Improved Cross-Label Suppression Dictionary Learning for Face Recognition
Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction...
Saved in:
Published in: | IEEE access Vol. 6; pp. 48716 - 48725 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-01-2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process. |
---|---|
AbstractList | Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process. |
Author | Zhou, Tian Yao, Jiming Wang, Lei Gui, Guan Yang, Sujuan |
Author_xml | – sequence: 1 givenname: Tian surname: Zhou fullname: Zhou, Tian organization: National Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 2 givenname: Sujuan surname: Yang fullname: Yang, Sujuan organization: National Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 3 givenname: Lei surname: Wang fullname: Wang, Lei organization: National Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 4 givenname: Jiming surname: Yao fullname: Yao, Jiming organization: Global Energy Interconnection Research Institute Co., Ltd., Beijing, China – sequence: 5 givenname: Guan orcidid: 0000-0003-3888-2881 surname: Gui fullname: Gui, Guan email: guiguan@njupt.edu.cn organization: National Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China |
BookMark | eNpNUU1rAjEQDcVCrfUXeFnoeW2-N3uUrbaCUKjtOSTZiazoxma10H_f2BXpXGYY3nt5mXePBm1oAaEJwVNCcPk0q6r5ej2lmKgpVVIRxm7QkBJZ5kwwOfg336Fx121xKpVWohii5XJ_iOEb6qyKoevylbGwy9anwyFC1zWhzZ4bd0zdxJ9sBSa2TbvJfIjZwjjI3sGFTducAQ_o1ptdB-NLH6HPxfyjes1Xby_LarbKHcfqmEtX8kIaKxgFC5xZialkxIGXtuROlGCUoMLgUjpmiefK1zwxrVQUQ-HYCC173TqYrT7EZp-s6WAa_bcIcaNNPDZuB5pbCspJ4rGRXFhrTPo1876QzCQfddJ67LXSDb5O0B31Npxim-xryoUocfJKEor1KHc-UQR_fZVgfY5A9xHocwT6EkFiTXpWAwBXhuKCqpKzX3bGg2M |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2982591 crossref_primary_10_1109_ACCESS_2019_2946298 crossref_primary_10_1109_ACCESS_2019_2933527 crossref_primary_10_1088_1742_6596_2037_1_012004 crossref_primary_10_1109_ACCESS_2019_2909060 crossref_primary_10_1109_ACCESS_2019_2910272 crossref_primary_10_1109_ACCESS_2019_2916155 crossref_primary_10_1007_s10489_021_02601_1 crossref_primary_10_1109_ACCESS_2018_2879324 crossref_primary_10_1109_ACCESS_2019_2912035 crossref_primary_10_1109_ACCESS_2019_2912420 crossref_primary_10_1109_ACCESS_2019_2953184 crossref_primary_10_1109_ACCESS_2019_2899940 crossref_primary_10_1109_ACCESS_2019_2903130 crossref_primary_10_1109_ACCESS_2019_2962859 crossref_primary_10_1109_ACCESS_2018_2887308 crossref_primary_10_1007_s12083_019_00726_2 crossref_primary_10_1109_ACCESS_2019_2927499 crossref_primary_10_1109_ACCESS_2019_2909559 |
Cites_doi | 10.1109/TSP.2006.881199 10.1109/LCOMM.2016.2642922 10.1109/CVPR.2008.4587652 10.1109/CVPR.2008.4587408 10.1109/CVPR.2010.5539964 10.1162/jocn.1991.3.1.71 10.1007/s10915-018-0642-9 10.1109/TPAMI.2008.79 10.1109/TIP.2012.2215620 10.1109/TSP.2017.2728502 10.1007/s11263-015-0833-x 10.1109/TSP.2009.2036477 10.1109/34.927464 10.1016/j.patcog.2013.08.004 10.1109/TIP.2017.2703101 10.1145/2911451.2911489 10.1016/j.patcog.2016.01.028 10.1109/ISCAS.1999.779928 10.1109/TNN.2005.845141 10.1016/S0042-6989(97)00169-7 10.1109/ACCESS.2018.2799984 10.1109/TPAMI.2005.92 10.1109/ICCV.2011.6126286 10.1109/TIP.2014.2324290 10.1109/TPAMI.2013.88 10.1109/TIP.2016.2523340 10.1109/CVPR.2010.5540018 10.3390/s17122920 10.1109/TIP.2013.2290593 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2868133 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ESBDL name: IEEE Xplore Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 48725 |
ExternalDocumentID | oai_doaj_org_article_4b2e8c61f0a645bbaa1693ff763a6c9d 10_1109_ACCESS_2018_2868133 8452894 |
Genre | orig-research |
GrantInformation_xml | – fundername: Major Projects of the Natural Science Foundation of the Jiangsu Higher Education Institutions grantid: 16KJA510004 – fundername: Open Research Fund of National Mobile Communications Research Laboratory, Southeast University grantid: 2016D01 – fundername: Jiangsu Specially Appointed Professor Grant grantid: RK002STP16001 – fundername: Research Fund of the Nanjing University of Posts and Telecommunications grantid: NY218012 – fundername: Nanjing University of Posts and Telecommunications funderid: 10.13039/501100005374 – fundername: National Natural Science Foundation of China grantid: 61671253 funderid: 10.13039/501100001809 – fundername: Innovation and Entrepreneurship of Jiangsu High-Level Talent Grant grantid: CZ0010617002 – fundername: Open Research Fund of the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing University of Posts and Telecommunications grantid: KFJJ20170305 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:14:58 EDT 2024 Thu Oct 10 16:07:12 EDT 2024 Fri Aug 23 01:48:31 EDT 2024 Wed Jun 26 19:28:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3 |
ORCID | 0000-0003-3888-2881 |
OpenAccessLink | https://ieeexplore.ieee.org/document/8452894 |
PQID | 2455909471 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2455909471 doaj_primary_oai_doaj_org_article_4b2e8c61f0a645bbaa1693ff763a6c9d crossref_primary_10_1109_ACCESS_2018_2868133 ieee_primary_8452894 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref37 xie (ref26) 2012 ref36 ref14 pan (ref24) 2017 ref31 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 liu (ref22) 2015 ref38 ref16 foroughi (ref30) 2017 lee (ref15) 2006; 19 wen (ref5) 0 boureau (ref13) 2010 zhou (ref18) 2012 ref23 ref20 ref42 ref41 mairal (ref27) 2008 ref21 zhang (ref28) 2010 gao (ref19) 2014; 23 ref29 wang (ref6) 2011 ref8 ref7 huang (ref12) 2007 ref9 ref4 ref3 harandi (ref25) 2015 ref40 |
References_xml | – ident: ref1 doi: 10.1109/TSP.2006.881199 – ident: ref20 doi: 10.1109/LCOMM.2016.2642922 – ident: ref9 doi: 10.1109/CVPR.2008.4587652 – ident: ref35 doi: 10.1109/CVPR.2008.4587408 – ident: ref17 doi: 10.1109/CVPR.2010.5539964 – year: 0 ident: ref5 article-title: Sharp sufficient conditions for stable recovery of block sparse signals by block orthogonal matching pursuit publication-title: Appl Comput Harmon Anal contributor: fullname: wen – ident: ref42 doi: 10.1162/jocn.1991.3.1.71 – volume: 19 start-page: 801 year: 2006 ident: ref15 article-title: Efficient sparse coding algorithms publication-title: Proc Conf Neural Inf Process Syst contributor: fullname: lee – ident: ref40 doi: 10.1007/s10915-018-0642-9 – ident: ref7 doi: 10.1109/TPAMI.2008.79 – ident: ref21 doi: 10.1109/TIP.2012.2215620 – ident: ref16 doi: 10.1109/TSP.2017.2728502 – start-page: 1 year: 2008 ident: ref27 article-title: Supervised dictionary learning publication-title: Proc Adv Neural Inf Process Syst (NIPS) contributor: fullname: mairal – ident: ref29 doi: 10.1007/s11263-015-0833-x – ident: ref2 doi: 10.1109/TSP.2009.2036477 – start-page: 609 year: 2007 ident: ref12 article-title: Sparse representation for signal classification publication-title: Proc Conf Neural Inf Process Syst contributor: fullname: huang – start-page: 2330 year: 2017 ident: ref24 article-title: Kernel low-rank embedding dictionary learning for face recognition publication-title: Proc Int Conf Natural Comput Fuzzy Syst Knowl Discovery (ICNC-FSKD) contributor: fullname: pan – ident: ref41 doi: 10.1109/34.927464 – ident: ref32 doi: 10.1016/j.patcog.2013.08.004 – ident: ref36 doi: 10.1109/TIP.2017.2703101 – ident: ref38 doi: 10.1145/2911451.2911489 – ident: ref31 doi: 10.1016/j.patcog.2016.01.028 – start-page: 3926 year: 2015 ident: ref25 article-title: Riemannian coding and dictionary learning: Kernels to the rescue publication-title: Proc IEEE Conf Comput Vis Pattern Recognit contributor: fullname: harandi – start-page: 2559 year: 2010 ident: ref13 article-title: Learning mid-level features for recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit contributor: fullname: boureau – ident: ref11 doi: 10.1109/ISCAS.1999.779928 – ident: ref37 doi: 10.1109/TNN.2005.845141 – ident: ref10 doi: 10.1016/S0042-6989(97)00169-7 – ident: ref3 doi: 10.1109/ACCESS.2018.2799984 – start-page: 2691 year: 2010 ident: ref28 article-title: Discriminative K-SVD for dictionary learning in face recognition publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit contributor: fullname: zhang – ident: ref39 doi: 10.1109/TPAMI.2005.92 – start-page: 3490 year: 2012 ident: ref18 article-title: Learning inter-related visual dictionary for object recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit contributor: fullname: zhou – ident: ref33 doi: 10.1109/ICCV.2011.6126286 – start-page: 495 year: 2011 ident: ref6 article-title: Automatic group sparse coding publication-title: Proc AAAI Conf Artif Intell contributor: fullname: wang – start-page: 3678 year: 2015 ident: ref22 article-title: Robust kernel dictionary learning using a whole sequence convergent algorithm publication-title: Proc Int Conf Artif Intell contributor: fullname: liu – start-page: 1 year: 2012 ident: ref26 article-title: Dictionary learning on Riemannian manifolds publication-title: In MICCAI Workshop on STMI contributor: fullname: xie – ident: ref23 doi: 10.1109/TIP.2014.2324290 – ident: ref34 doi: 10.1109/TPAMI.2013.88 – ident: ref14 doi: 10.1109/TIP.2016.2523340 – ident: ref8 doi: 10.1109/CVPR.2010.5540018 – ident: ref4 doi: 10.3390/s17122920 – start-page: 1082 year: 2017 ident: ref30 article-title: Face recognition using multi-modal low-rank dictionary learning publication-title: Proc IEEE Int Conf Image Process contributor: fullname: foroughi – volume: 23 start-page: 623 year: 2014 ident: ref19 article-title: Learning category-specific dictionary and shared dictionary for fine-grained image categorization publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2290593 contributor: fullname: gao |
SSID | ssj0000816957 |
Score | 2.2762341 |
Snippet | Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 48716 |
SubjectTerms | Algorithms compressive sensing computational complexity Computational modeling Computing costs Cross-label suppression Dictionaries dictionary learning Face recognition Machine learning Representations Signal reconstruction Time complexity Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwwIKIhCQR4YCY3jZ8aSUhUJMfCQ2Cw_ERJKUR8D_x47casiBhbWyHJy38V3_qzzdwBcIq9zboXOPOWBoFDFM1UWPPPIllhYh30ebyNPnvjDqxjdRpmcdauvWBPWygO3wA2ILpwwDPlcMUK1VirKh3gf1oViprRN9M3FBplqYrAIoyhPMkMoLwfDqgoWxVoucV0IJhDGP1JRo9ifWqz8istNshnvg720S4TD9usOwJarD8HuhnZgF9y1xwHOwirOnt0r7T5gbNLZVrbWcPTe3FlQsy-YVFTfYNiiwrEyDj6uCoem9RF4Gd8-V5Ms9UXIDMnFIgtmE86UprgILiBYxzZSGBnnmS6JoaVTghZUBXZisEaeCG9jY2nNQrp33OBj0KmntTsB0KtAZwzFpTWU-CLga23I6ZpQI4zDrAeuVhDJz1b-Qja0IS9li6iMiMqEaA_cRBjXQ6N2dfMgeFQmj8q_PNoD3eiE9SSC0MAKSQ_0V06RaZ3NZUECIwoMlaPT_3j1GdiJ5rRHLH3QWcyW7hxsz-3yovm_vgHdk9LH priority: 102 providerName: Directory of Open Access Journals |
Title | Improved Cross-Label Suppression Dictionary Learning for Face Recognition |
URI | https://ieeexplore.ieee.org/document/8452894 https://www.proquest.com/docview/2455909471 https://doaj.org/article/4b2e8c61f0a645bbaa1693ff763a6c9d |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4RemkPQEsrAmnkA8ds2F3ba_sIeShIEQfSSr1ZflaVqg0K5MC_x_Y6URFcelut9mHPt358szPfAFxWXpfMcl14ygJBoYoVStSs8JUVmFuHfRmzkRcrdveLT2dRJme0z4VxzqXgMzeOh-lfvl2bbXSVXXFCAz8gPegxwbtcrb0_JRaQEJRlYaGqFFfXk0noQ4ze4uOaN7zC-NXikzT6c1GVNzNxWl7mx__XsBM4yttIdN3h_hkOXPsFPv0jLngKt52_wFk0iY0plkq7vyhW8exCX1s0_ZOSGtTmGWWZ1d8o7GHRXBmH7neRRev2K_ycz35MFkUunFAYUvKnojGCsEZpiuuAEcE61pnClXG-0YIYKpzitKYq0BeDdeUJ9zZWntZN2A84ZvA3OGzXrTsD5FXgO4ZiYQ0lvqZaWxsWfU2o4cbhpg-jnUXlQ6ePIROvKIXsAJARAJkB6MNNtPr-0ihunU4Ec8o8ViTRteOmqXypGhLeqFRUjPE-TIUqdM324TRCsH9Itn4fBjsMZR6Ij7ImgTIFCsuq8_fvuoCPsYGdV2UAh0-brfsOvUe7HSZ-PoQPs9XNdDlMn9sLzQHRqg |
link.rule.ids | 315,782,786,798,866,2108,27644,27935,27936,54770,54945 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T-wwEB7BUjwoOB4gltPFKwkksR3bJeyhRSwUD5DoLJ8ICWURsAX_HjvxrkDQ0EVRDnu--PgmM98A_Cu8zpnlOvOUBYJCFcuUKFnmCyswtw77PGYjj27Y9T3vD6JMzvE8F8Y51wSfuZN42PzLtxMzja6yU05o4AdkEZYCqyG0A0uDm_P-eO5TiUUkBGVJXKjIxelZrxf6ESO4-EnJK15g_GUBanT6U2GVb7Nxs8QM137XuHVYTVtJdNZivwELrv4LK58EBjfhovUZOIt6sTHZWGn3hGIlzzb8tUb9xyaxQb28oyS1-oDCPhYNlXHo_yy6aFJvwd1wcNsbZal4QmZIzt-yygjCKqUpLgNOBOtYawoXxvlKC2KocIrTkqpAYQzWhSfc21h9WldhT-CYwdvQqSe12wHkVeA8hmJhDSW-pFpbGxZ-TajhxuGqC8czi8rnViNDNtwiF7IFQEYAZAKgC-fR6vNLo8B1cyKYU6bxIokuHTdV4XNVkfBGpaJqjPdhOlSha7YLmxGC-UOS9buwP8NQpsH4KksSaFOgsazY_fmuI_gzur0ay_HF9eUeLMfGtl6Wfei8vUzdASy-2ulh-tw-AKg9048 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Cross-Label+Suppression+Dictionary+Learning+for+Face+Recognition&rft.jtitle=IEEE+access&rft.au=Zhou%2C+Tian&rft.au=Yang%2C+Sujuan&rft.au=Wang%2C+Lei&rft.au=Yao%2C+Jiming&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=6&rft.spage=48716&rft.epage=48725&rft_id=info:doi/10.1109%2FACCESS.2018.2868133&rft.externalDocID=8452894 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |