The index formula and the spectral shift function for relatively trace class perturbations

We compute the Fredholm index, index ( D A ) , of the operator D A = ( d / d t ) + A on L 2 ( R ; H ) associated with the operator path { A ( t ) } t = − ∞ ∞ , where ( A f ) ( t ) = A ( t ) f ( t ) for a.e. t ∈ R , and appropriate f ∈ L 2 ( R ; H ) , via the spectral shift function ξ ( ⋅ ; A + , A −...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) Vol. 227; no. 1; pp. 319 - 420
Main Authors: Gesztesy, Fritz, Latushkin, Yuri, Makarov, Konstantin A., Sukochev, Fedor, Tomilov, Yuri
Format: Journal Article
Language:English
Published: Elsevier Inc 01-05-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We compute the Fredholm index, index ( D A ) , of the operator D A = ( d / d t ) + A on L 2 ( R ; H ) associated with the operator path { A ( t ) } t = − ∞ ∞ , where ( A f ) ( t ) = A ( t ) f ( t ) for a.e. t ∈ R , and appropriate f ∈ L 2 ( R ; H ) , via the spectral shift function ξ ( ⋅ ; A + , A − ) associated with the pair ( A + , A − ) of asymptotic operators A ± = A ( ± ∞ ) on the separable complex Hilbert space H in the case when A ( t ) is generally an unbounded (relatively trace class) perturbation of the unbounded self-adjoint operator A − . We derive a formula (an extension of a formula due to Pushnitski) relating the spectral shift function ξ ( ⋅ ; A + , A − ) for the pair ( A + , A − ) , and the corresponding spectral shift function ξ ( ⋅ ; H 2 , H 1 ) for the pair of operators ( H 2 , H 1 ) = ( D A D A ⁎ , D A ⁎ D A ) in this relative trace class context, ξ ( λ ; H 2 , H 1 ) = 1 π ∫ − λ 1 / 2 λ 1 / 2 ξ ( ν ; A + , A − ) d ν ( λ − ν 2 ) 1 / 2 for a.e. λ > 0 . This formula is then used to identify the Fredholm index of D A with ξ ( 0 ; A + , A − ) . In addition, we prove that index ( D A ) coincides with the spectral flow SpFlow ( { A ( t ) } t = − ∞ ∞ ) of the family { A ( t ) } t ∈ R and also relate it to the (Fredholm) perturbation determinant for the pair ( A + , A − ) : index ( D A ) = SpFlow ( { A ( t ) } t = − ∞ ∞ ) = ξ ( 0 ; A + , A − ) = π − 1 lim ε ↓ 0 Im ( ln ( det H ( ( A + − i ε I ) ( A − − i ε I ) − 1 ) ) ) = ξ ( 0 + ; H 2 , H 1 ) , with the choice of the branch of ln ( det H ( ⋅ ) ) on C + such that lim Im ( z ) → + ∞ ln ( det H ( ( A + − z I ) ( A − − z I ) − 1 ) ) = 0 . We also provide some applications in the context of supersymmetric quantum mechanics to zeta function and heat kernel regularized spectral asymmetries and the eta-invariant.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2011.01.022