The index formula and the spectral shift function for relatively trace class perturbations
We compute the Fredholm index, index ( D A ) , of the operator D A = ( d / d t ) + A on L 2 ( R ; H ) associated with the operator path { A ( t ) } t = − ∞ ∞ , where ( A f ) ( t ) = A ( t ) f ( t ) for a.e. t ∈ R , and appropriate f ∈ L 2 ( R ; H ) , via the spectral shift function ξ ( ⋅ ; A + , A −...
Saved in:
Published in: | Advances in mathematics (New York. 1965) Vol. 227; no. 1; pp. 319 - 420 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
01-05-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!