Tropical forest AGB estimation based on structure parameters extracted by TomoSAR
Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an approach to study carbon cycle, ecology, and biodiversity. The monitoring and estimation of forest AGB are considered very important and of prac...
Saved in:
Published in: | International journal of applied earth observation and geoinformation Vol. 121; p. 103369 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-07-2023
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an approach to study carbon cycle, ecology, and biodiversity. The monitoring and estimation of forest AGB are considered very important and of practical value. As we know, forest AGB relates with height, density and diameter at breast height, and how to relate the ecophysical parameters with remote sensing images is vital for forest AGB estimation. In this paper, we aim to explore structure parameters about forest density and height, extracted by tomographic SAR (TomoSAR) techniques, for further improving the precision of AGB estimation models. Firstly, vertical structure profiles are constructed via TomoSAR, and the structure features are extracted. Secondly, the correlation between these features and the in-situ forest maximum height, tree density, and average AGB in plot scale is analyzed. Thirdly, the 8-fold cross-validation and step-wise regression methods were utilized to construct the tropical forest AGB models. Finally, the results of these models have been presented and analyzed. Based on the analysis, it indicates that “Model 7” is the most effective model, and its performance at both plot and pixel scales indicates a high level of accuracy for predicting forest AGB. These findings suggest that the proposed method can be effectively applied to tropical forested areas and has good scalability.
•AGB estimation model built by structure parameters perform well in Mondah forest.•Tree density relates with the 30 m power in ground dominant scattering mechanism.•Canopy height and ScRv backscattering power at 35 m and 45 m are vital for forest AGB estimation. |
---|---|
AbstractList | Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an approach to study carbon cycle, ecology, and biodiversity. The monitoring and estimation of forest AGB are considered very important and of practical value. As we know, forest AGB relates with height, density and diameter at breast height, and how to relate the ecophysical parameters with remote sensing images is vital for forest AGB estimation. In this paper, we aim to explore structure parameters about forest density and height, extracted by tomographic SAR (TomoSAR) techniques, for further improving the precision of AGB estimation models. Firstly, vertical structure profiles are constructed via TomoSAR, and the structure features are extracted. Secondly, the correlation between these features and the in-situ forest maximum height, tree density, and average AGB in plot scale is analyzed. Thirdly, the 8-fold cross-validation and step-wise regression methods were utilized to construct the tropical forest AGB models. Finally, the results of these models have been presented and analyzed. Based on the analysis, it indicates that “Model 7” is the most effective model, and its performance at both plot and pixel scales indicates a high level of accuracy for predicting forest AGB. These findings suggest that the proposed method can be effectively applied to tropical forested areas and has good scalability. Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an approach to study carbon cycle, ecology, and biodiversity. The monitoring and estimation of forest AGB are considered very important and of practical value. As we know, forest AGB relates with height, density and diameter at breast height, and how to relate the ecophysical parameters with remote sensing images is vital for forest AGB estimation. In this paper, we aim to explore structure parameters about forest density and height, extracted by tomographic SAR (TomoSAR) techniques, for further improving the precision of AGB estimation models. Firstly, vertical structure profiles are constructed via TomoSAR, and the structure features are extracted. Secondly, the correlation between these features and the in-situ forest maximum height, tree density, and average AGB in plot scale is analyzed. Thirdly, the 8-fold cross-validation and step-wise regression methods were utilized to construct the tropical forest AGB models. Finally, the results of these models have been presented and analyzed. Based on the analysis, it indicates that “Model 7” is the most effective model, and its performance at both plot and pixel scales indicates a high level of accuracy for predicting forest AGB. These findings suggest that the proposed method can be effectively applied to tropical forested areas and has good scalability. •AGB estimation model built by structure parameters perform well in Mondah forest.•Tree density relates with the 30 m power in ground dominant scattering mechanism.•Canopy height and ScRv backscattering power at 35 m and 45 m are vital for forest AGB estimation. |
ArticleNumber | 103369 |
Author | Li, Wenmei Zhang, Yu Chen, Huaihuai Chen, Erxue Zhao, Dan Zhang, Jiadong Zhao, Lei |
Author_xml | – sequence: 1 givenname: Wenmei orcidid: 0000-0002-1108-0507 surname: Li fullname: Li, Wenmei email: liwm@njupt.edu.cn organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Qixia District, Nanjing, 210023, Jiangsu, China – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Qixia District, Nanjing, 210023, Jiangsu, China – sequence: 3 givenname: Jiadong surname: Zhang fullname: Zhang, Jiadong organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Qixia District, Nanjing, 210023, Jiangsu, China – sequence: 4 givenname: Huaihuai surname: Chen fullname: Chen, Huaihuai organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Qixia District, Nanjing, 210023, Jiangsu, China – sequence: 5 givenname: Erxue orcidid: 0000-0001-8172-274X surname: Chen fullname: Chen, Erxue organization: Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, No. 1 Dongxiaofu, Haidian District, Beijing, 100091, Beijing, China – sequence: 6 givenname: Lei surname: Zhao fullname: Zhao, Lei email: zhaoleiiam@gmail.com organization: Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, No. 1 Dongxiaofu, Haidian District, Beijing, 100091, Beijing, China – sequence: 7 givenname: Dan surname: Zhao fullname: Zhao, Dan organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, No. 52 Sanlihe Rd., Xicheng District, Beijing, 100864, Beijing, China |
BookMark | eNp9kNtKJDEQhoO44GH3AfauX6Bnc-jOgb2aFVcFQdQRvAuVdEXSzEyGJMr69kZHvNyrOlD_x1__CTncpi0S8pPRBaNM_poXMzwtOOWizUJIc0COmVa811w-HrZ-lKbXg-BH5KSUmVKmlNTH5HaV0y56WHchZSy1W1786VqNG6gxbTsHBaeuNaXmZ1-fM3Y7yLDBirl0-K9m8LVduNdulTbpfnn3nXwLsC7447Oekoe_56uzy_765uLqbHnd-4HK2hs9KgHOBRwDcBG0dlxT7enkeDtg1HA9eCO9BAhBBz4p46UyTqFhIXhxSq723CnBbHe5Oc6vNkG0H4uUnyzkGv0aLQujHM3AHLjGFMoINQqEIXBuRjeaxmJ7ls-plIzhi8eofc_Xzrbla9_ztft8m-b3XoPtyZeI2RYfcetxihl9bS7if9RvSsiEug |
CitedBy_id | crossref_primary_10_3389_ffgc_2024_1349772 |
Cites_doi | 10.1109/TGRS.2011.2177843 10.1109/TGRS.2017.2711037 10.54386/jam.v21i2.231 10.1109/TGRS.2015.2488358 10.1109/TGRS.2016.2585741 10.1109/TGRS.2011.2147321 10.1080/22797254.2021.1901063 10.1109/MGRS.2019.2957215 10.1007/s11676-019-00955-4 10.1109/TGRS.2019.2908517 10.1109/MGRS.2019.2963093 10.1109/LGRS.2015.2477858 10.1109/36.134089 10.1109/LGRS.2020.3027439 10.1109/LGRS.2014.2365613 10.1109/JSTARS.2017.2741723 10.1109/TGRS.2020.3020775 10.3390/rs13020186 10.1109/LGRS.2017.2709839 10.1109/TGRS.2011.2159614 10.1109/TGRS.2010.2091278 10.1109/TGRS.2009.2023785 10.1109/TVT.2017.2704610 10.1109/TGRS.2013.2246170 10.1109/36.868873 10.1109/TGRS.2015.2451992 10.1109/TGRS.2021.3138763 10.1109/TGRS.2011.2125972 10.1016/j.isprsjprs.2014.08.014 10.1109/JSTARS.2018.2859050 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jag.2023.103369 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_1f565941bab84c3793753ea4f2295b59 10_1016_j_jag_2023_103369 S1569843223001930 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AAXKI AAYXX ADVLN AFJKZ AITUG CITATION EFJIC 0SF |
ID | FETCH-LOGICAL-c406t-98573abbfe5fa23f88b2808c0db2406109284c96c6aaff8f2d79c679b7e91ffc3 |
IEDL.DBID | DOA |
ISSN | 1569-8432 |
IngestDate | Tue Oct 22 14:43:49 EDT 2024 Thu Nov 21 21:45:00 EST 2024 Fri Feb 23 02:37:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structure parameters Tropical forest Canopy height Forest height Tomographic SAR Forest aboveground biomass |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-98573abbfe5fa23f88b2808c0db2406109284c96c6aaff8f2d79c679b7e91ffc3 |
ORCID | 0000-0002-1108-0507 0000-0001-8172-274X |
OpenAccessLink | https://doaj.org/article/1f565941bab84c3793753ea4f2295b59 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1f565941bab84c3793753ea4f2295b59 crossref_primary_10_1016_j_jag_2023_103369 elsevier_sciencedirect_doi_10_1016_j_jag_2023_103369 |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Reigber, Moreira (b30) 2000; 38 Wan, Li, Chen, Zhao, Zhang, Xu (b38) 2021; 13 Fonton, Medjibé, Djomo, Kondaoulé, Rossi, Ngomanda, Maïdou (b11) 2017 Persson, Jonzén, Nilsson (b27) 2021; 96 Ansari, De Zan, Bamler (b2) 2017; 55 Silveira, Silva, Acerbi-Junior, Carvalho, Carvalho, Scolforo, Wulder (b33) 2019; 78 Le Toan, Beaudoin, Riom, Guyon (b17) 1992; 30 Liu, Zhao, Jin (b22) 2021; 11 Kumar, Joshi, Govil (b16) 2017; 10 Zhu, Liu (b42) 2015; 102 Liu, Zhang, Yang, Liao, Li (b21) 2021; 19 Liao, He, Quan (b19) 2020; 88 Zhao, Lu, Wang, Liu, Li, Zhu, Yu (b39) 2016; 53 Chiarito, Cigna, Cuozzo, Fontanelli, Mejia Aguilar, Paloscia, Rossi, Santi, Tapete, Notarnicola (b7) 2021; 54 Ma, Lin, Lan, Chen (b24) 2014; 12 Zhou, Gu, He, Shi (b40) 2017; 67 Sauer, Ferro-Famil, Reigber, Pottier (b32) 2011; 49 Tebaldini, Rocca, d’Alessandro, Ferro-Famil (b36) 2015; 54 Fadhillah, Achmad, Lee (b9) 2021; 60 Tebaldini, Rocca (b35) 2011; 50 d’Alessandro, Tebaldini (b8) 2019; 57 Kumar, Attri, Singh (b15) 2019; 21 Zhu, Bamler (b41) 2011; 50 Gatti, Tebaldini, d’Alessandro, Rocca (b13) 2010; 49 Montazeri, Zhu, Eineder, Bamler (b26) 2016; 54 Qian, Wang, Shi, Zhu (b28) 2022; 60 Aghababaei, Ferraioli, Ferro-Famil, Huang, d’Alessandro, Pascazio, Schirinzi, Tebaldini (b1) 2020; 8 Blomberg, Ulander, Tebaldini, Ferro-Famil (b4) 2020; 59 Frey, Meier (b12) 2011; 49 Huang, Levy-Vehel, Ferro-Famil, Reigber (b14) 2017; 14 Li, Liang, Guo, Huang (b18) 2015; 54 Tebaldini (b34) 2009; 47 Tello, Cazcarra-Bes, Pardini, Papathanassiou (b37) 2018; 11 Caicoya, Pardini, Hajnsek, Papathanassiou (b5) 2015; 12 Fatoyinbo, Saatchi, Armston, Poulsen, Marselis, Pinto, White, Jeffery (b10) 2018 Liao, Liu, van Dijk, Yue, He (b20) 2022; 110 Lu, Wang, Qin, Cao, Pu, Li, Sun (b23) 2020; 86 Minh, Le Toan, Rocca, Tebaldini, d’Alessandro, Villard (b25) 2013; 52 Saatchi, Chave, Labriere, Barbier, Réjou-Méchain, Ferraz, Tao (b31) 2019 Balima, Nacoulma, Bayen, Dimobe, Kouamé, Thiombiano (b3) 2020; 31 Rambour, Budillon, Johnsy, Denis, Tupin, Schirinzi (b29) 2020; 8 Cazcarra-Bes, Pardini, Papathanassiou (b6) 2020; 19 Qian (10.1016/j.jag.2023.103369_b28) 2022; 60 Tebaldini (10.1016/j.jag.2023.103369_b35) 2011; 50 Zhu (10.1016/j.jag.2023.103369_b41) 2011; 50 Kumar (10.1016/j.jag.2023.103369_b15) 2019; 21 Tello (10.1016/j.jag.2023.103369_b37) 2018; 11 Zhao (10.1016/j.jag.2023.103369_b39) 2016; 53 d’Alessandro (10.1016/j.jag.2023.103369_b8) 2019; 57 Minh (10.1016/j.jag.2023.103369_b25) 2013; 52 Cazcarra-Bes (10.1016/j.jag.2023.103369_b6) 2020; 19 Chiarito (10.1016/j.jag.2023.103369_b7) 2021; 54 Sauer (10.1016/j.jag.2023.103369_b32) 2011; 49 Caicoya (10.1016/j.jag.2023.103369_b5) 2015; 12 Fadhillah (10.1016/j.jag.2023.103369_b9) 2021; 60 Reigber (10.1016/j.jag.2023.103369_b30) 2000; 38 Zhou (10.1016/j.jag.2023.103369_b40) 2017; 67 Frey (10.1016/j.jag.2023.103369_b12) 2011; 49 Persson (10.1016/j.jag.2023.103369_b27) 2021; 96 Ma (10.1016/j.jag.2023.103369_b24) 2014; 12 Liao (10.1016/j.jag.2023.103369_b19) 2020; 88 Ansari (10.1016/j.jag.2023.103369_b2) 2017; 55 Zhu (10.1016/j.jag.2023.103369_b42) 2015; 102 Kumar (10.1016/j.jag.2023.103369_b16) 2017; 10 Balima (10.1016/j.jag.2023.103369_b3) 2020; 31 Fatoyinbo (10.1016/j.jag.2023.103369_b10) 2018 Saatchi (10.1016/j.jag.2023.103369_b31) 2019 Wan (10.1016/j.jag.2023.103369_b38) 2021; 13 Montazeri (10.1016/j.jag.2023.103369_b26) 2016; 54 Liao (10.1016/j.jag.2023.103369_b20) 2022; 110 Liu (10.1016/j.jag.2023.103369_b21) 2021; 19 Li (10.1016/j.jag.2023.103369_b18) 2015; 54 Liu (10.1016/j.jag.2023.103369_b22) 2021; 11 Huang (10.1016/j.jag.2023.103369_b14) 2017; 14 Le Toan (10.1016/j.jag.2023.103369_b17) 1992; 30 Rambour (10.1016/j.jag.2023.103369_b29) 2020; 8 Silveira (10.1016/j.jag.2023.103369_b33) 2019; 78 Tebaldini (10.1016/j.jag.2023.103369_b36) 2015; 54 Blomberg (10.1016/j.jag.2023.103369_b4) 2020; 59 Gatti (10.1016/j.jag.2023.103369_b13) 2010; 49 Tebaldini (10.1016/j.jag.2023.103369_b34) 2009; 47 Fonton (10.1016/j.jag.2023.103369_b11) 2017 Lu (10.1016/j.jag.2023.103369_b23) 2020; 86 Aghababaei (10.1016/j.jag.2023.103369_b1) 2020; 8 |
References_xml | – volume: 59 start-page: 3793 year: 2020 end-page: 3804 ident: b4 article-title: Evaluating P-band TomoSAR for biomass retrieval in boreal forest publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Ferro-Famil – volume: 12 start-page: 2379 year: 2015 end-page: 2383 ident: b5 article-title: Forest above-ground biomass estimation from vertical reflectivity profiles at L-band publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Papathanassiou – volume: 55 start-page: 5637 year: 2017 end-page: 5652 ident: b2 article-title: Sequential estimator: Toward efficient InSAR time series analysis publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Bamler – volume: 14 start-page: 1454 year: 2017 end-page: 1458 ident: b14 article-title: Three-dimensional imaging of objects concealed below a forest canopy using sar tomography at L-band and wavelet-based sparse estimation publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Reigber – volume: 21 start-page: 188 year: 2019 end-page: 192 ident: b15 article-title: Comparison of lasso and stepwise regression technique for wheat yield prediction publication-title: J. Agrometeorol. contributor: fullname: Singh – volume: 60 start-page: 1 year: 2021 end-page: 14 ident: b9 article-title: Improved combined scatterers interferometry with optimized point scatterers (icops) for interferometric synthetic aperture radar (InSAR) time-series analysis publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Lee – volume: 12 start-page: 895 year: 2014 end-page: 899 ident: b24 article-title: On the performance of reweighted publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Chen – volume: 96 year: 2021 ident: b27 article-title: Combining Tandem-X and Sentinel-2 for large-area species-wise prediction of forest biomass and volume publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Nilsson – volume: 54 start-page: 6868 year: 2016 end-page: 6878 ident: b26 article-title: Three-dimensional deformation monitoring of urban infrastructure by tomographic SAR using multitrack terrasar-x data stacks publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Bamler – year: 2017 ident: b11 article-title: Analyzing accuracy of the power functions for modeling aboveground biomass rediction in congo basin tropical forests contributor: fullname: Maïdou – volume: 13 start-page: 186 year: 2021 ident: b38 article-title: Forest aboveground biomass estimation using multi-features extracted by fitting vertical backscattered power profile of tomographic SAR publication-title: Remote Sens. contributor: fullname: Xu – volume: 67 start-page: 1099 year: 2017 end-page: 1112 ident: b40 article-title: A robust and efficient algorithm for coprime array adaptive beamforming publication-title: IEEE Trans. Veh. Technol. contributor: fullname: Shi – volume: 10 start-page: 5175 year: 2017 end-page: 5185 ident: b16 article-title: Spaceborne PolSAR tomography for forest height retrieval publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. contributor: fullname: Govil – volume: 19 start-page: 1 year: 2020 end-page: 5 ident: b6 article-title: Definition of tomographic SAR configurations for forest structure applications at L-band publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Papathanassiou – volume: 19 start-page: 1 year: 2021 end-page: 5 ident: b21 article-title: Retrieval of tropical forest height and above-ground biomass using airborne P- and L-band SAR tomography publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Li – volume: 49 start-page: 3648 year: 2011 end-page: 3659 ident: b12 article-title: Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Meier – volume: 8 start-page: 6 year: 2020 end-page: 29 ident: b29 article-title: From interferometric to tomographic SAR: A review of synthetic aperture radar tomography-processing techniques for scatterer unmixing in urban areas publication-title: IEEE Geosci. Remote Sens. Mag. contributor: fullname: Schirinzi – volume: 53 start-page: 1 year: 2016 end-page: 15 ident: b39 article-title: Forest aboveground biomass estimation in Zhejiang province using the integration of Landsat TM and ALOS PALSAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Yu – volume: 49 start-page: 2343 year: 2010 end-page: 2353 ident: b13 article-title: Algae: A fast algebraic estimation of interferogram phase offsets in space-varying geometries publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Rocca – volume: 49 start-page: 4616 year: 2011 end-page: 4629 ident: b32 article-title: Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Pottier – volume: 47 start-page: 4132 year: 2009 end-page: 4142 ident: b34 article-title: Algebraic synthesis of forest scenarios from multibaseline PolInSAR data publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Tebaldini – volume: 50 start-page: 3150 year: 2011 end-page: 3157 ident: b41 article-title: Demonstration of super-resolution for tomographic SAR imaging in urban environment publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Bamler – volume: 52 start-page: 967 year: 2013 end-page: 979 ident: b25 article-title: Relating P-band synthetic aperture radar tomography to tropical forest biomass publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Villard – volume: 11 start-page: 3402 year: 2018 end-page: 3414 ident: b37 article-title: Forest structure characterization from SAR tomography at l-band publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. contributor: fullname: Papathanassiou – volume: 102 start-page: 222 year: 2015 end-page: 231 ident: b42 article-title: Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series publication-title: ISPRS J. Photogramm. Remote Sens. contributor: fullname: Liu – volume: 11 year: 2021 ident: b22 article-title: Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector publication-title: Sci. Rep. contributor: fullname: Jin – volume: 57 start-page: 6774 year: 2019 end-page: 6781 ident: b8 article-title: Digital terrain model retrieval in tropical forests through P-band SAR tomography publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Tebaldini – volume: 54 start-page: 209 year: 2021 end-page: 225 ident: b7 article-title: Biomass retrieval based on genetic algorithm feature selection and support vector regression in alpine grassland using ground-based hyperspectral and Sentinel-1 SAR data publication-title: Eur. J. Remote Sens. contributor: fullname: Notarnicola – volume: 110 year: 2022 ident: b20 article-title: Continuous woody vegetation biomass estimation based on temporal modeling of Landsat data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: He – volume: 30 start-page: 403 year: 1992 end-page: 411 ident: b17 article-title: Relating forest biomass to SAR data publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Guyon – volume: 54 start-page: 153 year: 2015 end-page: 166 ident: b18 article-title: Compressive sensing for multibaseline polarimetric SAR tomography of forested areas publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Huang – volume: 78 start-page: 175 year: 2019 end-page: 188 ident: b33 article-title: Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Wulder – volume: 86 year: 2020 ident: b23 article-title: Estimation of aboveground biomass of robinia pseudoacacia forest in the yellow river delta based on UAV and backpack Lidar point clouds publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Sun – volume: 60 start-page: 1 year: 2022 end-page: 16 ident: b28 article-title: -Net: Superresolving SAR tomographic inversion via deep learning publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Zhu – year: 2019 ident: b31 article-title: Afrisar: Aboveground Biomass for Llope, Mabounie, Mondah, and Rabi Sites, Gabon contributor: fullname: Tao – volume: 8 start-page: 30 year: 2020 end-page: 45 ident: b1 article-title: Forest SAR tomography: Principles and applications publication-title: IEEE Geosci. Remote Sens. Mag. contributor: fullname: Tebaldini – year: 2018 ident: b10 article-title: Afrisar: Mondah Forest Tree Species, Biophysical, and Biomass Data, Gabon, 2016 contributor: fullname: Jeffery – volume: 54 start-page: 1775 year: 2015 end-page: 1792 ident: b36 article-title: Phase calibration of airborne tomographic SAR data via phase center double localization publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Ferro-Famil – volume: 88 year: 2020 ident: b19 article-title: Potential of texture from SAR tomographic images for forest aboveground biomass estimation publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Quan – volume: 50 start-page: 232 year: 2011 end-page: 246 ident: b35 article-title: Multibaseline polarimetric SAR tomography of a boreal forest at P- and L-bands publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Rocca – volume: 38 start-page: 2142 year: 2000 end-page: 2152 ident: b30 article-title: First demonstration of airborne SAR tomography using multibaseline L-band data publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Moreira – volume: 31 start-page: 1699 year: 2020 end-page: 1711 ident: b3 article-title: Aboveground biomass allometric equations and distribution of carbon stocks of the african oak (afzelia africana sm.) in burkina faso publication-title: J. For. Res. contributor: fullname: Thiombiano – volume: 50 start-page: 3150 year: 2011 ident: 10.1016/j.jag.2023.103369_b41 article-title: Demonstration of super-resolution for tomographic SAR imaging in urban environment publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2177843 contributor: fullname: Zhu – volume: 55 start-page: 5637 year: 2017 ident: 10.1016/j.jag.2023.103369_b2 article-title: Sequential estimator: Toward efficient InSAR time series analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2711037 contributor: fullname: Ansari – volume: 21 start-page: 188 year: 2019 ident: 10.1016/j.jag.2023.103369_b15 article-title: Comparison of lasso and stepwise regression technique for wheat yield prediction publication-title: J. Agrometeorol. doi: 10.54386/jam.v21i2.231 contributor: fullname: Kumar – volume: 54 start-page: 1775 year: 2015 ident: 10.1016/j.jag.2023.103369_b36 article-title: Phase calibration of airborne tomographic SAR data via phase center double localization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2488358 contributor: fullname: Tebaldini – volume: 54 start-page: 6868 year: 2016 ident: 10.1016/j.jag.2023.103369_b26 article-title: Three-dimensional deformation monitoring of urban infrastructure by tomographic SAR using multitrack terrasar-x data stacks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2585741 contributor: fullname: Montazeri – volume: 49 start-page: 4616 year: 2011 ident: 10.1016/j.jag.2023.103369_b32 article-title: Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2147321 contributor: fullname: Sauer – volume: 54 start-page: 209 year: 2021 ident: 10.1016/j.jag.2023.103369_b7 article-title: Biomass retrieval based on genetic algorithm feature selection and support vector regression in alpine grassland using ground-based hyperspectral and Sentinel-1 SAR data publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2021.1901063 contributor: fullname: Chiarito – volume: 8 start-page: 6 year: 2020 ident: 10.1016/j.jag.2023.103369_b29 article-title: From interferometric to tomographic SAR: A review of synthetic aperture radar tomography-processing techniques for scatterer unmixing in urban areas publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2019.2957215 contributor: fullname: Rambour – year: 2017 ident: 10.1016/j.jag.2023.103369_b11 contributor: fullname: Fonton – volume: 88 year: 2020 ident: 10.1016/j.jag.2023.103369_b19 article-title: Potential of texture from SAR tomographic images for forest aboveground biomass estimation publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Liao – volume: 96 year: 2021 ident: 10.1016/j.jag.2023.103369_b27 article-title: Combining Tandem-X and Sentinel-2 for large-area species-wise prediction of forest biomass and volume publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Persson – volume: 19 start-page: 1 year: 2021 ident: 10.1016/j.jag.2023.103369_b21 article-title: Retrieval of tropical forest height and above-ground biomass using airborne P- and L-band SAR tomography publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Liu – volume: 31 start-page: 1699 year: 2020 ident: 10.1016/j.jag.2023.103369_b3 article-title: Aboveground biomass allometric equations and distribution of carbon stocks of the african oak (afzelia africana sm.) in burkina faso publication-title: J. For. Res. doi: 10.1007/s11676-019-00955-4 contributor: fullname: Balima – volume: 57 start-page: 6774 year: 2019 ident: 10.1016/j.jag.2023.103369_b8 article-title: Digital terrain model retrieval in tropical forests through P-band SAR tomography publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2908517 contributor: fullname: d’Alessandro – volume: 8 start-page: 30 year: 2020 ident: 10.1016/j.jag.2023.103369_b1 article-title: Forest SAR tomography: Principles and applications publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2019.2963093 contributor: fullname: Aghababaei – volume: 12 start-page: 2379 year: 2015 ident: 10.1016/j.jag.2023.103369_b5 article-title: Forest above-ground biomass estimation from vertical reflectivity profiles at L-band publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2477858 contributor: fullname: Caicoya – volume: 30 start-page: 403 year: 1992 ident: 10.1016/j.jag.2023.103369_b17 article-title: Relating forest biomass to SAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134089 contributor: fullname: Le Toan – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.jag.2023.103369_b28 article-title: γ-Net: Superresolving SAR tomographic inversion via deep learning publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Qian – volume: 19 start-page: 1 year: 2020 ident: 10.1016/j.jag.2023.103369_b6 article-title: Definition of tomographic SAR configurations for forest structure applications at L-band publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.3027439 contributor: fullname: Cazcarra-Bes – volume: 12 start-page: 895 year: 2014 ident: 10.1016/j.jag.2023.103369_b24 article-title: On the performance of reweighted l_{1} minimization for tomographic SAR imaging publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2365613 contributor: fullname: Ma – volume: 10 start-page: 5175 year: 2017 ident: 10.1016/j.jag.2023.103369_b16 article-title: Spaceborne PolSAR tomography for forest height retrieval publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2741723 contributor: fullname: Kumar – volume: 59 start-page: 3793 year: 2020 ident: 10.1016/j.jag.2023.103369_b4 article-title: Evaluating P-band TomoSAR for biomass retrieval in boreal forest publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3020775 contributor: fullname: Blomberg – volume: 13 start-page: 186 year: 2021 ident: 10.1016/j.jag.2023.103369_b38 article-title: Forest aboveground biomass estimation using multi-features extracted by fitting vertical backscattered power profile of tomographic SAR publication-title: Remote Sens. doi: 10.3390/rs13020186 contributor: fullname: Wan – volume: 78 start-page: 175 year: 2019 ident: 10.1016/j.jag.2023.103369_b33 article-title: Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Silveira – volume: 14 start-page: 1454 year: 2017 ident: 10.1016/j.jag.2023.103369_b14 article-title: Three-dimensional imaging of objects concealed below a forest canopy using sar tomography at L-band and wavelet-based sparse estimation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2709839 contributor: fullname: Huang – volume: 50 start-page: 232 year: 2011 ident: 10.1016/j.jag.2023.103369_b35 article-title: Multibaseline polarimetric SAR tomography of a boreal forest at P- and L-bands publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2159614 contributor: fullname: Tebaldini – volume: 49 start-page: 2343 year: 2010 ident: 10.1016/j.jag.2023.103369_b13 article-title: Algae: A fast algebraic estimation of interferogram phase offsets in space-varying geometries publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2091278 contributor: fullname: Gatti – volume: 47 start-page: 4132 year: 2009 ident: 10.1016/j.jag.2023.103369_b34 article-title: Algebraic synthesis of forest scenarios from multibaseline PolInSAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2023785 contributor: fullname: Tebaldini – year: 2019 ident: 10.1016/j.jag.2023.103369_b31 contributor: fullname: Saatchi – volume: 67 start-page: 1099 year: 2017 ident: 10.1016/j.jag.2023.103369_b40 article-title: A robust and efficient algorithm for coprime array adaptive beamforming publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2704610 contributor: fullname: Zhou – volume: 110 year: 2022 ident: 10.1016/j.jag.2023.103369_b20 article-title: Continuous woody vegetation biomass estimation based on temporal modeling of Landsat data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Liao – volume: 52 start-page: 967 year: 2013 ident: 10.1016/j.jag.2023.103369_b25 article-title: Relating P-band synthetic aperture radar tomography to tropical forest biomass publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2246170 contributor: fullname: Minh – volume: 38 start-page: 2142 year: 2000 ident: 10.1016/j.jag.2023.103369_b30 article-title: First demonstration of airborne SAR tomography using multibaseline L-band data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.868873 contributor: fullname: Reigber – year: 2018 ident: 10.1016/j.jag.2023.103369_b10 contributor: fullname: Fatoyinbo – volume: 86 year: 2020 ident: 10.1016/j.jag.2023.103369_b23 article-title: Estimation of aboveground biomass of robinia pseudoacacia forest in the yellow river delta based on UAV and backpack Lidar point clouds publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Lu – volume: 54 start-page: 153 year: 2015 ident: 10.1016/j.jag.2023.103369_b18 article-title: Compressive sensing for multibaseline polarimetric SAR tomography of forested areas publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2451992 contributor: fullname: Li – volume: 53 start-page: 1 year: 2016 ident: 10.1016/j.jag.2023.103369_b39 article-title: Forest aboveground biomass estimation in Zhejiang province using the integration of Landsat TM and ALOS PALSAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Zhao – volume: 60 start-page: 1 year: 2021 ident: 10.1016/j.jag.2023.103369_b9 article-title: Improved combined scatterers interferometry with optimized point scatterers (icops) for interferometric synthetic aperture radar (InSAR) time-series analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3138763 contributor: fullname: Fadhillah – volume: 11 year: 2021 ident: 10.1016/j.jag.2023.103369_b22 article-title: Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector publication-title: Sci. Rep. contributor: fullname: Liu – volume: 49 start-page: 3648 year: 2011 ident: 10.1016/j.jag.2023.103369_b12 article-title: Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2125972 contributor: fullname: Frey – volume: 102 start-page: 222 year: 2015 ident: 10.1016/j.jag.2023.103369_b42 article-title: Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.08.014 contributor: fullname: Zhu – volume: 11 start-page: 3402 year: 2018 ident: 10.1016/j.jag.2023.103369_b37 article-title: Forest structure characterization from SAR tomography at l-band publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2859050 contributor: fullname: Tello |
SSID | ssj0017768 |
Score | 2.4160757 |
Snippet | Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 103369 |
SubjectTerms | Canopy height Forest aboveground biomass Forest height Structure parameters Tomographic SAR Tropical forest |
Title | Tropical forest AGB estimation based on structure parameters extracted by TomoSAR |
URI | https://dx.doi.org/10.1016/j.jag.2023.103369 https://doaj.org/article/1f565941bab84c3793753ea4f2295b59 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwwIChXlSx6YkAJp7CT22EJLJyRokdgi27ERldpULR3499zFScmCWNiiyLKjd47fnXz3jpDrhOcRy0MbKG0gQJEiDzTwdJBIZXmUp9yUoj7jSfr0Jh6GKJOzbfWFOWFeHtgDd9dz4HJI3tNKC24YyrnFzCrusA-1jn3pXpjUwVR1f5CmvgguTmQgOIvq-8wys2um3m-xazgWnDPMdG4wUinc3yCmBtmMDslB5SXSvv-6I7JjF22y39AObJPO8KdEDYZW_-j6mDxPV8USoafgj8KZT_uPA4paGr5IkSJv5RQevHTsZmUp6n_PMS9mTeGsLgWcc6q_6LSYF5P-ywl5HQ2n9-OgapwQGODnz0CKOGVKa2djpyLmhNCRCIUJc10SeCiBlIxMTKKUc8KBTaRJUqlTK3vOGdYhrUWxsKeERhDugZeFLNZDHRnBuNB4ucmkUErxLrmpwcuWXh8jqxPHZhkgnSHSmUe6SwYI73YgSluXL8DgWWXw7C-DdwmvjZNVXoJnf5jq4_e1z_5j7XOyh1P6dN0L0gI72Uuyu843V-X--waD5dre |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tropical+forest+AGB+estimation+based+on+structure+parameters+extracted+by+TomoSAR&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Wenmei&rft.au=Zhang%2C+Yu&rft.au=Zhang%2C+Jiadong&rft.au=Chen%2C+Huaihuai&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=121&rft_id=info:doi/10.1016%2Fj.jag.2023.103369&rft.externalDocID=S1569843223001930 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |