Bi-dimensional modelling of the thermal boundary layer and mass flux prediction for direct contact membrane distillation
•Estimation of a bi-dimensional temperature profile and thermal boundary layer thickness.•Comprehensive and detailed description of the modelling approach used.•Prediction of the thermal boundary layer thickness using the integral method.•Comparison of five sets of convective heat transfer coefficie...
Saved in:
Published in: | International journal of heat and mass transfer Vol. 141; pp. 1205 - 1215 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-10-2019
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Estimation of a bi-dimensional temperature profile and thermal boundary layer thickness.•Comprehensive and detailed description of the modelling approach used.•Prediction of the thermal boundary layer thickness using the integral method.•Comparison of five sets of convective heat transfer coefficient correlations.•Use of a simplistic, intuitive software to assist with the modelling.
A good knowledge on thermal boundary layer thickness and mass flux are important features in the development of membrane distillation pilot modules. The present work poses as a comprehensive approach for modelling both during the process’ steady state, whilst cherishing simplicity as it does so through a simple, intuitive software – namely Calc from Libreoffice. The mass transfer model allows prediction of average mass flux, being obtained by tailoring a mass transfer equation to be used together with an overall-macroscopic energy balance for the system. Within such approach, five different convective heat transfer correlations were investigated and a mass transfer coefficient of 6.02×10-7kg·m-2·s-1·Pa-1 was found for the PTFE supported membrane used in the experiments. Thermal boundary layer thickness was estimated using the integral method, primarily under the assumption of constant local heat flux along the membrane extension. Thermal boundary layer thickness was coherently modelled in the middle portion of the channels, region where model results agreed with the assumptions made with 80% accuracy or higher, pointing for correspondingly low variation of heat flux with space within such region. The applicability of the temperature profile proposed in the present work in portraying the reality of permeate and feed in membrane distillation processes was discussed. |
---|---|
AbstractList | A good knowledge on thermal boundary layer thickness and mass flux are important features in the development of membrane distillation pilot modules. The present work poses as a comprehensive approach for modelling both during the process' steady state, whilst cherishing simplicity as it does so through a simple, intuitive software – namely Calc from Libreoffice. The mass transfer model allows prediction of average mass flux, being obtained by tailoring a mass transfer equation to be used together with an overall-macroscopic energy balance for the system. Within such approach, five different convective heat transfer correlations were investigated and a mass transfer coefficient of 6.02 × 10-7 kg · m-2·s-1·Pa-1 was found for the PTFE supported membrane used in the experiments. Thermal boundary layer thickness was estimated using the integral method, primarily under the assumption of constant local heat flux along the membrane extension. Thermal boundary layer thickness was coherently modelled in the middle portion of the channels, region where model results agreed with the assumptions made with 80% accuracy or higher, pointing for correspondingly low variation of heat flux with space within such region. The applicability of the temperature profile proposed in the present work in portraying the reality of permeate and feed in membrane distillation processes was discussed. •Estimation of a bi-dimensional temperature profile and thermal boundary layer thickness.•Comprehensive and detailed description of the modelling approach used.•Prediction of the thermal boundary layer thickness using the integral method.•Comparison of five sets of convective heat transfer coefficient correlations.•Use of a simplistic, intuitive software to assist with the modelling. A good knowledge on thermal boundary layer thickness and mass flux are important features in the development of membrane distillation pilot modules. The present work poses as a comprehensive approach for modelling both during the process’ steady state, whilst cherishing simplicity as it does so through a simple, intuitive software – namely Calc from Libreoffice. The mass transfer model allows prediction of average mass flux, being obtained by tailoring a mass transfer equation to be used together with an overall-macroscopic energy balance for the system. Within such approach, five different convective heat transfer correlations were investigated and a mass transfer coefficient of 6.02×10-7kg·m-2·s-1·Pa-1 was found for the PTFE supported membrane used in the experiments. Thermal boundary layer thickness was estimated using the integral method, primarily under the assumption of constant local heat flux along the membrane extension. Thermal boundary layer thickness was coherently modelled in the middle portion of the channels, region where model results agreed with the assumptions made with 80% accuracy or higher, pointing for correspondingly low variation of heat flux with space within such region. The applicability of the temperature profile proposed in the present work in portraying the reality of permeate and feed in membrane distillation processes was discussed. |
Author | Alvares, Cecília M.S. Ramos, Ramatisa L. Magela, Cíntia S. Amaral, Míriam C.S. Grossi, Luiza B. |
Author_xml | – sequence: 1 givenname: Cecília M.S. surname: Alvares fullname: Alvares, Cecília M.S. – sequence: 2 givenname: Luiza B. surname: Grossi fullname: Grossi, Luiza B. – sequence: 3 givenname: Ramatisa L. surname: Ramos fullname: Ramos, Ramatisa L. – sequence: 4 givenname: Cíntia S. surname: Magela fullname: Magela, Cíntia S. – sequence: 5 givenname: Míriam C.S. surname: Amaral fullname: Amaral, Míriam C.S. email: miriam@desa.ufmg.br |
BookMark | eNqNkE9v3CAQxVGVSN38-Q5IufRiZ8DsstzaRkmaaqVekjPCME6wbNgCGyXfPljbWy85jEbDPL3h_c7ISYgBCfnGoGXANtdj68cXNGU2OZdkQh4wtRyYakG2wMQXsmJbqRrOtuqErACYbFTH4Cs5y3lcRhCbFXn76RvnZwzZx2AmOkeH0-TDM40DLS-4VJrroo-H4Ex6p5N5x0RNcHQ5TYfp8Eb3CZ23pVrQISbqfEJbqI2hmNpnnPv6Q6zvufhpMovwgpwOZsp4-a-fk6e728ebX83uz_3DzY9dYwXI0iC6oevXHRMguHBKgjI946gY52uwkndGdnLd92pjGCK3W9sDZ1aIAaSUtjsnV0fffYp_D5iLHuMh1ahZc74FoZQQm6r6flTZFHNOOOh98nONqxnohbce9f-89cJbg9SVd7X4fbTAmubV1222HoPFIw3tov-82QeRgJnj |
CitedBy_id | crossref_primary_10_1007_s43153_021_00171_w crossref_primary_10_1016_j_jiec_2022_01_014 crossref_primary_10_1016_j_jece_2021_105588 crossref_primary_10_1016_j_desal_2023_117225 |
Cites_doi | 10.1016/j.cep.2015.10.016 10.1016/0011-9164(90)85030-E 10.1016/j.desal.2007.05.019 10.3390/w5010094 10.1080/01496399808544764 10.1016/S0376-7388(96)00236-0 10.1016/S0376-7388(98)00349-4 10.3311/PPme.7422 10.1016/j.jss.2013.11.1077 10.1016/j.memsci.2012.03.063 10.1016/S0376-7388(99)00234-3 10.1016/S1383-5866(97)00002-6 10.1017/S0001925900010908 10.1016/j.egypro.2015.07.634 10.1016/j.desal.2015.09.010 10.1016/S0376-7388(02)00498-2 10.1016/j.desal.2013.04.011 10.1016/S0376-7388(00)82210-3 10.1016/S0376-7388(00)80287-2 10.1017/jfm.2015.623 10.1016/j.ijheatmasstransfer.2009.12.043 10.1016/j.desal.2012.11.005 10.1016/S0040-6031(02)00105-3 10.1016/0009-2509(84)80033-0 10.1016/j.cis.2010.09.005 10.1016/j.ijheatmasstransfer.2013.07.051 10.1016/S0376-7388(98)00050-7 10.5383/swes.0101.005 10.1016/j.seppur.2014.12.026 10.1016/j.desal.2011.08.027 10.1016/j.memsci.2011.09.011 10.1016/j.desal.2014.01.003 10.1016/j.memsci.2016.04.010 10.1016/S0376-7388(00)00362-8 10.1016/j.memsci.2014.09.016 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Oct 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Oct 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2019.07.014 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 1215 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2019_07_014 S0017931019315996 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c407t-eedf3b53140424d9709ab12e912250c723a7375bb96a1ee2c8cb021c44f0777c3 |
ISSN | 0017-9310 |
IngestDate | Thu Oct 10 17:24:54 EDT 2024 Thu Nov 21 22:13:51 EST 2024 Fri Feb 23 02:22:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal boundary layer Flux prediction Direct contact membrane distillation Bi-dimensional temperature modelling Open source software |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-eedf3b53140424d9709ab12e912250c723a7375bb96a1ee2c8cb021c44f0777c3 |
PQID | 2280499446 |
PQPubID | 2045464 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2280499446 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_014 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_07_014 |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Price, Jarrat (b0195) 2002; 392–393 Gryta, Tomaszewska (b0155) 1998; 144 Khayet, Imdakm, Matsuura (b0100) 2010; 53 Holman (b0135) 1983 Bappy, Bahar, Ariff (b0060) 2016 Sterlitech Corporation, CF042D-FO Cell Assembly and Operation Manual, in: Manual CF042D-FO Cell. Xu, Singh, Amy, Ghaffour (b0185) 2016; 512 Manna, Pal (b0030) 2016; 99 Camacho, Dumée, Zhang, Li, Duke, Gomez, Gray (b0070) 2013; 5 Shirazi, Kargari, Ismail, Matsuura (b0110) 2016; 377 Qtaishata, Matsuuraa, Kruczeka, Khayetb (b0145) 2008; 219 Chatterjee, Belfort (b0215) 1986; 28 Khan, Martin (b0045) 2014; 58 Banat, Simandl (b0055) 1998; 33 Chang, Hsu, Chang, Ho (b0115) 2015; 75 Martínez-Díez, Vázquez-González (b0150) 1999; 156 Schwantes, Cipollina, Gross, Koschikowski, Pfeifle, Rolletschek, Subiela (b0050) 2013; 323 Ghavane (b0165) 2008 Bejan (b0125) 2004 Fortunato, Barbieri, Drioli (b0095) 2000; 166 Vinuesa, Fdez. de Arévalo, Luna, Cachafeiro (b0085) 2016; 8–2 Le, Nunes (b0065) 2016; 7 Diéz, González (b0005) 2000; 173 Samanta, Vinuesa, Lashgari, Schlatter, Brandt (b0080) 2015; 784 Schofield, Fane, Fell, Macoun (b0175) 1990; 77 Manawi, Khraisheh, Fard, Benyahia, Adham (b0190) 2014; 336 Andrjesdóttir, Ong, Nabavi, Paredes, Khalil, Michel, Poulikakos (b0090) 2013; 66 Gryta, Tomaszewska, Morawski (b0220) 1997; 11 Banat, Jwaied (b0035) 2010; 1 Lawson, Lloyd (b0015) 1997; 124 Alkhudhiri, Darwish, Hilal (b0020) 2012; 287 Wang, Chung (b0025) 2015; 474 Guillén-Burrieza, Zaragoza, Miralles-Cuevas, Blanco (b0040) 2012; 409–410 Al-Sharif, Albeirutty, Cipollina, Micale (b0105) 2013; 311 Schofield, Fane, Fell (b0180) 1987; 33 Chapman (b0130) 1994 Yu, Yang, Wang, Fane (b0170) 2011; 384 Altena, Belfort (b0210) 1984; 39 Welty, Wicks, Wilson, Rorrer (b0140) 2008 Hitsov, Maere, De Sitter, Dotremont, Nopens (b0075) 2015; 142 Phattaranawik, Jiraratananon, Fane (b0160) 2003; 212 Khayet (b0010) 2011; 164 Terrill (b0205) 1964; 15 Gamalielsson, Lundell (b0120) 2014; 89 Schwantes (10.1016/j.ijheatmasstransfer.2019.07.014_b0050) 2013; 323 Chapman (10.1016/j.ijheatmasstransfer.2019.07.014_b0130) 1994 Qtaishata (10.1016/j.ijheatmasstransfer.2019.07.014_b0145) 2008; 219 Bejan (10.1016/j.ijheatmasstransfer.2019.07.014_b0125) 2004 Fortunato (10.1016/j.ijheatmasstransfer.2019.07.014_b0095) 2000; 166 Schofield (10.1016/j.ijheatmasstransfer.2019.07.014_b0180) 1987; 33 Samanta (10.1016/j.ijheatmasstransfer.2019.07.014_b0080) 2015; 784 Terrill (10.1016/j.ijheatmasstransfer.2019.07.014_b0205) 1964; 15 Wang (10.1016/j.ijheatmasstransfer.2019.07.014_b0025) 2015; 474 Guillén-Burrieza (10.1016/j.ijheatmasstransfer.2019.07.014_b0040) 2012; 409–410 Altena (10.1016/j.ijheatmasstransfer.2019.07.014_b0210) 1984; 39 Diéz (10.1016/j.ijheatmasstransfer.2019.07.014_b0005) 2000; 173 Banat (10.1016/j.ijheatmasstransfer.2019.07.014_b0035) 2010; 1 Martínez-Díez (10.1016/j.ijheatmasstransfer.2019.07.014_b0150) 1999; 156 Manna (10.1016/j.ijheatmasstransfer.2019.07.014_b0030) 2016; 99 Shirazi (10.1016/j.ijheatmasstransfer.2019.07.014_b0110) 2016; 377 Schofield (10.1016/j.ijheatmasstransfer.2019.07.014_b0175) 1990; 77 Gryta (10.1016/j.ijheatmasstransfer.2019.07.014_b0220) 1997; 11 Phattaranawik (10.1016/j.ijheatmasstransfer.2019.07.014_b0160) 2003; 212 Yu (10.1016/j.ijheatmasstransfer.2019.07.014_b0170) 2011; 384 Le (10.1016/j.ijheatmasstransfer.2019.07.014_b0065) 2016; 7 Khayet (10.1016/j.ijheatmasstransfer.2019.07.014_b0010) 2011; 164 Bappy (10.1016/j.ijheatmasstransfer.2019.07.014_b0060) 2016 Holman (10.1016/j.ijheatmasstransfer.2019.07.014_b0135) 1983 Lawson (10.1016/j.ijheatmasstransfer.2019.07.014_b0015) 1997; 124 Price (10.1016/j.ijheatmasstransfer.2019.07.014_b0195) 2002; 392–393 Chang (10.1016/j.ijheatmasstransfer.2019.07.014_b0115) 2015; 75 Andrjesdóttir (10.1016/j.ijheatmasstransfer.2019.07.014_b0090) 2013; 66 Al-Sharif (10.1016/j.ijheatmasstransfer.2019.07.014_b0105) 2013; 311 Welty (10.1016/j.ijheatmasstransfer.2019.07.014_b0140) 2008 Manawi (10.1016/j.ijheatmasstransfer.2019.07.014_b0190) 2014; 336 Banat (10.1016/j.ijheatmasstransfer.2019.07.014_b0055) 1998; 33 Hitsov (10.1016/j.ijheatmasstransfer.2019.07.014_b0075) 2015; 142 Khan (10.1016/j.ijheatmasstransfer.2019.07.014_b0045) 2014; 58 10.1016/j.ijheatmasstransfer.2019.07.014_b0200 Gamalielsson (10.1016/j.ijheatmasstransfer.2019.07.014_b0120) 2014; 89 Xu (10.1016/j.ijheatmasstransfer.2019.07.014_b0185) 2016; 512 Alkhudhiri (10.1016/j.ijheatmasstransfer.2019.07.014_b0020) 2012; 287 Vinuesa (10.1016/j.ijheatmasstransfer.2019.07.014_b0085) 2016; 8–2 Gryta (10.1016/j.ijheatmasstransfer.2019.07.014_b0155) 1998; 144 Chatterjee (10.1016/j.ijheatmasstransfer.2019.07.014_b0215) 1986; 28 Camacho (10.1016/j.ijheatmasstransfer.2019.07.014_b0070) 2013; 5 Khayet (10.1016/j.ijheatmasstransfer.2019.07.014_b0100) 2010; 53 Ghavane (10.1016/j.ijheatmasstransfer.2019.07.014_b0165) 2008 |
References_xml | – volume: 323 start-page: 93 year: 2013 end-page: 106 ident: b0050 article-title: Membrane distillation: Solar and waste heat driven demonstration plants for desalination publication-title: Desalination contributor: fullname: Subiela – volume: 11 start-page: 93 year: 1997 end-page: 101 ident: b0220 article-title: Membrane distillation with laminar flow publication-title: Sep. Sup. Technol. contributor: fullname: Morawski – volume: 142 start-page: 48 year: 2015 end-page: 64 ident: b0075 article-title: Modelling approaches in membrane distillation: a critical review publication-title: Sep. Pur. Technol. contributor: fullname: Nopens – volume: 5 start-page: 94 year: 2013 end-page: 196 ident: b0070 article-title: Advances in membrane distillation for water desalination and purification applications publication-title: Water contributor: fullname: Gray – year: 2004 ident: b0125 article-title: Convection Heat Transfer contributor: fullname: Bejan – volume: 377 start-page: 73 year: 2016 end-page: 90 ident: b0110 article-title: CFD simulation of direct contact membrane distillation modules with rough surface channels publication-title: Desalination contributor: fullname: Matsuura – volume: 99 start-page: 51 year: 2016 end-page: 57 ident: b0030 article-title: Solar-driven flash vaporization membrane distillation for arsenic removal from groundwater: experimental investigation and analysis of performance parameters publication-title: Chem. Eng. Process. contributor: fullname: Pal – volume: 53 start-page: 1249 year: 2010 end-page: 1259 ident: b0100 article-title: Monte Carlo simulation and experimental heat and mass transfer in direct contact membrane distillation publication-title: Int. J. Heat Mass Tran. contributor: fullname: Matsuura – volume: 156 start-page: 265 year: 1999 end-page: 273 ident: b0150 article-title: Temperature and concentration polarization in membrane distillation of aqueous salt solutions publication-title: J. Membr. Sci. contributor: fullname: Vázquez-González – volume: 33 start-page: 201 year: 1998 end-page: 226 ident: b0055 article-title: Desalination by membrane distillation: a parametric study publication-title: Sep. Sci. Technol. contributor: fullname: Simandl – volume: 15 start-page: 299 year: 1964 end-page: 310 ident: b0205 article-title: Laminar flow in a uniformly porous channel publication-title: Aeronaut. Q. contributor: fullname: Terrill – year: 1994 ident: b0130 article-title: Heat Transfer contributor: fullname: Chapman – volume: 336 start-page: 110 year: 2014 end-page: 120 ident: b0190 article-title: Effect of operational parameters on distillate flux in direct contact membrane distillation (DCMD): comparison between experimental and model predicted performance publication-title: Desalination contributor: fullname: Adham – volume: 173 start-page: 225 year: 2000 end-page: 234 ident: b0005 article-title: A method to evaluate coefficients affecting flux in membrane distillation publication-title: J. Membr. Sci. contributor: fullname: González – volume: 58 start-page: 47 year: 2014 end-page: 53 ident: b0045 article-title: Water purification of arsenic contaminated drinking water via air gap membrane distillation (AGMD) publication-title: Period. Polytech. Eng. contributor: fullname: Martin – volume: 212 start-page: 177 year: 2003 end-page: 193 ident: b0160 article-title: Heat transport and membrane distillation coefficients in direct contact membrane distillation publication-title: J. Membr. Sci. contributor: fullname: Fane – year: 2016 ident: b0060 article-title: Low energy and low cost freshwater production by membrane distillation publication-title: 2016 International Conference on Industrial Engineering and Operations Management, Kuala Lumpur contributor: fullname: Ariff – volume: 28 start-page: 191 year: 1986 end-page: 207 ident: b0215 article-title: Fluid flow in an idealized spiral wound membrane module publication-title: J. Membr. Sci. contributor: fullname: Belfort – volume: 474 start-page: 39 year: 2015 end-page: 56 ident: b0025 article-title: Recent advances in membrane distillation processes: membrane development, configuration design and application exploring publication-title: J. Membr. Sci. contributor: fullname: Chung – volume: 409–410 start-page: 264 year: 2012 end-page: 275 ident: b0040 article-title: Experimental evaluation of two pilot-scale membrane distillation modules used for solar desalination publication-title: J. Membr. Sci. contributor: fullname: Blanco – volume: 164 start-page: 56 year: 2011 end-page: 88 ident: b0010 article-title: Membranes and theoretical modeling of membrane distillation: a review publication-title: Adv. Colloid Interface Sci. contributor: fullname: Khayet – volume: 75 start-page: 3083 year: 2015 end-page: 3090 ident: b0115 article-title: Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: state-of-the-art and perspectives publication-title: Energy Proc. contributor: fullname: Ho – volume: 311 start-page: 103 year: 2013 end-page: 112 ident: b0105 article-title: Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code publication-title: Desalination contributor: fullname: Micale – year: 2008 ident: b0165 article-title: Heat Transfer contributor: fullname: Ghavane – volume: 166 start-page: 1 year: 2000 end-page: 11 ident: b0095 article-title: Direct contact membrane distillation: modeling and concentration experiments publication-title: J. Membr. Sci. contributor: fullname: Drioli – volume: 39 start-page: 343 year: 1984 end-page: 355 ident: b0210 article-title: Lateral migration of spherical particles in porous flow channels: application to membrane filtration publication-title: Chem. Eng. Sci. contributor: fullname: Belfort – volume: 384 start-page: 107 year: 2011 end-page: 116 ident: b0170 article-title: Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow publication-title: J. Membr. Sci. contributor: fullname: Fane – volume: 144 start-page: 211 year: 1998 end-page: 222 ident: b0155 article-title: Heat transport in the membrane distillation process publication-title: J. Membr. Sci. contributor: fullname: Tomaszewska – volume: 287 start-page: 2 year: 2012 end-page: 18 ident: b0020 article-title: Membrane distillation: a comprehensive review publication-title: Desalination contributor: fullname: Hilal – volume: 33 start-page: 299 year: 1987 end-page: 313 ident: b0180 article-title: Heat and mass transfer in membrane distillation publication-title: J. Membr. Sci. contributor: fullname: Fell – volume: 8–2 year: 2016 ident: b0085 article-title: Simulations and experiments of heat loss from a parabolic trough absorber tube over a range of pressures and gas compositions in the vacuum chamber publication-title: J. Renew. Sust. Energy contributor: fullname: Cachafeiro – volume: 219 start-page: 272 year: 2008 end-page: 292 ident: b0145 article-title: Heat and mass transfer analysis in direct contact membrane distillation publication-title: Desalination contributor: fullname: Khayetb – volume: 89 start-page: 128 year: 2014 end-page: 145 ident: b0120 article-title: Sustainability of Open Source software communities beyond a fork: How and why has the LibreOffice project evolved? publication-title: J. Syst Software contributor: fullname: Lundell – year: 1983 ident: b0135 article-title: Transferência de Calor contributor: fullname: Holman – volume: 66 start-page: 855 year: 2013 end-page: 867 ident: b0090 article-title: An experimentally optimized model for heat and mass transfer in direct contact membrane distillation publication-title: Int. J. Heat Mass Tran. contributor: fullname: Poulikakos – volume: 1 start-page: 21 year: 2010 end-page: 24 ident: b0035 article-title: Autonomous membrane distillation pilot plant unit driven by solar energy: experiences and lessons learned publication-title: Int. J. Sustain. Water Environ. Syst. contributor: fullname: Jwaied – volume: 7 start-page: 1 year: 2016 end-page: 28 ident: b0065 article-title: Materials and membrane technologies for water and energy sustainability publication-title: Sustain. Mater. Technol. contributor: fullname: Nunes – volume: 784 start-page: 681 year: 2015 end-page: 693 ident: b0080 article-title: Enhanced secondary motion of the turbulent flow through a porous square duct publication-title: J. Fluid Mech. contributor: fullname: Brandt – year: 2008 ident: b0140 article-title: Fundamentals of Momentum, Heat, and Mass Transfer contributor: fullname: Rorrer – volume: 124 start-page: 1 year: 1997 end-page: 23 ident: b0015 article-title: Membrane distillation publication-title: J. Membr. Sci. contributor: fullname: Lloyd – volume: 77 start-page: 279 year: 1990 end-page: 294 ident: b0175 article-title: Factors affecting flux in membrane distillation publication-title: Desalination contributor: fullname: Macoun – volume: 392–393 start-page: 231 year: 2002 end-page: 236 ident: b0195 article-title: Thermal conductivity of PTFE and PTFE composites publication-title: Thermochim. Acta contributor: fullname: Jarrat – volume: 512 start-page: 73 year: 2016 end-page: 82 ident: b0185 article-title: Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water publication-title: J. Membr. Sci. contributor: fullname: Ghaffour – volume: 99 start-page: 51 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0030 article-title: Solar-driven flash vaporization membrane distillation for arsenic removal from groundwater: experimental investigation and analysis of performance parameters publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2015.10.016 contributor: fullname: Manna – volume: 77 start-page: 279 year: 1990 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0175 article-title: Factors affecting flux in membrane distillation publication-title: Desalination doi: 10.1016/0011-9164(90)85030-E contributor: fullname: Schofield – volume: 219 start-page: 272 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0145 article-title: Heat and mass transfer analysis in direct contact membrane distillation publication-title: Desalination doi: 10.1016/j.desal.2007.05.019 contributor: fullname: Qtaishata – volume: 5 start-page: 94 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0070 article-title: Advances in membrane distillation for water desalination and purification applications publication-title: Water doi: 10.3390/w5010094 contributor: fullname: Camacho – volume: 33 start-page: 201 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0055 article-title: Desalination by membrane distillation: a parametric study publication-title: Sep. Sci. Technol. doi: 10.1080/01496399808544764 contributor: fullname: Banat – volume: 124 start-page: 1 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0015 article-title: Membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00236-0 contributor: fullname: Lawson – volume: 156 start-page: 265 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0150 article-title: Temperature and concentration polarization in membrane distillation of aqueous salt solutions publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00349-4 contributor: fullname: Martínez-Díez – year: 1994 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0130 contributor: fullname: Chapman – volume: 58 start-page: 47 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0045 article-title: Water purification of arsenic contaminated drinking water via air gap membrane distillation (AGMD) publication-title: Period. Polytech. Eng. doi: 10.3311/PPme.7422 contributor: fullname: Khan – volume: 89 start-page: 128 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0120 article-title: Sustainability of Open Source software communities beyond a fork: How and why has the LibreOffice project evolved? publication-title: J. Syst Software doi: 10.1016/j.jss.2013.11.1077 contributor: fullname: Gamalielsson – year: 1983 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0135 contributor: fullname: Holman – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0065 article-title: Materials and membrane technologies for water and energy sustainability publication-title: Sustain. Mater. Technol. contributor: fullname: Le – volume: 409–410 start-page: 264 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0040 article-title: Experimental evaluation of two pilot-scale membrane distillation modules used for solar desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.03.063 contributor: fullname: Guillén-Burrieza – volume: 166 start-page: 1 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0095 article-title: Direct contact membrane distillation: modeling and concentration experiments publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00234-3 contributor: fullname: Fortunato – volume: 11 start-page: 93 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0220 article-title: Membrane distillation with laminar flow publication-title: Sep. Sup. Technol. doi: 10.1016/S1383-5866(97)00002-6 contributor: fullname: Gryta – ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0200 – volume: 15 start-page: 299 year: 1964 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0205 article-title: Laminar flow in a uniformly porous channel publication-title: Aeronaut. Q. doi: 10.1017/S0001925900010908 contributor: fullname: Terrill – volume: 75 start-page: 3083 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0115 article-title: Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: state-of-the-art and perspectives publication-title: Energy Proc. doi: 10.1016/j.egypro.2015.07.634 contributor: fullname: Chang – volume: 377 start-page: 73 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0110 article-title: CFD simulation of direct contact membrane distillation modules with rough surface channels publication-title: Desalination doi: 10.1016/j.desal.2015.09.010 contributor: fullname: Shirazi – volume: 212 start-page: 177 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0160 article-title: Heat transport and membrane distillation coefficients in direct contact membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00498-2 contributor: fullname: Phattaranawik – volume: 323 start-page: 93 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0050 article-title: Membrane distillation: Solar and waste heat driven demonstration plants for desalination publication-title: Desalination doi: 10.1016/j.desal.2013.04.011 contributor: fullname: Schwantes – volume: 28 start-page: 191 year: 1986 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0215 article-title: Fluid flow in an idealized spiral wound membrane module publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)82210-3 contributor: fullname: Chatterjee – year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0165 contributor: fullname: Ghavane – volume: 33 start-page: 299 year: 1987 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0180 article-title: Heat and mass transfer in membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)80287-2 contributor: fullname: Schofield – year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0060 article-title: Low energy and low cost freshwater production by membrane distillation contributor: fullname: Bappy – volume: 784 start-page: 681 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0080 article-title: Enhanced secondary motion of the turbulent flow through a porous square duct publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.623 contributor: fullname: Samanta – volume: 53 start-page: 1249 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0100 article-title: Monte Carlo simulation and experimental heat and mass transfer in direct contact membrane distillation publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2009.12.043 contributor: fullname: Khayet – volume: 311 start-page: 103 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0105 article-title: Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code publication-title: Desalination doi: 10.1016/j.desal.2012.11.005 contributor: fullname: Al-Sharif – volume: 392–393 start-page: 231 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0195 article-title: Thermal conductivity of PTFE and PTFE composites publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(02)00105-3 contributor: fullname: Price – volume: 39 start-page: 343 year: 1984 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0210 article-title: Lateral migration of spherical particles in porous flow channels: application to membrane filtration publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(84)80033-0 contributor: fullname: Altena – volume: 164 start-page: 56 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0010 article-title: Membranes and theoretical modeling of membrane distillation: a review publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2010.09.005 contributor: fullname: Khayet – year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0140 contributor: fullname: Welty – volume: 66 start-page: 855 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0090 article-title: An experimentally optimized model for heat and mass transfer in direct contact membrane distillation publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2013.07.051 contributor: fullname: Andrjesdóttir – volume: 144 start-page: 211 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0155 article-title: Heat transport in the membrane distillation process publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00050-7 contributor: fullname: Gryta – volume: 8–2 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0085 article-title: Simulations and experiments of heat loss from a parabolic trough absorber tube over a range of pressures and gas compositions in the vacuum chamber publication-title: J. Renew. Sust. Energy contributor: fullname: Vinuesa – volume: 1 start-page: 21 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0035 article-title: Autonomous membrane distillation pilot plant unit driven by solar energy: experiences and lessons learned publication-title: Int. J. Sustain. Water Environ. Syst. doi: 10.5383/swes.0101.005 contributor: fullname: Banat – volume: 142 start-page: 48 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0075 article-title: Modelling approaches in membrane distillation: a critical review publication-title: Sep. Pur. Technol. doi: 10.1016/j.seppur.2014.12.026 contributor: fullname: Hitsov – year: 2004 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0125 contributor: fullname: Bejan – volume: 287 start-page: 2 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0020 article-title: Membrane distillation: a comprehensive review publication-title: Desalination doi: 10.1016/j.desal.2011.08.027 contributor: fullname: Alkhudhiri – volume: 384 start-page: 107 issue: 1–2 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0170 article-title: Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.09.011 contributor: fullname: Yu – volume: 336 start-page: 110 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0190 article-title: Effect of operational parameters on distillate flux in direct contact membrane distillation (DCMD): comparison between experimental and model predicted performance publication-title: Desalination doi: 10.1016/j.desal.2014.01.003 contributor: fullname: Manawi – volume: 512 start-page: 73 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0185 article-title: Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.04.010 contributor: fullname: Xu – volume: 173 start-page: 225 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0005 article-title: A method to evaluate coefficients affecting flux in membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00362-8 contributor: fullname: Diéz – volume: 474 start-page: 39 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.07.014_b0025 article-title: Recent advances in membrane distillation processes: membrane development, configuration design and application exploring publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.09.016 contributor: fullname: Wang |
SSID | ssj0017046 |
Score | 2.3737323 |
Snippet | •Estimation of a bi-dimensional temperature profile and thermal boundary layer thickness.•Comprehensive and detailed description of the modelling approach... A good knowledge on thermal boundary layer thickness and mass flux are important features in the development of membrane distillation pilot modules. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1205 |
SubjectTerms | Bi-dimensional temperature modelling Boundary layer thickness Convective heat transfer Direct contact membrane distillation Distillation Flux prediction Heat flux Mass transfer Modelling Open source software Temperature profiles Thermal boundary layer |
Title | Bi-dimensional modelling of the thermal boundary layer and mass flux prediction for direct contact membrane distillation |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.07.014 https://www.proquest.com/docview/2280499446 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZpy8YuYz9Zu27osMPAONiWY0XHNM3oxrrD0kFvRpZlcLDT0SSj3V-_9yTZSrsfrLBdjJFBtvU-v_dJ-t4zIW-irOJMFjyMRTkK06zMQuBxUShUVigmmUpLzHc-mfNP5-PjWTobDLpin77tv1oa2sDWmDl7B2v3nUIDnIPN4QhWh-Nf2f2oDkus2G-rbdg_3TRO2owkEwlfCxcK8z-ly-ugkcC6zR5CC0Q6qJrNFVYOKGvVyxBt3DOydkypbHULc2xgpyU6iKbxxl14XbxfZtwqToGe399qbUizlwdPmm-YDWXWbrUyW_jHTS2D0-F86HVCENVtRvem_i6Do_7KZ9laySCcYMqGDD72107BazaGJk9tt0twbIHr1a15xKJXz7mFuC4ZxyufjHOHgCuYU8lq68_HXITAYsQNh29LbTmXHSfRaCv8Y7WNX4YWu8qxGNYLHCscpm6UUCAoTAlYmw97q4D3PDJeEDqAA1bD2SF7CTSAV96bvJ-df-h3vXhkE8u6F7lP3no94p_v-ztadYtgGNZ09og8dNMdOrE4fUwGevmE3DOyY7V6Sq5uopX2aKUXFQWkUodW2qGVGrRSgBDFZ6SIVurRSgGt1KKVOrTSDq10G63PyJd3s7PpSej-BRKqNOLrEKhcxQoIGCnu1ZeCR0IWcaJFDAEpUjxhkjM-KgqRyVjrRI1VAfRVpWkVcc4Ve052lxdL_YLQOIM5f1EmUla4ugCEnWkmzdS7SKSO94nohjL_aku-5J0WcpH_bIYczZBHPAcz7JNpN_a5o7D2pXOA0R16OezMlrtvdJVj3apUiDTNDv7JTV6SB_7TOiS768uNfkV2VuXmtcPlD6JC2fg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-dimensional+modelling+of+the+thermal+boundary+layer+and+mass+flux+prediction+for+direct+contact+membrane+distillation&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Alvares%2C+Cec%C3%ADlia+M.S.&rft.au=Grossi%2C+Luiza+B.&rft.au=Ramos%2C+Ramatisa+L.&rft.au=Magela%2C+C%C3%ADntia+S.&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=141&rft.spage=1205&rft.epage=1215&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.07.014&rft.externalDocID=S0017931019315996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |