Cell Search Techniques for Underwater Acoustic Cellular Systems
The concept of frequency reuse has been considered for underwater acoustic cellular (UAC) systems owing to the limited available bandwidth of acoustic channels. In a UAC system, the underwater equipment (UE) should detect the identity of the underwater base station (UBS) and synchronize to a serving...
Saved in:
Published in: | IEEE access Vol. 7; pp. 106019 - 106033 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The concept of frequency reuse has been considered for underwater acoustic cellular (UAC) systems owing to the limited available bandwidth of acoustic channels. In a UAC system, the underwater equipment (UE) should detect the identity of the underwater base station (UBS) and synchronize to a serving UBS. In this paper, two different types of cell search techniques are proposed for the downlink of UAC systems based on orthogonal frequency-division multiplexing (OFDM): a Zadoff-Chu sequence-based cell search technique (ZCS-CST) and a linear frequency modulation-based cell search technique (LFM-CST), all at the physical layer. The performances (correlation property, detection probability, and false alarm probability) of the cell search techniques are analyzed and compared with the simulation results in the additive white Gaussian noise (AWGN) and multipath channels. The performances of the cell search techniques are evaluated using the Bellhop channel simulator and field experiment. It is shown that the ZCS-CST is applicable to UAC systems with a small Doppler shift, while the LFM-CST is suitable for UAC systems with a large Doppler shift. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2932721 |