The index formula and the spectral shift function for relatively trace class perturbations

We compute the Fredholm index, index ( D A ) , of the operator D A = ( d / d t ) + A on L 2 ( R ; H ) associated with the operator path { A ( t ) } t = − ∞ ∞ , where ( A f ) ( t ) = A ( t ) f ( t ) for a.e. t ∈ R , and appropriate f ∈ L 2 ( R ; H ) , via the spectral shift function ξ ( ⋅ ; A + , A −...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) Vol. 227; no. 1; pp. 319 - 420
Main Authors: Gesztesy, Fritz, Latushkin, Yuri, Makarov, Konstantin A., Sukochev, Fedor, Tomilov, Yuri
Format: Journal Article
Language:English
Published: Elsevier Inc 01-05-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first