovery (ICNC-FSKD)
  contributor:
    fullname: pan
– ident: ref41
  doi: 10.1109/34.927464
– ident: ref32
  doi: 10.1016/j.patcog.2013.08.004
– ident: ref36
  doi: 10.1109/TIP.2017.2703101
– ident: ref38
  doi: 10.1145/2911451.2911489
– ident: ref31
  doi: 10.1016/j.patcog.2016.01.028
– start-page: 3926
  year: 2015
  ident: ref25
  article-title: Riemannian coding and dictionary learning: Kernels to the rescue
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
  contributor:
    fullname: harandi
– start-page: 2559
  year: 2010
  ident: ref13
  article-title: Learning mid-level features for recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
  contributor:
    fullname: boureau
– ident: ref11
  doi: 10.1109/ISCAS.1999.779928
– ident: ref37
  doi: 10.1109/TNN.2005.845141
– ident: ref10
  doi: 10.1016/S0042-6989(97)00169-7
– ident: ref3
  doi: 10.1109/ACCESS.2018.2799984
– start-page: 2691
  year: 2010
  ident: ref28
  article-title: Discriminative K-SVD for dictionary learning in face recognition
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
  contributor:
    fullname: zhang
– ident: ref39
  doi: 10.1109/TPAMI.2005.92
– start-page: 3490
  year: 2012
  ident: ref18
  article-title: Learning inter-related visual dictionary for object recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
  contributor:
    fullname: zhou
– ident: ref33
  doi: 10.1109/ICCV.2011.6126286
– start-page: 495
  year: 2011
  ident: ref6
  article-title: Automatic group sparse coding
  publication-title: Proc AAAI Conf Artif Intell
  contributor:
    fullname: wang
– start-page: 3678
  year: 2015
  ident: ref22
  article-title: Robust kernel dictionary learning using a whole sequence convergent algorithm
  publication-title: Proc Int Conf Artif Intell
  contributor:
    fullname: liu
– start-page: 1
  year: 2012
  ident: ref26
  article-title: Dictionary learning on Riemannian manifolds
  publication-title: In MICCAI Workshop on STMI
  contributor:
    fullname: xie
– ident: ref23
  doi: 10.1109/TIP.2014.2324290
– ident: ref34
  doi: 10.1109/TPAMI.2013.88
– ident: ref14
  doi: 10.1109/TIP.2016.2523340
– ident: ref8
  doi: 10.1109/CVPR.2010.5540018
– ident: ref4
  doi: 10.3390/s17122920
– start-page: 1082
  year: 2017
  ident: ref30
  article-title: Face recognition using multi-modal low-rank dictionary learning
  publication-title: Proc IEEE Int Conf Image Process
  contributor:
    fullname: foroughi
– volume: 23
  start-page: 623
  year: 2014
  ident: ref19
  article-title: Learning category-specific dictionary and shared dictionary for fine-grained image categorization
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2290593
  contributor:
    fullname: gao
SSID ssj0000816957
Score 2.2762341
Snippet Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 48716
SubjectTerms Algorithms
compressive sensing
computational complexity
Computational modeling
Computing costs
Cross-label suppression
Dictionaries
dictionary learning
Face recognition
Machine learning
Representations
Signal reconstruction
Time complexity
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwwIKIhCQR4YCY3jZ8aSUhUJMfCQ2Cw_ERJKUR8D_x47casiBhbWyHJy38V3_qzzdwBcIq9zboXOPOWBoFDFM1UWPPPIllhYh30ebyNPnvjDqxjdRpmcdauvWBPWygO3wA2ILpwwDPlcMUK1VirKh3gf1oViprRN9M3FBplqYrAIoyhPMkMoLwfDqgoWxVoucV0IJhDGP1JRo9ifWqz8istNshnvg720S4TD9usOwJarD8HuhnZgF9y1xwHOwirOnt0r7T5gbNLZVrbWcPTe3FlQsy-YVFTfYNiiwrEyDj6uCoem9RF4Gd8-V5Ms9UXIDMnFIgtmE86UprgILiBYxzZSGBnnmS6JoaVTghZUBXZisEaeCG9jY2nNQrp33OBj0KmntTsB0KtAZwzFpTWU-CLga23I6ZpQI4zDrAeuVhDJz1b-Qja0IS9li6iMiMqEaA_cRBjXQ6N2dfMgeFQmj8q_PNoD3eiE9SSC0MAKSQ_0V06RaZ3NZUECIwoMlaPT_3j1GdiJ5rRHLH3QWcyW7hxsz-3yovm_vgHdk9LH
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Cross-Label Suppression Dictionary Learning for Face Recognition
URI https://ieeexplore.ieee.org/document/8452894
https://www.proquest.com/docview/2455909471
https://doaj.org/article/4b2e8c61f0a645bbaa1693ff763a6c9d
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4RemkPQEsrAmnkA8ds2F3ba_sIeShIEQfSSr1ZflaVqg0K5MC_x_Y6URFcelut9mHPt358szPfAFxWXpfMcl14ygJBoYoVStSs8JUVmFuHfRmzkRcrdveLT2dRJme0z4VxzqXgMzeOh-lfvl2bbXSVXXFCAz8gPegxwbtcrb0_JRaQEJRlYaGqFFfXk0noQ4ze4uOaN7zC-NXikzT6c1GVNzNxWl7mx__XsBM4yttIdN3h_hkOXPsFPv0jLngKt52_wFk0iY0plkq7vyhW8exCX1s0_ZOSGtTmGWWZ1d8o7GHRXBmH7neRRev2K_ycz35MFkUunFAYUvKnojGCsEZpiuuAEcE61pnClXG-0YIYKpzitKYq0BeDdeUJ9zZWntZN2A84ZvA3OGzXrTsD5FXgO4ZiYQ0lvqZaWxsWfU2o4cbhpg-jnUXlQ6ePIROvKIXsAJARAJkB6MNNtPr-0ihunU4Ec8o8ViTRteOmqXypGhLeqFRUjPE-TIUqdM324TRCsH9Itn4fBjsMZR6Ij7ImgTIFCsuq8_fvuoCPsYGdV2UAh0-brfsOvUe7HSZ-PoQPs9XNdDlMn9sLzQHRqg
link.rule.ids 315,782,786,798,866,2108,27644,27935,27936,54770,54945
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T-wwEB7BUjwoOB4gltPFKwkksR3bJeyhRSwUD5DoLJ8ICWURsAX_HjvxrkDQ0EVRDnu--PgmM98A_Cu8zpnlOvOUBYJCFcuUKFnmCyswtw77PGYjj27Y9T3vD6JMzvE8F8Y51wSfuZN42PzLtxMzja6yU05o4AdkEZYCqyG0A0uDm_P-eO5TiUUkBGVJXKjIxelZrxf6ESO4-EnJK15g_GUBanT6U2GVb7Nxs8QM137XuHVYTVtJdNZivwELrv4LK58EBjfhovUZOIt6sTHZWGn3hGIlzzb8tUb9xyaxQb28oyS1-oDCPhYNlXHo_yy6aFJvwd1wcNsbZal4QmZIzt-yygjCKqUpLgNOBOtYawoXxvlKC2KocIrTkqpAYQzWhSfc21h9WldhT-CYwdvQqSe12wHkVeA8hmJhDSW-pFpbGxZ-TajhxuGqC8czi8rnViNDNtwiF7IFQEYAZAKgC-fR6vNLo8B1cyKYU6bxIokuHTdV4XNVkfBGpaJqjPdhOlSha7YLmxGC-UOS9buwP8NQpsH4KksSaFOgsazY_fmuI_gzur0ay_HF9eUeLMfGtl6Wfei8vUzdASy-2ulh-tw-AKg9048
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Cross-Label+Suppression+Dictionary+Learning+for+Face+Recognition&rft.jtitle=IEEE+access&rft.au=Zhou%2C+Tian&rft.au=Yang%2C+Sujuan&rft.au=Wang%2C+Lei&rft.au=Yao%2C+Jiming&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=6&rft.spage=48716&rft.epage=48725&rft_id=info:doi/10.1109%2FACCESS.2018.2868133&rft.externalDocID=8452894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon