Enhancing IoT Connectivity in Massive MIMO Networks through Systematic Scheduling and Power Control Strategies

Massive MIMO systems can support a large number of Internet of Things (IoT) devices, even if the number of IoT devices exceeds the number of service antennas in a single base station (BS) located at the data center. In order to improve the performance of Massive MIMO with massive IoT connectivity in...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 11; no. 13; p. 3012
Main Author: Lee, Byung Moo
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Massive MIMO systems can support a large number of Internet of Things (IoT) devices, even if the number of IoT devices exceeds the number of service antennas in a single base station (BS) located at the data center. In order to improve the performance of Massive MIMO with massive IoT connectivity in a BS, simple scheduling and power control schemes can be of great help, but typically, they require high power consumption in the situation of serious shadow fading. In this paper, we try to improve the performance of Massive MIMO with massive IoT connectivity by using the dropping technique that drops the IoT devices that require high power consumption. Several scheduling and power control schemes have been proposed to increase the spectral efficiency (SE) and the energy efficiency (EE) of Massive MIMO systems. By the combination of these schemes with the dropping technique, we show that the performance can be even further increased under some circumstances. There is a dropping coefficient factor (DCF) to determine the IoT devices that should be dropped. This technique gives more benefits to the power control schemes that require higher power consumption. Simulation results and relevant analyses are provided to verify the effectiveness of the proposed technique.
AbstractList Massive MIMO systems can support a large number of Internet of Things (IoT) devices, even if the number of IoT devices exceeds the number of service antennas in a single base station (BS) located at the data center. In order to improve the performance of Massive MIMO with massive IoT connectivity in a BS, simple scheduling and power control schemes can be of great help, but typically, they require high power consumption in the situation of serious shadow fading. In this paper, we try to improve the performance of Massive MIMO with massive IoT connectivity by using the dropping technique that drops the IoT devices that require high power consumption. Several scheduling and power control schemes have been proposed to increase the spectral efficiency (SE) and the energy efficiency (EE) of Massive MIMO systems. By the combination of these schemes with the dropping technique, we show that the performance can be even further increased under some circumstances. There is a dropping coefficient factor (DCF) to determine the IoT devices that should be dropped. This technique gives more benefits to the power control schemes that require higher power consumption. Simulation results and relevant analyses are provided to verify the effectiveness of the proposed technique.
Audience Academic
Author Lee, Byung Moo
Author_xml – sequence: 1
  givenname: Byung Moo
  orcidid: 0000-0003-3675-929X
  surname: Lee
  fullname: Lee, Byung Moo
BookMark eNpNkdtqGzEQhkVIIambuz6AoLd1ujqsDpfBpIkhbgpOrxetNLsr15ZSSU7w20euS4kGoWE08-kX_0d0HmIAhD6T5pox3XzbmTIRQhhrCD1Dl5RSOZf14vxdfoGuct40dWnCFNeXKNyGyQTrw4iX8QkvYghgi3_x5YB9wCuTs38BvFquHvEPKK8x_c64TCnuxwmvD7lAfddbvLYTuP32yDHB4Z_xFdKRVlLc4nVJpsDoIX9CHwazzXD175yhX99vnxb384fHu-Xi5mFueSPK3BCqDFDHVW9bYL2mAzeiJUCU7TlvqBxM75iygkupQdl2IFrIoemZdcRyNkPLE9dFs-mek9-ZdOii8d3fQkxjZ1LVvYVOtkRoJXtKnOVcqp464axklgnBjsQZ-nJiPaf4Zw-5dJu4T6HK76higmnJtahd16eu0VSoD0Osn7Y1HOy8rVYNvtZvZKuYrlvVga-nAZtizgmG_zJJ0x0d7d47yt4A0SmVaQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3385860
crossref_primary_10_3390_math11183812
crossref_primary_10_3390_math11204326
Cites_doi 10.1109/TCYB.2021.3086181
10.1016/j.eswa.2020.113678
10.1109/TCOMM.2016.2591007
10.1109/TVT.2017.2728641
10.1109/TNSE.2022.3196463
10.1017/CBO9781316799895
10.1109/TII.2022.3192881
10.1109/JIOT.2021.3098277
10.1109/TWC.2020.2991113
10.1109/TIE.2019.2924855
10.1109/TCYB.2020.3025662
10.1109/TSP.2016.2523459
10.1109/TWC.2015.2488634
10.1016/j.eswa.2022.116920
10.1109/TCYB.2019.2939219
10.1109/TCYB.2022.3192112
10.1109/TII.2014.2300753
10.1109/TCOMM.2017.2725262
10.1109/LCOMM.2019.2934680
10.1109/TSP.2014.2376886
10.1109/TWC.2019.2908362
10.1109/TWC.2015.2400437
10.1109/JIOT.2020.3019029
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11133012
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_7516987b21dc4478b2d6dc73c3663f0b
A758395838
10_3390_math11133012
GroupedDBID -~X
3V.
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABJNI
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M0N
M7S
MODMG
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNS
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-a128ae2d48bc5e3b92f4a651e18cb44027fabd38c64779e8c5f1967f0b3cd1c43
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Tue Oct 22 15:10:05 EDT 2024
Thu Oct 10 18:06:54 EDT 2024
Wed Nov 13 00:10:16 EST 2024
Thu Nov 21 23:19:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a128ae2d48bc5e3b92f4a651e18cb44027fabd38c64779e8c5f1967f0b3cd1c43
ORCID 0000-0003-3675-929X
OpenAccessLink https://doaj.org/article/7516987b21dc4478b2d6dc73c3663f0b
PQID 2836397496
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_7516987b21dc4478b2d6dc73c3663f0b
proquest_journals_2836397496
gale_infotracacademiconefile_A758395838
crossref_primary_10_3390_math11133012
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ciuonzo (ref_4) 2015; 63
Bjornson (ref_17) 2016; 15
Zhao (ref_11) 2021; 51
Shirazinia (ref_5) 2016; 64
Zhao (ref_13) 2022; 19
Bai (ref_16) 2016; 64
Zhao (ref_10) 2021; 52
Xu (ref_15) 2018; 67
Zhao (ref_8) 2020; 160
Bjornson (ref_22) 2015; 14
Lee (ref_3) 2020; 67
Lee (ref_24) 2022; 9
Farsaei (ref_19) 2019; 23
Yang (ref_18) 2017; 65
ref_25
ref_23
ref_20
Fitzgerald (ref_14) 2019; 18
Xu (ref_1) 2014; 10
ref_2
Zhou (ref_9) 2021; 51
Lee (ref_6) 2022; 200
Dey (ref_7) 2020; 19
Zhao (ref_12) 2022; 53
Lee (ref_21) 2021; 8
References_xml – volume: 52
  start-page: 12675
  year: 2021
  ident: ref_10
  article-title: A Self-Learning Discrete Jaya Algorithm for Multiobjective Energy-Efficient Distributed No-Idle Flow-Shop Scheduling Problem in Heterogeneous Factory System
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3086181
  contributor:
    fullname: Zhao
– volume: 160
  start-page: 113678
  year: 2020
  ident: ref_8
  article-title: An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113678
  contributor:
    fullname: Zhao
– volume: 64
  start-page: 4592
  year: 2016
  ident: ref_16
  article-title: Analyzing Uplink SINR and Rate in Massive MIMO Systems Using Stochastic Geometry
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2016.2591007
  contributor:
    fullname: Bai
– volume: 67
  start-page: 467
  year: 2018
  ident: ref_15
  article-title: Pilot Reuse Among D2D Users in D2D Underlaid Massive MIMO Systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2728641
  contributor:
    fullname: Xu
– ident: ref_2
  doi: 10.1109/TNSE.2022.3196463
– ident: ref_20
  doi: 10.1017/CBO9781316799895
– volume: 19
  start-page: 6692
  year: 2022
  ident: ref_13
  article-title: A Population-Based Iterated Greedy Algorithm for Distributed Assembly No-Wait Flow-Shop Scheduling Problem
  publication-title: IEEE Trans Industr. Inform.
  doi: 10.1109/TII.2022.3192881
  contributor:
    fullname: Zhao
– volume: 9
  start-page: 3657
  year: 2022
  ident: ref_24
  article-title: Energy Efficient Massive MIMO in Massive Industrial Internet of Things Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3098277
  contributor:
    fullname: Lee
– volume: 19
  start-page: 5246
  year: 2020
  ident: ref_7
  article-title: Wideband Collaborative Spectrum Sensing Using Massive MIMO Decision Fusion
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2020.2991113
  contributor:
    fullname: Dey
– volume: 67
  start-page: 5187
  year: 2020
  ident: ref_3
  article-title: Massive MIMO with Massive Connectivity for Industrial Internet of Things
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2924855
  contributor:
    fullname: Lee
– ident: ref_23
– volume: 51
  start-page: 5291
  year: 2021
  ident: ref_11
  article-title: A Two-Stage Cooperative Evolutionary Algorithm with Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3025662
  contributor:
    fullname: Zhao
– volume: 64
  start-page: 2499
  year: 2016
  ident: ref_5
  article-title: Massive MIMO for Decentralized Estimation of a Correlated Source
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2523459
  contributor:
    fullname: Shirazinia
– volume: 15
  start-page: 1293
  year: 2016
  ident: ref_17
  article-title: Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated?
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/TWC.2015.2488634
  contributor:
    fullname: Bjornson
– volume: 200
  start-page: 116920
  year: 2022
  ident: ref_6
  article-title: Energy efficient scheduling and power control of massive MIMO in massive IoT networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116920
  contributor:
    fullname: Lee
– volume: 51
  start-page: 1430
  year: 2021
  ident: ref_9
  article-title: A Self-Adaptive Differential Evolution Algorithm for Scheduling a Single Batch-Processing Machine with Arbitrary Job Sizes and Release Times
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2939219
  contributor:
    fullname: Zhou
– ident: ref_25
– volume: 53
  start-page: 3337
  year: 2022
  ident: ref_12
  article-title: A Hyperheuristic with Q-Learning for the Multiobjective Energy-Efficient Distributed Blocking Flow Shop Scheduling Problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3192112
  contributor:
    fullname: Zhao
– volume: 10
  start-page: 2233
  year: 2014
  ident: ref_1
  article-title: Internet of Things in Industries: A Survey
  publication-title: IEEE Trans. Ind. Informat
  doi: 10.1109/TII.2014.2300753
  contributor:
    fullname: Xu
– volume: 65
  start-page: 4685
  year: 2017
  ident: ref_18
  article-title: Massive MIMO with Max-Min Power Control in Line-of-Sight Propagation Environment
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2017.2725262
  contributor:
    fullname: Yang
– volume: 23
  start-page: 2099
  year: 2019
  ident: ref_19
  article-title: An Improved Dropping Algorithm for Line-of-Sight Massive MIMO with Tomlinson-Harashima Precoding
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2934680
  contributor:
    fullname: Farsaei
– volume: 63
  start-page: 604
  year: 2015
  ident: ref_4
  article-title: Massive MIMO channel-aware decision fusion
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2376886
  contributor:
    fullname: Ciuonzo
– volume: 18
  start-page: 2794
  year: 2019
  ident: ref_14
  article-title: Massive MIMO Optimization with Compatible Sets
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2019.2908362
  contributor:
    fullname: Fitzgerald
– volume: 14
  start-page: 3059
  year: 2015
  ident: ref_22
  article-title: Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer?
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2015.2400437
  contributor:
    fullname: Bjornson
– volume: 8
  start-page: 2585
  year: 2021
  ident: ref_21
  article-title: Adaptive Switching Scheme for RS Overhead Reduction in Massive MIMO with Industrial Internet of Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3019029
  contributor:
    fullname: Lee
SSID ssj0000913849
Score 2.2968547
Snippet Massive MIMO systems can support a large number of Internet of Things (IoT) devices, even if the number of IoT devices exceeds the number of service antennas...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 3012
SubjectTerms Analysis
Computer centers
Connectivity
Data centers
Devices
energy efficiency
Energy management systems
Internet of Things
massive connectivity
Massive MIMO
Mathematics
MIMO (control systems)
MIMO communication
MIMO communications
Performance enhancement
Power consumption
Power control
Power management
Scheduling
Wireless telecommunications equipment
Title Enhancing IoT Connectivity in Massive MIMO Networks through Systematic Scheduling and Power Control Strategies
URI https://www.proquest.com/docview/2836397496
https://doaj.org/article/7516987b21dc4478b2d6dc73c3663f0b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwFLSACgrEKZZLLkBUEYntxHbJsaulWEBakOgsn0CTRQT-n_eS7AoKREMbRZE1L36HPJ4h5ESkvHShKLIgtcpEYFVmQ86zxHIdfIDJOeBt5PFU3j6p6yHK5CysvpAT1skDd8CdSzzIUdKxInghpHIsVMFL7jnUypS7Nvvm1bdhqs3BuuBK6I7pzmGuP4f-7wVt1eGHZj9qUCvV_1tCbqvMaIOs9-0hveiWtUmWYr1F1iYLbdVmm9TD-gVFMupnejN7oC1TxXceEPS1phPohiGD0cnN5I7ediTvhvZ2PHS6EG6mUwhXQB76M7V1oPdol4ZfQ-Y6nYvWxmaHPI6GD1fjrHdNyDwU54_MQsWxkQWhnC8jd5olYauyiIXyTsC4KJN1gSuPV1B1VL5MsAslQMl9KLzgu2SlntVxj9C8SApCrHPtFc6ZNkqXXOLMMe5LZQfkdI6jeevEMQwMFYi3-Y73gFwiyIt3UNK6fQCBNn2gzV-BHpAzDJHBjQcYeNvfH4ClooSVuYDJh2s8BR6Qw3kUTb8jGwNtFJ5hCl3t_8dqDsgqGs93xN1DsvLx_hmPyHITPo_bP_EL5OnjVw
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+IoT+Connectivity+in+Massive+MIMO+Networks+through+Systematic+Scheduling+and+Power+Control+Strategies&rft.jtitle=Mathematics+%28Basel%29&rft.au=Lee%2C+Byung+Moo&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=13&rft.spage=3012&rft_id=info:doi/10.3390%2Fmath11133012&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon