Tropical forest AGB estimation based on structure parameters extracted by TomoSAR

Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an approach to study carbon cycle, ecology, and biodiversity. The monitoring and estimation of forest AGB are considered very important and of prac...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied earth observation and geoinformation Vol. 121; p. 103369
Main Authors: Li, Wenmei, Zhang, Yu, Zhang, Jiadong, Chen, Huaihuai, Chen, Erxue, Zhao, Lei, Zhao, Dan
Format: Journal Article
Language:English
Published: Elsevier B.V 01-07-2023
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an approach to study carbon cycle, ecology, and biodiversity. The monitoring and estimation of forest AGB are considered very important and of practical value. As we know, forest AGB relates with height, density and diameter at breast height, and how to relate the ecophysical parameters with remote sensing images is vital for forest AGB estimation. In this paper, we aim to explore structure parameters about forest density and height, extracted by tomographic SAR (TomoSAR) techniques, for further improving the precision of AGB estimation models. Firstly, vertical structure profiles are constructed via TomoSAR, and the structure features are extracted. Secondly, the correlation between these features and the in-situ forest maximum height, tree density, and average AGB in plot scale is analyzed. Thirdly, the 8-fold cross-validation and step-wise regression methods were utilized to construct the tropical forest AGB models. Finally, the results of these models have been presented and analyzed. Based on the analysis, it indicates that “Model 7” is the most effective model, and its performance at both plot and pixel scales indicates a high level of accuracy for predicting forest AGB. These findings suggest that the proposed method can be effectively applied to tropical forested areas and has good scalability. •AGB estimation model built by structure parameters perform well in Mondah forest.•Tree density relates with the 30 m power in ground dominant scattering mechanism.•Canopy height and ScRv backscattering power at 35 m and 45 m are vital for forest AGB estimation.
AbstractList Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an approach to study carbon cycle, ecology, and biodiversity. The monitoring and estimation of forest AGB are considered very important and of practical value. As we know, forest AGB relates with height, density and diameter at breast height, and how to relate the ecophysical parameters with remote sensing images is vital for forest AGB estimation. In this paper, we aim to explore structure parameters about forest density and height, extracted by tomographic SAR (TomoSAR) techniques, for further improving the precision of AGB estimation models. Firstly, vertical structure profiles are constructed via TomoSAR, and the structure features are extracted. Secondly, the correlation between these features and the in-situ forest maximum height, tree density, and average AGB in plot scale is analyzed. Thirdly, the 8-fold cross-validation and step-wise regression methods were utilized to construct the tropical forest AGB models. Finally, the results of these models have been presented and analyzed. Based on the analysis, it indicates that “Model 7” is the most effective model, and its performance at both plot and pixel scales indicates a high level of accuracy for predicting forest AGB. These findings suggest that the proposed method can be effectively applied to tropical forested areas and has good scalability.
Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an approach to study carbon cycle, ecology, and biodiversity. The monitoring and estimation of forest AGB are considered very important and of practical value. As we know, forest AGB relates with height, density and diameter at breast height, and how to relate the ecophysical parameters with remote sensing images is vital for forest AGB estimation. In this paper, we aim to explore structure parameters about forest density and height, extracted by tomographic SAR (TomoSAR) techniques, for further improving the precision of AGB estimation models. Firstly, vertical structure profiles are constructed via TomoSAR, and the structure features are extracted. Secondly, the correlation between these features and the in-situ forest maximum height, tree density, and average AGB in plot scale is analyzed. Thirdly, the 8-fold cross-validation and step-wise regression methods were utilized to construct the tropical forest AGB models. Finally, the results of these models have been presented and analyzed. Based on the analysis, it indicates that “Model 7” is the most effective model, and its performance at both plot and pixel scales indicates a high level of accuracy for predicting forest AGB. These findings suggest that the proposed method can be effectively applied to tropical forested areas and has good scalability. •AGB estimation model built by structure parameters perform well in Mondah forest.•Tree density relates with the 30 m power in ground dominant scattering mechanism.•Canopy height and ScRv backscattering power at 35 m and 45 m are vital for forest AGB estimation.
ArticleNumber 103369
Author Li, Wenmei
Zhang, Yu
Chen, Huaihuai
Chen, Erxue
Zhao, Dan
Zhang, Jiadong
Zhao, Lei
Author_xml – sequence: 1
  givenname: Wenmei
  orcidid: 0000-0002-1108-0507
  surname: Li
  fullname: Li, Wenmei
  email: liwm@njupt.edu.cn
  organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Qixia District, Nanjing, 210023, Jiangsu, China
– sequence: 2
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Qixia District, Nanjing, 210023, Jiangsu, China
– sequence: 3
  givenname: Jiadong
  surname: Zhang
  fullname: Zhang, Jiadong
  organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Qixia District, Nanjing, 210023, Jiangsu, China
– sequence: 4
  givenname: Huaihuai
  surname: Chen
  fullname: Chen, Huaihuai
  organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Qixia District, Nanjing, 210023, Jiangsu, China
– sequence: 5
  givenname: Erxue
  orcidid: 0000-0001-8172-274X
  surname: Chen
  fullname: Chen, Erxue
  organization: Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, No. 1 Dongxiaofu, Haidian District, Beijing, 100091, Beijing, China
– sequence: 6
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  email: zhaoleiiam@gmail.com
  organization: Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, No. 1 Dongxiaofu, Haidian District, Beijing, 100091, Beijing, China
– sequence: 7
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, No. 52 Sanlihe Rd., Xicheng District, Beijing, 100864, Beijing, China
BookMark eNp9kNtKJDEQhoO44GH3AfauX6Bnc-jOgb2aFVcFQdQRvAuVdEXSzEyGJMr69kZHvNyrOlD_x1__CTncpi0S8pPRBaNM_poXMzwtOOWizUJIc0COmVa811w-HrZ-lKbXg-BH5KSUmVKmlNTH5HaV0y56WHchZSy1W1786VqNG6gxbTsHBaeuNaXmZ1-fM3Y7yLDBirl0-K9m8LVduNdulTbpfnn3nXwLsC7447Oekoe_56uzy_765uLqbHnd-4HK2hs9KgHOBRwDcBG0dlxT7enkeDtg1HA9eCO9BAhBBz4p46UyTqFhIXhxSq723CnBbHe5Oc6vNkG0H4uUnyzkGv0aLQujHM3AHLjGFMoINQqEIXBuRjeaxmJ7ls-plIzhi8eofc_Xzrbla9_ztft8m-b3XoPtyZeI2RYfcetxihl9bS7if9RvSsiEug
CitedBy_id crossref_primary_10_3389_ffgc_2024_1349772
Cites_doi 10.1109/TGRS.2011.2177843
10.1109/TGRS.2017.2711037
10.54386/jam.v21i2.231
10.1109/TGRS.2015.2488358
10.1109/TGRS.2016.2585741
10.1109/TGRS.2011.2147321
10.1080/22797254.2021.1901063
10.1109/MGRS.2019.2957215
10.1007/s11676-019-00955-4
10.1109/TGRS.2019.2908517
10.1109/MGRS.2019.2963093
10.1109/LGRS.2015.2477858
10.1109/36.134089
10.1109/LGRS.2020.3027439
10.1109/LGRS.2014.2365613
10.1109/JSTARS.2017.2741723
10.1109/TGRS.2020.3020775
10.3390/rs13020186
10.1109/LGRS.2017.2709839
10.1109/TGRS.2011.2159614
10.1109/TGRS.2010.2091278
10.1109/TGRS.2009.2023785
10.1109/TVT.2017.2704610
10.1109/TGRS.2013.2246170
10.1109/36.868873
10.1109/TGRS.2015.2451992
10.1109/TGRS.2021.3138763
10.1109/TGRS.2011.2125972
10.1016/j.isprsjprs.2014.08.014
10.1109/JSTARS.2018.2859050
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2023.103369
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_1f565941bab84c3793753ea4f2295b59
10_1016_j_jag_2023_103369
S1569843223001930
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AAXKI
AAYXX
ADVLN
AFJKZ
AITUG
CITATION
EFJIC
0SF
ID FETCH-LOGICAL-c406t-98573abbfe5fa23f88b2808c0db2406109284c96c6aaff8f2d79c679b7e91ffc3
IEDL.DBID DOA
ISSN 1569-8432
IngestDate Tue Oct 22 14:43:49 EDT 2024
Thu Nov 21 21:45:00 EST 2024
Fri Feb 23 02:37:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structure parameters
Tropical forest
Canopy height
Forest height
Tomographic SAR
Forest aboveground biomass
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-98573abbfe5fa23f88b2808c0db2406109284c96c6aaff8f2d79c679b7e91ffc3
ORCID 0000-0002-1108-0507
0000-0001-8172-274X
OpenAccessLink https://doaj.org/article/1f565941bab84c3793753ea4f2295b59
ParticipantIDs doaj_primary_oai_doaj_org_article_1f565941bab84c3793753ea4f2295b59
crossref_primary_10_1016_j_jag_2023_103369
elsevier_sciencedirect_doi_10_1016_j_jag_2023_103369
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Reigber, Moreira (b30) 2000; 38
Wan, Li, Chen, Zhao, Zhang, Xu (b38) 2021; 13
Fonton, Medjibé, Djomo, Kondaoulé, Rossi, Ngomanda, Maïdou (b11) 2017
Persson, Jonzén, Nilsson (b27) 2021; 96
Ansari, De Zan, Bamler (b2) 2017; 55
Silveira, Silva, Acerbi-Junior, Carvalho, Carvalho, Scolforo, Wulder (b33) 2019; 78
Le Toan, Beaudoin, Riom, Guyon (b17) 1992; 30
Liu, Zhao, Jin (b22) 2021; 11
Kumar, Joshi, Govil (b16) 2017; 10
Zhu, Liu (b42) 2015; 102
Liu, Zhang, Yang, Liao, Li (b21) 2021; 19
Liao, He, Quan (b19) 2020; 88
Zhao, Lu, Wang, Liu, Li, Zhu, Yu (b39) 2016; 53
Chiarito, Cigna, Cuozzo, Fontanelli, Mejia Aguilar, Paloscia, Rossi, Santi, Tapete, Notarnicola (b7) 2021; 54
Ma, Lin, Lan, Chen (b24) 2014; 12
Zhou, Gu, He, Shi (b40) 2017; 67
Sauer, Ferro-Famil, Reigber, Pottier (b32) 2011; 49
Tebaldini, Rocca, d’Alessandro, Ferro-Famil (b36) 2015; 54
Fadhillah, Achmad, Lee (b9) 2021; 60
Tebaldini, Rocca (b35) 2011; 50
d’Alessandro, Tebaldini (b8) 2019; 57
Kumar, Attri, Singh (b15) 2019; 21
Zhu, Bamler (b41) 2011; 50
Gatti, Tebaldini, d’Alessandro, Rocca (b13) 2010; 49
Montazeri, Zhu, Eineder, Bamler (b26) 2016; 54
Qian, Wang, Shi, Zhu (b28) 2022; 60
Aghababaei, Ferraioli, Ferro-Famil, Huang, d’Alessandro, Pascazio, Schirinzi, Tebaldini (b1) 2020; 8
Blomberg, Ulander, Tebaldini, Ferro-Famil (b4) 2020; 59
Frey, Meier (b12) 2011; 49
Huang, Levy-Vehel, Ferro-Famil, Reigber (b14) 2017; 14
Li, Liang, Guo, Huang (b18) 2015; 54
Tebaldini (b34) 2009; 47
Tello, Cazcarra-Bes, Pardini, Papathanassiou (b37) 2018; 11
Caicoya, Pardini, Hajnsek, Papathanassiou (b5) 2015; 12
Fatoyinbo, Saatchi, Armston, Poulsen, Marselis, Pinto, White, Jeffery (b10) 2018
Liao, Liu, van Dijk, Yue, He (b20) 2022; 110
Lu, Wang, Qin, Cao, Pu, Li, Sun (b23) 2020; 86
Minh, Le Toan, Rocca, Tebaldini, d’Alessandro, Villard (b25) 2013; 52
Saatchi, Chave, Labriere, Barbier, Réjou-Méchain, Ferraz, Tao (b31) 2019
Balima, Nacoulma, Bayen, Dimobe, Kouamé, Thiombiano (b3) 2020; 31
Rambour, Budillon, Johnsy, Denis, Tupin, Schirinzi (b29) 2020; 8
Cazcarra-Bes, Pardini, Papathanassiou (b6) 2020; 19
Qian (10.1016/j.jag.2023.103369_b28) 2022; 60
Tebaldini (10.1016/j.jag.2023.103369_b35) 2011; 50
Zhu (10.1016/j.jag.2023.103369_b41) 2011; 50
Kumar (10.1016/j.jag.2023.103369_b15) 2019; 21
Tello (10.1016/j.jag.2023.103369_b37) 2018; 11
Zhao (10.1016/j.jag.2023.103369_b39) 2016; 53
d’Alessandro (10.1016/j.jag.2023.103369_b8) 2019; 57
Minh (10.1016/j.jag.2023.103369_b25) 2013; 52
Cazcarra-Bes (10.1016/j.jag.2023.103369_b6) 2020; 19
Chiarito (10.1016/j.jag.2023.103369_b7) 2021; 54
Sauer (10.1016/j.jag.2023.103369_b32) 2011; 49
Caicoya (10.1016/j.jag.2023.103369_b5) 2015; 12
Fadhillah (10.1016/j.jag.2023.103369_b9) 2021; 60
Reigber (10.1016/j.jag.2023.103369_b30) 2000; 38
Zhou (10.1016/j.jag.2023.103369_b40) 2017; 67
Frey (10.1016/j.jag.2023.103369_b12) 2011; 49
Persson (10.1016/j.jag.2023.103369_b27) 2021; 96
Ma (10.1016/j.jag.2023.103369_b24) 2014; 12
Liao (10.1016/j.jag.2023.103369_b19) 2020; 88
Ansari (10.1016/j.jag.2023.103369_b2) 2017; 55
Zhu (10.1016/j.jag.2023.103369_b42) 2015; 102
Kumar (10.1016/j.jag.2023.103369_b16) 2017; 10
Balima (10.1016/j.jag.2023.103369_b3) 2020; 31
Fatoyinbo (10.1016/j.jag.2023.103369_b10) 2018
Saatchi (10.1016/j.jag.2023.103369_b31) 2019
Wan (10.1016/j.jag.2023.103369_b38) 2021; 13
Montazeri (10.1016/j.jag.2023.103369_b26) 2016; 54
Liao (10.1016/j.jag.2023.103369_b20) 2022; 110
Liu (10.1016/j.jag.2023.103369_b21) 2021; 19
Li (10.1016/j.jag.2023.103369_b18) 2015; 54
Liu (10.1016/j.jag.2023.103369_b22) 2021; 11
Huang (10.1016/j.jag.2023.103369_b14) 2017; 14
Le Toan (10.1016/j.jag.2023.103369_b17) 1992; 30
Rambour (10.1016/j.jag.2023.103369_b29) 2020; 8
Silveira (10.1016/j.jag.2023.103369_b33) 2019; 78
Tebaldini (10.1016/j.jag.2023.103369_b36) 2015; 54
Blomberg (10.1016/j.jag.2023.103369_b4) 2020; 59
Gatti (10.1016/j.jag.2023.103369_b13) 2010; 49
Tebaldini (10.1016/j.jag.2023.103369_b34) 2009; 47
Fonton (10.1016/j.jag.2023.103369_b11) 2017
Lu (10.1016/j.jag.2023.103369_b23) 2020; 86
Aghababaei (10.1016/j.jag.2023.103369_b1) 2020; 8
References_xml – volume: 59
  start-page: 3793
  year: 2020
  end-page: 3804
  ident: b4
  article-title: Evaluating P-band TomoSAR for biomass retrieval in boreal forest
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Ferro-Famil
– volume: 12
  start-page: 2379
  year: 2015
  end-page: 2383
  ident: b5
  article-title: Forest above-ground biomass estimation from vertical reflectivity profiles at L-band
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Papathanassiou
– volume: 55
  start-page: 5637
  year: 2017
  end-page: 5652
  ident: b2
  article-title: Sequential estimator: Toward efficient InSAR time series analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Bamler
– volume: 14
  start-page: 1454
  year: 2017
  end-page: 1458
  ident: b14
  article-title: Three-dimensional imaging of objects concealed below a forest canopy using sar tomography at L-band and wavelet-based sparse estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Reigber
– volume: 21
  start-page: 188
  year: 2019
  end-page: 192
  ident: b15
  article-title: Comparison of lasso and stepwise regression technique for wheat yield prediction
  publication-title: J. Agrometeorol.
  contributor:
    fullname: Singh
– volume: 60
  start-page: 1
  year: 2021
  end-page: 14
  ident: b9
  article-title: Improved combined scatterers interferometry with optimized point scatterers (icops) for interferometric synthetic aperture radar (InSAR) time-series analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Lee
– volume: 12
  start-page: 895
  year: 2014
  end-page: 899
  ident: b24
  article-title: On the performance of reweighted
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Chen
– volume: 96
  year: 2021
  ident: b27
  article-title: Combining Tandem-X and Sentinel-2 for large-area species-wise prediction of forest biomass and volume
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Nilsson
– volume: 54
  start-page: 6868
  year: 2016
  end-page: 6878
  ident: b26
  article-title: Three-dimensional deformation monitoring of urban infrastructure by tomographic SAR using multitrack terrasar-x data stacks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Bamler
– year: 2017
  ident: b11
  article-title: Analyzing accuracy of the power functions for modeling aboveground biomass rediction in congo basin tropical forests
  contributor:
    fullname: Maïdou
– volume: 13
  start-page: 186
  year: 2021
  ident: b38
  article-title: Forest aboveground biomass estimation using multi-features extracted by fitting vertical backscattered power profile of tomographic SAR
  publication-title: Remote Sens.
  contributor:
    fullname: Xu
– volume: 67
  start-page: 1099
  year: 2017
  end-page: 1112
  ident: b40
  article-title: A robust and efficient algorithm for coprime array adaptive beamforming
  publication-title: IEEE Trans. Veh. Technol.
  contributor:
    fullname: Shi
– volume: 10
  start-page: 5175
  year: 2017
  end-page: 5185
  ident: b16
  article-title: Spaceborne PolSAR tomography for forest height retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  contributor:
    fullname: Govil
– volume: 19
  start-page: 1
  year: 2020
  end-page: 5
  ident: b6
  article-title: Definition of tomographic SAR configurations for forest structure applications at L-band
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Papathanassiou
– volume: 19
  start-page: 1
  year: 2021
  end-page: 5
  ident: b21
  article-title: Retrieval of tropical forest height and above-ground biomass using airborne P- and L-band SAR tomography
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Li
– volume: 49
  start-page: 3648
  year: 2011
  end-page: 3659
  ident: b12
  article-title: Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Meier
– volume: 8
  start-page: 6
  year: 2020
  end-page: 29
  ident: b29
  article-title: From interferometric to tomographic SAR: A review of synthetic aperture radar tomography-processing techniques for scatterer unmixing in urban areas
  publication-title: IEEE Geosci. Remote Sens. Mag.
  contributor:
    fullname: Schirinzi
– volume: 53
  start-page: 1
  year: 2016
  end-page: 15
  ident: b39
  article-title: Forest aboveground biomass estimation in Zhejiang province using the integration of Landsat TM and ALOS PALSAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Yu
– volume: 49
  start-page: 2343
  year: 2010
  end-page: 2353
  ident: b13
  article-title: Algae: A fast algebraic estimation of interferogram phase offsets in space-varying geometries
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Rocca
– volume: 49
  start-page: 4616
  year: 2011
  end-page: 4629
  ident: b32
  article-title: Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Pottier
– volume: 47
  start-page: 4132
  year: 2009
  end-page: 4142
  ident: b34
  article-title: Algebraic synthesis of forest scenarios from multibaseline PolInSAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Tebaldini
– volume: 50
  start-page: 3150
  year: 2011
  end-page: 3157
  ident: b41
  article-title: Demonstration of super-resolution for tomographic SAR imaging in urban environment
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Bamler
– volume: 52
  start-page: 967
  year: 2013
  end-page: 979
  ident: b25
  article-title: Relating P-band synthetic aperture radar tomography to tropical forest biomass
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Villard
– volume: 11
  start-page: 3402
  year: 2018
  end-page: 3414
  ident: b37
  article-title: Forest structure characterization from SAR tomography at l-band
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  contributor:
    fullname: Papathanassiou
– volume: 102
  start-page: 222
  year: 2015
  end-page: 231
  ident: b42
  article-title: Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series
  publication-title: ISPRS J. Photogramm. Remote Sens.
  contributor:
    fullname: Liu
– volume: 11
  year: 2021
  ident: b22
  article-title: Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector
  publication-title: Sci. Rep.
  contributor:
    fullname: Jin
– volume: 57
  start-page: 6774
  year: 2019
  end-page: 6781
  ident: b8
  article-title: Digital terrain model retrieval in tropical forests through P-band SAR tomography
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Tebaldini
– volume: 54
  start-page: 209
  year: 2021
  end-page: 225
  ident: b7
  article-title: Biomass retrieval based on genetic algorithm feature selection and support vector regression in alpine grassland using ground-based hyperspectral and Sentinel-1 SAR data
  publication-title: Eur. J. Remote Sens.
  contributor:
    fullname: Notarnicola
– volume: 110
  year: 2022
  ident: b20
  article-title: Continuous woody vegetation biomass estimation based on temporal modeling of Landsat data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: He
– volume: 30
  start-page: 403
  year: 1992
  end-page: 411
  ident: b17
  article-title: Relating forest biomass to SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Guyon
– volume: 54
  start-page: 153
  year: 2015
  end-page: 166
  ident: b18
  article-title: Compressive sensing for multibaseline polarimetric SAR tomography of forested areas
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Huang
– volume: 78
  start-page: 175
  year: 2019
  end-page: 188
  ident: b33
  article-title: Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Wulder
– volume: 86
  year: 2020
  ident: b23
  article-title: Estimation of aboveground biomass of robinia pseudoacacia forest in the yellow river delta based on UAV and backpack Lidar point clouds
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Sun
– volume: 60
  start-page: 1
  year: 2022
  end-page: 16
  ident: b28
  article-title: -Net: Superresolving SAR tomographic inversion via deep learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Zhu
– year: 2019
  ident: b31
  article-title: Afrisar: Aboveground Biomass for Llope, Mabounie, Mondah, and Rabi Sites, Gabon
  contributor:
    fullname: Tao
– volume: 8
  start-page: 30
  year: 2020
  end-page: 45
  ident: b1
  article-title: Forest SAR tomography: Principles and applications
  publication-title: IEEE Geosci. Remote Sens. Mag.
  contributor:
    fullname: Tebaldini
– year: 2018
  ident: b10
  article-title: Afrisar: Mondah Forest Tree Species, Biophysical, and Biomass Data, Gabon, 2016
  contributor:
    fullname: Jeffery
– volume: 54
  start-page: 1775
  year: 2015
  end-page: 1792
  ident: b36
  article-title: Phase calibration of airborne tomographic SAR data via phase center double localization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Ferro-Famil
– volume: 88
  year: 2020
  ident: b19
  article-title: Potential of texture from SAR tomographic images for forest aboveground biomass estimation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Quan
– volume: 50
  start-page: 232
  year: 2011
  end-page: 246
  ident: b35
  article-title: Multibaseline polarimetric SAR tomography of a boreal forest at P- and L-bands
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Rocca
– volume: 38
  start-page: 2142
  year: 2000
  end-page: 2152
  ident: b30
  article-title: First demonstration of airborne SAR tomography using multibaseline L-band data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Moreira
– volume: 31
  start-page: 1699
  year: 2020
  end-page: 1711
  ident: b3
  article-title: Aboveground biomass allometric equations and distribution of carbon stocks of the african oak (afzelia africana sm.) in burkina faso
  publication-title: J. For. Res.
  contributor:
    fullname: Thiombiano
– volume: 50
  start-page: 3150
  year: 2011
  ident: 10.1016/j.jag.2023.103369_b41
  article-title: Demonstration of super-resolution for tomographic SAR imaging in urban environment
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2177843
  contributor:
    fullname: Zhu
– volume: 55
  start-page: 5637
  year: 2017
  ident: 10.1016/j.jag.2023.103369_b2
  article-title: Sequential estimator: Toward efficient InSAR time series analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2711037
  contributor:
    fullname: Ansari
– volume: 21
  start-page: 188
  year: 2019
  ident: 10.1016/j.jag.2023.103369_b15
  article-title: Comparison of lasso and stepwise regression technique for wheat yield prediction
  publication-title: J. Agrometeorol.
  doi: 10.54386/jam.v21i2.231
  contributor:
    fullname: Kumar
– volume: 54
  start-page: 1775
  year: 2015
  ident: 10.1016/j.jag.2023.103369_b36
  article-title: Phase calibration of airborne tomographic SAR data via phase center double localization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2488358
  contributor:
    fullname: Tebaldini
– volume: 54
  start-page: 6868
  year: 2016
  ident: 10.1016/j.jag.2023.103369_b26
  article-title: Three-dimensional deformation monitoring of urban infrastructure by tomographic SAR using multitrack terrasar-x data stacks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2585741
  contributor:
    fullname: Montazeri
– volume: 49
  start-page: 4616
  year: 2011
  ident: 10.1016/j.jag.2023.103369_b32
  article-title: Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2147321
  contributor:
    fullname: Sauer
– volume: 54
  start-page: 209
  year: 2021
  ident: 10.1016/j.jag.2023.103369_b7
  article-title: Biomass retrieval based on genetic algorithm feature selection and support vector regression in alpine grassland using ground-based hyperspectral and Sentinel-1 SAR data
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2021.1901063
  contributor:
    fullname: Chiarito
– volume: 8
  start-page: 6
  year: 2020
  ident: 10.1016/j.jag.2023.103369_b29
  article-title: From interferometric to tomographic SAR: A review of synthetic aperture radar tomography-processing techniques for scatterer unmixing in urban areas
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2019.2957215
  contributor:
    fullname: Rambour
– year: 2017
  ident: 10.1016/j.jag.2023.103369_b11
  contributor:
    fullname: Fonton
– volume: 88
  year: 2020
  ident: 10.1016/j.jag.2023.103369_b19
  article-title: Potential of texture from SAR tomographic images for forest aboveground biomass estimation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Liao
– volume: 96
  year: 2021
  ident: 10.1016/j.jag.2023.103369_b27
  article-title: Combining Tandem-X and Sentinel-2 for large-area species-wise prediction of forest biomass and volume
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Persson
– volume: 19
  start-page: 1
  year: 2021
  ident: 10.1016/j.jag.2023.103369_b21
  article-title: Retrieval of tropical forest height and above-ground biomass using airborne P- and L-band SAR tomography
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Liu
– volume: 31
  start-page: 1699
  year: 2020
  ident: 10.1016/j.jag.2023.103369_b3
  article-title: Aboveground biomass allometric equations and distribution of carbon stocks of the african oak (afzelia africana sm.) in burkina faso
  publication-title: J. For. Res.
  doi: 10.1007/s11676-019-00955-4
  contributor:
    fullname: Balima
– volume: 57
  start-page: 6774
  year: 2019
  ident: 10.1016/j.jag.2023.103369_b8
  article-title: Digital terrain model retrieval in tropical forests through P-band SAR tomography
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2908517
  contributor:
    fullname: d’Alessandro
– volume: 8
  start-page: 30
  year: 2020
  ident: 10.1016/j.jag.2023.103369_b1
  article-title: Forest SAR tomography: Principles and applications
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2019.2963093
  contributor:
    fullname: Aghababaei
– volume: 12
  start-page: 2379
  year: 2015
  ident: 10.1016/j.jag.2023.103369_b5
  article-title: Forest above-ground biomass estimation from vertical reflectivity profiles at L-band
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2477858
  contributor:
    fullname: Caicoya
– volume: 30
  start-page: 403
  year: 1992
  ident: 10.1016/j.jag.2023.103369_b17
  article-title: Relating forest biomass to SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.134089
  contributor:
    fullname: Le Toan
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2023.103369_b28
  article-title: γ-Net: Superresolving SAR tomographic inversion via deep learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Qian
– volume: 19
  start-page: 1
  year: 2020
  ident: 10.1016/j.jag.2023.103369_b6
  article-title: Definition of tomographic SAR configurations for forest structure applications at L-band
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3027439
  contributor:
    fullname: Cazcarra-Bes
– volume: 12
  start-page: 895
  year: 2014
  ident: 10.1016/j.jag.2023.103369_b24
  article-title: On the performance of reweighted l_{1} minimization for tomographic SAR imaging
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2365613
  contributor:
    fullname: Ma
– volume: 10
  start-page: 5175
  year: 2017
  ident: 10.1016/j.jag.2023.103369_b16
  article-title: Spaceborne PolSAR tomography for forest height retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2741723
  contributor:
    fullname: Kumar
– volume: 59
  start-page: 3793
  year: 2020
  ident: 10.1016/j.jag.2023.103369_b4
  article-title: Evaluating P-band TomoSAR for biomass retrieval in boreal forest
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3020775
  contributor:
    fullname: Blomberg
– volume: 13
  start-page: 186
  year: 2021
  ident: 10.1016/j.jag.2023.103369_b38
  article-title: Forest aboveground biomass estimation using multi-features extracted by fitting vertical backscattered power profile of tomographic SAR
  publication-title: Remote Sens.
  doi: 10.3390/rs13020186
  contributor:
    fullname: Wan
– volume: 78
  start-page: 175
  year: 2019
  ident: 10.1016/j.jag.2023.103369_b33
  article-title: Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Silveira
– volume: 14
  start-page: 1454
  year: 2017
  ident: 10.1016/j.jag.2023.103369_b14
  article-title: Three-dimensional imaging of objects concealed below a forest canopy using sar tomography at L-band and wavelet-based sparse estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2709839
  contributor:
    fullname: Huang
– volume: 50
  start-page: 232
  year: 2011
  ident: 10.1016/j.jag.2023.103369_b35
  article-title: Multibaseline polarimetric SAR tomography of a boreal forest at P- and L-bands
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2159614
  contributor:
    fullname: Tebaldini
– volume: 49
  start-page: 2343
  year: 2010
  ident: 10.1016/j.jag.2023.103369_b13
  article-title: Algae: A fast algebraic estimation of interferogram phase offsets in space-varying geometries
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2091278
  contributor:
    fullname: Gatti
– volume: 47
  start-page: 4132
  year: 2009
  ident: 10.1016/j.jag.2023.103369_b34
  article-title: Algebraic synthesis of forest scenarios from multibaseline PolInSAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2023785
  contributor:
    fullname: Tebaldini
– year: 2019
  ident: 10.1016/j.jag.2023.103369_b31
  contributor:
    fullname: Saatchi
– volume: 67
  start-page: 1099
  year: 2017
  ident: 10.1016/j.jag.2023.103369_b40
  article-title: A robust and efficient algorithm for coprime array adaptive beamforming
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2704610
  contributor:
    fullname: Zhou
– volume: 110
  year: 2022
  ident: 10.1016/j.jag.2023.103369_b20
  article-title: Continuous woody vegetation biomass estimation based on temporal modeling of Landsat data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Liao
– volume: 52
  start-page: 967
  year: 2013
  ident: 10.1016/j.jag.2023.103369_b25
  article-title: Relating P-band synthetic aperture radar tomography to tropical forest biomass
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2246170
  contributor:
    fullname: Minh
– volume: 38
  start-page: 2142
  year: 2000
  ident: 10.1016/j.jag.2023.103369_b30
  article-title: First demonstration of airborne SAR tomography using multibaseline L-band data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.868873
  contributor:
    fullname: Reigber
– year: 2018
  ident: 10.1016/j.jag.2023.103369_b10
  contributor:
    fullname: Fatoyinbo
– volume: 86
  year: 2020
  ident: 10.1016/j.jag.2023.103369_b23
  article-title: Estimation of aboveground biomass of robinia pseudoacacia forest in the yellow river delta based on UAV and backpack Lidar point clouds
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Lu
– volume: 54
  start-page: 153
  year: 2015
  ident: 10.1016/j.jag.2023.103369_b18
  article-title: Compressive sensing for multibaseline polarimetric SAR tomography of forested areas
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2451992
  contributor:
    fullname: Li
– volume: 53
  start-page: 1
  year: 2016
  ident: 10.1016/j.jag.2023.103369_b39
  article-title: Forest aboveground biomass estimation in Zhejiang province using the integration of Landsat TM and ALOS PALSAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Zhao
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.jag.2023.103369_b9
  article-title: Improved combined scatterers interferometry with optimized point scatterers (icops) for interferometric synthetic aperture radar (InSAR) time-series analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3138763
  contributor:
    fullname: Fadhillah
– volume: 11
  year: 2021
  ident: 10.1016/j.jag.2023.103369_b22
  article-title: Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector
  publication-title: Sci. Rep.
  contributor:
    fullname: Liu
– volume: 49
  start-page: 3648
  year: 2011
  ident: 10.1016/j.jag.2023.103369_b12
  article-title: Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2125972
  contributor:
    fullname: Frey
– volume: 102
  start-page: 222
  year: 2015
  ident: 10.1016/j.jag.2023.103369_b42
  article-title: Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.014
  contributor:
    fullname: Zhu
– volume: 11
  start-page: 3402
  year: 2018
  ident: 10.1016/j.jag.2023.103369_b37
  article-title: Forest structure characterization from SAR tomography at l-band
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2859050
  contributor:
    fullname: Tello
SSID ssj0017768
Score 2.4160757
Snippet Forests play a crucial role in quantifying global carbon storage and detecting climate change in the form of aboveground biomass (AGB), which introduces an...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 103369
SubjectTerms Canopy height
Forest aboveground biomass
Forest height
Structure parameters
Tomographic SAR
Tropical forest
Title Tropical forest AGB estimation based on structure parameters extracted by TomoSAR
URI https://dx.doi.org/10.1016/j.jag.2023.103369
https://doaj.org/article/1f565941bab84c3793753ea4f2295b59
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwwIChXlSx6YkAJp7CT22EJLJyRokdgi27ERldpULR3499zFScmCWNiiyLKjd47fnXz3jpDrhOcRy0MbKG0gQJEiDzTwdJBIZXmUp9yUoj7jSfr0Jh6GKJOzbfWFOWFeHtgDd9dz4HJI3tNKC24YyrnFzCrusA-1jn3pXpjUwVR1f5CmvgguTmQgOIvq-8wys2um3m-xazgWnDPMdG4wUinc3yCmBtmMDslB5SXSvv-6I7JjF22y39AObJPO8KdEDYZW_-j6mDxPV8USoafgj8KZT_uPA4paGr5IkSJv5RQevHTsZmUp6n_PMS9mTeGsLgWcc6q_6LSYF5P-ywl5HQ2n9-OgapwQGODnz0CKOGVKa2djpyLmhNCRCIUJc10SeCiBlIxMTKKUc8KBTaRJUqlTK3vOGdYhrUWxsKeERhDugZeFLNZDHRnBuNB4ucmkUErxLrmpwcuWXh8jqxPHZhkgnSHSmUe6SwYI73YgSluXL8DgWWXw7C-DdwmvjZNVXoJnf5jq4_e1z_5j7XOyh1P6dN0L0gI72Uuyu843V-X--waD5dre
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tropical+forest+AGB+estimation+based+on+structure+parameters+extracted+by+TomoSAR&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Wenmei&rft.au=Zhang%2C+Yu&rft.au=Zhang%2C+Jiadong&rft.au=Chen%2C+Huaihuai&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=121&rft_id=info:doi/10.1016%2Fj.jag.2023.103369&rft.externalDocID=S1569843223001930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon