Enhancing IoT Connectivity in Massive MIMO Networks through Systematic Scheduling and Power Control Strategies
Massive MIMO systems can support a large number of Internet of Things (IoT) devices, even if the number of IoT devices exceeds the number of service antennas in a single base station (BS) located at the data center. In order to improve the performance of Massive MIMO with massive IoT connectivity in...
Saved in:
Published in: | Mathematics (Basel) Vol. 11; no. 13; p. 3012 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-07-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Massive MIMO systems can support a large number of Internet of Things (IoT) devices, even if the number of IoT devices exceeds the number of service antennas in a single base station (BS) located at the data center. In order to improve the performance of Massive MIMO with massive IoT connectivity in a BS, simple scheduling and power control schemes can be of great help, but typically, they require high power consumption in the situation of serious shadow fading. In this paper, we try to improve the performance of Massive MIMO with massive IoT connectivity by using the dropping technique that drops the IoT devices that require high power consumption. Several scheduling and power control schemes have been proposed to increase the spectral efficiency (SE) and the energy efficiency (EE) of Massive MIMO systems. By the combination of these schemes with the dropping technique, we show that the performance can be even further increased under some circumstances. There is a dropping coefficient factor (DCF) to determine the IoT devices that should be dropped. This technique gives more benefits to the power control schemes that require higher power consumption. Simulation results and relevant analyses are provided to verify the effectiveness of the proposed technique. |
---|---|
AbstractList | Massive MIMO systems can support a large number of Internet of Things (IoT) devices, even if the number of IoT devices exceeds the number of service antennas in a single base station (BS) located at the data center. In order to improve the performance of Massive MIMO with massive IoT connectivity in a BS, simple scheduling and power control schemes can be of great help, but typically, they require high power consumption in the situation of serious shadow fading. In this paper, we try to improve the performance of Massive MIMO with massive IoT connectivity by using the dropping technique that drops the IoT devices that require high power consumption. Several scheduling and power control schemes have been proposed to increase the spectral efficiency (SE) and the energy efficiency (EE) of Massive MIMO systems. By the combination of these schemes with the dropping technique, we show that the performance can be even further increased under some circumstances. There is a dropping coefficient factor (DCF) to determine the IoT devices that should be dropped. This technique gives more benefits to the power control schemes that require higher power consumption. Simulation results and relevant analyses are provided to verify the effectiveness of the proposed technique. |
Audience | Academic |
Author | Lee, Byung Moo |
Author_xml | – sequence: 1 givenname: Byung Moo orcidid: 0000-0003-3675-929X surname: Lee fullname: Lee, Byung Moo |
BookMark | eNpNkdtqGzEQhkVIIambuz6AoLd1ujqsDpfBpIkhbgpOrxetNLsr15ZSSU7w20euS4kGoWE08-kX_0d0HmIAhD6T5pox3XzbmTIRQhhrCD1Dl5RSOZf14vxdfoGuct40dWnCFNeXKNyGyQTrw4iX8QkvYghgi3_x5YB9wCuTs38BvFquHvEPKK8x_c64TCnuxwmvD7lAfddbvLYTuP32yDHB4Z_xFdKRVlLc4nVJpsDoIX9CHwazzXD175yhX99vnxb384fHu-Xi5mFueSPK3BCqDFDHVW9bYL2mAzeiJUCU7TlvqBxM75iygkupQdl2IFrIoemZdcRyNkPLE9dFs-mek9-ZdOii8d3fQkxjZ1LVvYVOtkRoJXtKnOVcqp464axklgnBjsQZ-nJiPaf4Zw-5dJu4T6HK76higmnJtahd16eu0VSoD0Osn7Y1HOy8rVYNvtZvZKuYrlvVga-nAZtizgmG_zJJ0x0d7d47yt4A0SmVaQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3385860 crossref_primary_10_3390_math11183812 crossref_primary_10_3390_math11204326 |
Cites_doi | 10.1109/TCYB.2021.3086181 10.1016/j.eswa.2020.113678 10.1109/TCOMM.2016.2591007 10.1109/TVT.2017.2728641 10.1109/TNSE.2022.3196463 10.1017/CBO9781316799895 10.1109/TII.2022.3192881 10.1109/JIOT.2021.3098277 10.1109/TWC.2020.2991113 10.1109/TIE.2019.2924855 10.1109/TCYB.2020.3025662 10.1109/TSP.2016.2523459 10.1109/TWC.2015.2488634 10.1016/j.eswa.2022.116920 10.1109/TCYB.2019.2939219 10.1109/TCYB.2022.3192112 10.1109/TII.2014.2300753 10.1109/TCOMM.2017.2725262 10.1109/LCOMM.2019.2934680 10.1109/TSP.2014.2376886 10.1109/TWC.2019.2908362 10.1109/TWC.2015.2400437 10.1109/JIOT.2020.3019029 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math11133012 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_7516987b21dc4478b2d6dc73c3663f0b A758395838 10_3390_math11133012 |
GroupedDBID | -~X 3V. 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABJNI ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M0N M7S MODMG M~E OK1 PIMPY PQQKQ PROAC PTHSS RNS 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-a128ae2d48bc5e3b92f4a651e18cb44027fabd38c64779e8c5f1967f0b3cd1c43 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Tue Oct 22 15:10:05 EDT 2024 Thu Oct 10 18:06:54 EDT 2024 Wed Nov 13 00:10:16 EST 2024 Thu Nov 21 23:19:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-a128ae2d48bc5e3b92f4a651e18cb44027fabd38c64779e8c5f1967f0b3cd1c43 |
ORCID | 0000-0003-3675-929X |
OpenAccessLink | https://doaj.org/article/7516987b21dc4478b2d6dc73c3663f0b |
PQID | 2836397496 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7516987b21dc4478b2d6dc73c3663f0b proquest_journals_2836397496 gale_infotracacademiconefile_A758395838 crossref_primary_10_3390_math11133012 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ciuonzo (ref_4) 2015; 63 Bjornson (ref_17) 2016; 15 Zhao (ref_11) 2021; 51 Shirazinia (ref_5) 2016; 64 Zhao (ref_13) 2022; 19 Bai (ref_16) 2016; 64 Zhao (ref_10) 2021; 52 Xu (ref_15) 2018; 67 Zhao (ref_8) 2020; 160 Bjornson (ref_22) 2015; 14 Lee (ref_3) 2020; 67 Lee (ref_24) 2022; 9 Farsaei (ref_19) 2019; 23 Yang (ref_18) 2017; 65 ref_25 ref_23 ref_20 Fitzgerald (ref_14) 2019; 18 Xu (ref_1) 2014; 10 ref_2 Zhou (ref_9) 2021; 51 Lee (ref_6) 2022; 200 Dey (ref_7) 2020; 19 Zhao (ref_12) 2022; 53 Lee (ref_21) 2021; 8 |
References_xml | – volume: 52 start-page: 12675 year: 2021 ident: ref_10 article-title: A Self-Learning Discrete Jaya Algorithm for Multiobjective Energy-Efficient Distributed No-Idle Flow-Shop Scheduling Problem in Heterogeneous Factory System publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3086181 contributor: fullname: Zhao – volume: 160 start-page: 113678 year: 2020 ident: ref_8 article-title: An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113678 contributor: fullname: Zhao – volume: 64 start-page: 4592 year: 2016 ident: ref_16 article-title: Analyzing Uplink SINR and Rate in Massive MIMO Systems Using Stochastic Geometry publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2016.2591007 contributor: fullname: Bai – volume: 67 start-page: 467 year: 2018 ident: ref_15 article-title: Pilot Reuse Among D2D Users in D2D Underlaid Massive MIMO Systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2728641 contributor: fullname: Xu – ident: ref_2 doi: 10.1109/TNSE.2022.3196463 – ident: ref_20 doi: 10.1017/CBO9781316799895 – volume: 19 start-page: 6692 year: 2022 ident: ref_13 article-title: A Population-Based Iterated Greedy Algorithm for Distributed Assembly No-Wait Flow-Shop Scheduling Problem publication-title: IEEE Trans Industr. Inform. doi: 10.1109/TII.2022.3192881 contributor: fullname: Zhao – volume: 9 start-page: 3657 year: 2022 ident: ref_24 article-title: Energy Efficient Massive MIMO in Massive Industrial Internet of Things Networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3098277 contributor: fullname: Lee – volume: 19 start-page: 5246 year: 2020 ident: ref_7 article-title: Wideband Collaborative Spectrum Sensing Using Massive MIMO Decision Fusion publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2020.2991113 contributor: fullname: Dey – volume: 67 start-page: 5187 year: 2020 ident: ref_3 article-title: Massive MIMO with Massive Connectivity for Industrial Internet of Things publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2924855 contributor: fullname: Lee – ident: ref_23 – volume: 51 start-page: 5291 year: 2021 ident: ref_11 article-title: A Two-Stage Cooperative Evolutionary Algorithm with Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3025662 contributor: fullname: Zhao – volume: 64 start-page: 2499 year: 2016 ident: ref_5 article-title: Massive MIMO for Decentralized Estimation of a Correlated Source publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2523459 contributor: fullname: Shirazinia – volume: 15 start-page: 1293 year: 2016 ident: ref_17 article-title: Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated? publication-title: IEEE Wirel. Commun. doi: 10.1109/TWC.2015.2488634 contributor: fullname: Bjornson – volume: 200 start-page: 116920 year: 2022 ident: ref_6 article-title: Energy efficient scheduling and power control of massive MIMO in massive IoT networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116920 contributor: fullname: Lee – volume: 51 start-page: 1430 year: 2021 ident: ref_9 article-title: A Self-Adaptive Differential Evolution Algorithm for Scheduling a Single Batch-Processing Machine with Arbitrary Job Sizes and Release Times publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2939219 contributor: fullname: Zhou – ident: ref_25 – volume: 53 start-page: 3337 year: 2022 ident: ref_12 article-title: A Hyperheuristic with Q-Learning for the Multiobjective Energy-Efficient Distributed Blocking Flow Shop Scheduling Problem publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3192112 contributor: fullname: Zhao – volume: 10 start-page: 2233 year: 2014 ident: ref_1 article-title: Internet of Things in Industries: A Survey publication-title: IEEE Trans. Ind. Informat doi: 10.1109/TII.2014.2300753 contributor: fullname: Xu – volume: 65 start-page: 4685 year: 2017 ident: ref_18 article-title: Massive MIMO with Max-Min Power Control in Line-of-Sight Propagation Environment publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2017.2725262 contributor: fullname: Yang – volume: 23 start-page: 2099 year: 2019 ident: ref_19 article-title: An Improved Dropping Algorithm for Line-of-Sight Massive MIMO with Tomlinson-Harashima Precoding publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2934680 contributor: fullname: Farsaei – volume: 63 start-page: 604 year: 2015 ident: ref_4 article-title: Massive MIMO channel-aware decision fusion publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2376886 contributor: fullname: Ciuonzo – volume: 18 start-page: 2794 year: 2019 ident: ref_14 article-title: Massive MIMO Optimization with Compatible Sets publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2019.2908362 contributor: fullname: Fitzgerald – volume: 14 start-page: 3059 year: 2015 ident: ref_22 article-title: Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer? publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2015.2400437 contributor: fullname: Bjornson – volume: 8 start-page: 2585 year: 2021 ident: ref_21 article-title: Adaptive Switching Scheme for RS Overhead Reduction in Massive MIMO with Industrial Internet of Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3019029 contributor: fullname: Lee |
SSID | ssj0000913849 |
Score | 2.2968547 |
Snippet | Massive MIMO systems can support a large number of Internet of Things (IoT) devices, even if the number of IoT devices exceeds the number of service antennas... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 3012 |
SubjectTerms | Analysis Computer centers Connectivity Data centers Devices energy efficiency Energy management systems Internet of Things massive connectivity Massive MIMO Mathematics MIMO (control systems) MIMO communication MIMO communications Performance enhancement Power consumption Power control Power management Scheduling Wireless telecommunications equipment |
Title | Enhancing IoT Connectivity in Massive MIMO Networks through Systematic Scheduling and Power Control Strategies |
URI | https://www.proquest.com/docview/2836397496 https://doaj.org/article/7516987b21dc4478b2d6dc73c3663f0b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwFLSACgrEKZZLLkBUEYntxHbJsaulWEBakOgsn0CTRQT-n_eS7AoKREMbRZE1L36HPJ4h5ESkvHShKLIgtcpEYFVmQ86zxHIdfIDJOeBt5PFU3j6p6yHK5CysvpAT1skDd8CdSzzIUdKxInghpHIsVMFL7jnUypS7Nvvm1bdhqs3BuuBK6I7pzmGuP4f-7wVt1eGHZj9qUCvV_1tCbqvMaIOs9-0hveiWtUmWYr1F1iYLbdVmm9TD-gVFMupnejN7oC1TxXceEPS1phPohiGD0cnN5I7ediTvhvZ2PHS6EG6mUwhXQB76M7V1oPdol4ZfQ-Y6nYvWxmaHPI6GD1fjrHdNyDwU54_MQsWxkQWhnC8jd5olYauyiIXyTsC4KJN1gSuPV1B1VL5MsAslQMl9KLzgu2SlntVxj9C8SApCrHPtFc6ZNkqXXOLMMe5LZQfkdI6jeevEMQwMFYi3-Y73gFwiyIt3UNK6fQCBNn2gzV-BHpAzDJHBjQcYeNvfH4ClooSVuYDJh2s8BR6Qw3kUTb8jGwNtFJ5hCl3t_8dqDsgqGs93xN1DsvLx_hmPyHITPo_bP_EL5OnjVw |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+IoT+Connectivity+in+Massive+MIMO+Networks+through+Systematic+Scheduling+and+Power+Control+Strategies&rft.jtitle=Mathematics+%28Basel%29&rft.au=Lee%2C+Byung+Moo&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=13&rft.spage=3012&rft_id=info:doi/10.3390%2Fmath11133012&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |