The Use of Artificial Intelligence in Caries Detection: A Review
Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI t...
Saved in:
Published in: | Bioengineering (Basel) Vol. 11; no. 9; p. 936 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
18-09-2024
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice. |
---|---|
AbstractList | Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice. Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice.Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice. |
Audience | Academic |
Author | Alfaraj, Amal Qaw, Masoumah Alqudaihi, Fatema Alsheikh, Rasha Ahmed, Walaa Magdy Azhari, Amr Ahmed Al-Khalifa, Khalifa S |
AuthorAffiliation | 5 Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia; asalfaraj@kfu.edu.sa 4 Department of Restorative Dentistry, Khobar Dental Complex, Eastern Health Cluster, Dammam 32253, Saudi Arabia; fali-alqudaihi@moh.gov.sa 1 Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia 3 Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; mssqaw@iau.edu.sa (M.Q.); ralsheikh@iau.edu.sa (R.A.) 2 Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; wmahmed@kau.edu.sa (W.M.A.); aaaazhari@kau.edu.sa (A.A.A.) |
AuthorAffiliation_xml | – name: 3 Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; mssqaw@iau.edu.sa (M.Q.); ralsheikh@iau.edu.sa (R.A.) – name: 5 Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia; asalfaraj@kfu.edu.sa – name: 1 Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia – name: 2 Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; wmahmed@kau.edu.sa (W.M.A.); aaaazhari@kau.edu.sa (A.A.A.) – name: 4 Department of Restorative Dentistry, Khobar Dental Complex, Eastern Health Cluster, Dammam 32253, Saudi Arabia; fali-alqudaihi@moh.gov.sa |
Author_xml | – sequence: 1 givenname: Khalifa S orcidid: 0000-0001-8160-9288 surname: Al-Khalifa fullname: Al-Khalifa, Khalifa S organization: Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia – sequence: 2 givenname: Walaa Magdy orcidid: 0000-0003-1810-8733 surname: Ahmed fullname: Ahmed, Walaa Magdy organization: Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 3 givenname: Amr Ahmed orcidid: 0000-0002-8749-4714 surname: Azhari fullname: Azhari, Amr Ahmed organization: Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 4 givenname: Masoumah orcidid: 0000-0001-6047-9031 surname: Qaw fullname: Qaw, Masoumah organization: Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia – sequence: 5 givenname: Rasha orcidid: 0000-0003-2910-5511 surname: Alsheikh fullname: Alsheikh, Rasha organization: Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia – sequence: 6 givenname: Fatema orcidid: 0000-0003-3161-9482 surname: Alqudaihi fullname: Alqudaihi, Fatema organization: Department of Restorative Dentistry, Khobar Dental Complex, Eastern Health Cluster, Dammam 32253, Saudi Arabia – sequence: 7 givenname: Amal surname: Alfaraj fullname: Alfaraj, Amal organization: Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39329679$$D View this record in MEDLINE/PubMed |
BookMark | eNptUl1PHCEUnTSaaq1_wUzSl76shWFgoC_tZvvhJiZNGn0mzOUyspkFC7Oa_vuyrrVuY3iAXM453Hs4b6qDEANW1Rkl54wp8qH3EcPgA2LyYaCUKKKYeFUdN4yIGWe8PXh2PqpOc14RQihreCPa19URU6xRolPH1eerG6yvM9bR1fM0eefBm7FehgnH0Q8YAGsf6oVJHnP9BSeEycfwsZ7XP_HO4_3b6tCZMePp435SXX_7erW4mF3--L5czC9n0BI-zQwjsrMObKcstEA6Dsz1jYQeewdG0kahkwaAsd6JnhnJDaWWyELvJUp2Ui13ujaalb5Nfm3Sbx2N1w-FmAZtSv8woqaKMidpZ4VRLQMieysE7wxIbm0j26L1aad1u-nXaAHDlMy4J7p_E_yNHuKdprRtpCRNUXj_qJDirw3mSa99hmKZCRg3WbPyKS0RknQF-u4_6CpuUihePaBYaY2Lf6jBlAl8cLE8DFtRPZflg7ngZGvC-QuosiyuPZSQOF_qewSxI0CKOSd0T0NSordZ0i9nqRDPnlv0RPubHPYHqpDIsQ |
Cites_doi | 10.1186/s12984-021-00945-w 10.1111/adj.12812 10.1016/j.jdent.2019.103260 10.3390/bioengineering5020047 10.1016/j.jdent.2021.103849 10.1007/978-3-319-51469-7_34 10.1001/jama.2023.25057 10.3390/diagnostics11091672 10.3390/genes12040462 10.1109/TNNLS.2021.3084827 10.1186/s12913-022-08215-8 10.1111/odi.13735 10.1016/j.jdent.2021.103615 10.1177/00220345211032524 10.1038/s41598-024-63422-z 10.1038/s41415-021-3526-6 10.3390/diagnostics13020202 10.3390/diagnostics13020226 10.1177/14604582211007530 10.1016/S0140-6736(07)60031-2 10.3389/fgene.2021.636867 10.1007/s10115-023-01894-7 10.1016/j.jdent.2006.06.001 10.1016/j.jebdp.2014.02.004 10.1007/s11548-021-02319-y 10.1038/s41598-021-95024-4 10.1177/0022034519871884 10.1038/s41598-021-96368-7 10.21037/atm-21-119 10.1007/s11265-016-1214-6 10.14219/jada.archive.2006.0113 10.1016/j.cmpb.2019.105198 10.1177/0895937409335590 10.1016/j.tripleo.2008.03.002 10.3390/s21134613 10.1016/j.joen.2019.03.016 10.25241/stomaeduj.2017.4(1).4 10.1007/s11042-022-12100-1 10.1016/j.prosdent.2023.07.013 10.1186/s12903-024-04120-0 10.3390/dj9120141 10.3390/diagnostics11071136 10.1007/s13755-019-0096-y 10.3389/fcimb.2021.727630 10.3390/ijerph18168613 10.1007/s11282-021-00577-9 10.1186/s12903-021-01528-w 10.1186/1472-6831-15-S1-S3 10.3390/s21155192 10.1038/s41598-021-92121-2 10.1111/ger.12432 10.1016/j.jdent.2022.104115 10.1364/BOE.479818 10.1101/2021.05.04.21256502 10.1038/s41598-023-27808-9 10.1159/000047485 10.1007/s10916-018-1088-1 10.3390/diagnostics12051083 10.1016/j.jdent.2020.103425 10.1016/j.jdent.2018.07.015 10.1590/1807-3107bor-2017.vol31.0091 10.1007/s10278-021-00487-6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | NPM AAYXX CITATION 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/bioengineering11090936 |
DatabaseName | PubMed CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Engineering Database ProQuest Central Student Technology Collection ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science & Engineering Collection ProQuest One Academic Engineering Collection MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Dentistry |
EISSN | 2306-5354 |
ExternalDocumentID | oai_doaj_org_article_1913f817d6a943c08bd6657ac85dd284 A810956508 10_3390_bioengineering11090936 39329679 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ ABDBF ABJCF ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E NPM OK1 PGMZT PIMPY PROAC PTHSS RPM AAYXX CITATION ABUWG AZQEC DWQXO GNUQQ PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c405t-a3087dfcd79dc4c075c3fb28cbebfca8129ef8acc33bf6b3a85a11d08c40b8e83 |
IEDL.DBID | RPM |
ISSN | 2306-5354 |
IngestDate | Tue Oct 22 15:16:01 EDT 2024 Mon Sep 30 11:48:19 EDT 2024 Sat Oct 26 02:08:58 EDT 2024 Thu Nov 07 18:38:26 EST 2024 Thu Oct 10 02:26:38 EDT 2024 Tue Oct 08 04:17:15 EDT 2024 Wed Sep 25 14:00:27 EDT 2024 Sat Nov 02 12:01:32 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | dental caries treatment planning diagnosis detection artificial intelligence |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-a3087dfcd79dc4c075c3fb28cbebfca8129ef8acc33bf6b3a85a11d08c40b8e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1810-8733 0000-0002-8749-4714 0000-0003-2910-5511 0000-0001-8160-9288 0000-0003-3161-9482 0000-0001-6047-9031 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428802/ |
PMID | 39329679 |
PQID | 3110366556 |
PQPubID | 2055440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1913f817d6a943c08bd6657ac85dd284 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11428802 proquest_miscellaneous_3110406807 proquest_journals_3110366556 gale_infotracmisc_A810956508 gale_infotracacademiconefile_A810956508 crossref_primary_10_3390_bioengineering11090936 pubmed_primary_39329679 |
PublicationCentury | 2000 |
PublicationDate | 20240918 |
PublicationDateYYYYMMDD | 2024-09-18 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240918 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Bioengineering (Basel) |
PublicationTitleAlternate | Bioengineering (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Agrawal (ref_67) 2022; 14 Zandona (ref_8) 2006; 137 ref_57 Pethani (ref_32) 2021; 66 Carey (ref_5) 2014; 14 ref_54 ref_53 ref_52 Azimbagirad (ref_19) 2021; 34 Walsh (ref_14) 2021; 3 ref_59 Motamedian (ref_40) 2022; 122 ref_61 ref_60 Morita (ref_12) 2002; 36 ref_24 ref_68 Sheehy (ref_13) 2001; 35 Cantu (ref_17) 2020; 100 Bayrakdar (ref_21) 2022; 38 ref_66 ref_65 ref_62 Ekert (ref_30) 2019; 45 Duong (ref_42) 2021; 27 Zhang (ref_51) 2022; 28 ref_28 Howell (ref_39) 2024; 331 Karhade (ref_41) 2021; 43 Zheng (ref_58) 2021; 9 Lee (ref_26) 2018; 77 Geetha (ref_47) 2020; 8 Kuhnisch (ref_18) 2022; 101 Devlin (ref_56) 2021; 231 ref_70 Casalegno (ref_23) 2019; 98 Pretty (ref_10) 2006; 34 ref_35 Hung (ref_27) 2019; 36 ref_33 ref_31 Devito (ref_20) 2008; 106 Selwitz (ref_1) 2007; 369 Anwar (ref_15) 2018; 42 ref_38 Schwendicke (ref_63) 2020; 92 ref_37 Wang (ref_49) 2023; 14 ref_46 Pontes (ref_11) 2017; 31 ref_45 Askar (ref_55) 2021; 107 ref_44 Mertens (ref_16) 2021; 115 ref_43 Guetari (ref_34) 2023; 65 Li (ref_22) 2022; 33 ref_3 Aljabri (ref_36) 2022; 81 ref_2 Anil (ref_69) 2023; 15 Ghislieri (ref_29) 2021; 18 Choi (ref_64) 2016; 90 ref_48 ref_9 Spaveras (ref_7) 2017; 4 Chen (ref_25) 2021; 16 ref_4 Featherstone (ref_6) 2009; 21 |
References_xml | – volume: 18 start-page: 153 year: 2021 ident: ref_29 article-title: Long short-term memory (LSTM) recurrent neural network for muscle activity detection publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-021-00945-w contributor: fullname: Ghislieri – volume: 66 start-page: 124 year: 2021 ident: ref_32 article-title: Promises and perils of artificial intelligence in dentistry publication-title: Aust. Dent. J. doi: 10.1111/adj.12812 contributor: fullname: Pethani – volume: 43 start-page: 191 year: 2021 ident: ref_41 article-title: An Automated Machine Learning Classifier for Early Childhood Caries publication-title: Pediatr. Dent. contributor: fullname: Karhade – volume: 92 start-page: 103260 year: 2020 ident: ref_63 article-title: Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study publication-title: J. Dent. doi: 10.1016/j.jdent.2019.103260 contributor: fullname: Schwendicke – volume: 14 start-page: e27405 year: 2022 ident: ref_67 article-title: Artificial Intelligence in Dentistry: Past, Present, and Future publication-title: Cureus contributor: fullname: Agrawal – ident: ref_31 doi: 10.3390/bioengineering5020047 – volume: 115 start-page: 103849 year: 2021 ident: ref_16 article-title: Artificial intelligence for caries detection: Randomized trial publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103849 contributor: fullname: Mertens – ident: ref_65 doi: 10.1007/978-3-319-51469-7_34 – volume: 331 start-page: 242 year: 2024 ident: ref_39 article-title: Three Epochs of Artificial Intelligence in Health Care publication-title: JAMA doi: 10.1001/jama.2023.25057 contributor: fullname: Howell – volume: 36 start-page: 188 year: 2002 ident: ref_12 article-title: DIAGNOdent values of occlusal surface in the first permanent molar in vivo (abstract 45)—49th ORCA Congress publication-title: Caries Res. contributor: fullname: Morita – ident: ref_52 doi: 10.3390/diagnostics11091672 – volume: 15 start-page: e41694 year: 2023 ident: ref_69 article-title: Transforming Dental Caries Diagnosis Through Artificial Intelligence-Based Techniques publication-title: Cureus contributor: fullname: Anil – ident: ref_57 doi: 10.3390/genes12040462 – volume: 33 start-page: 6999 year: 2022 ident: ref_22 article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3084827 contributor: fullname: Li – ident: ref_70 doi: 10.1186/s12913-022-08215-8 – volume: 28 start-page: 173 year: 2022 ident: ref_51 article-title: Development and evaluation of deep learning for screening dental caries from oral photographs publication-title: Oral. Dis. doi: 10.1111/odi.13735 contributor: fullname: Zhang – volume: 107 start-page: 103615 year: 2021 ident: ref_55 article-title: Detecting white spot lesions on dental photography using deep learning: A pilot study publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103615 contributor: fullname: Askar – volume: 101 start-page: 158 year: 2022 ident: ref_18 article-title: Caries Detection on Intraoral Images Using Artificial Intelligence publication-title: J. Dent. Res. doi: 10.1177/00220345211032524 contributor: fullname: Kuhnisch – ident: ref_38 doi: 10.1038/s41598-024-63422-z – volume: 231 start-page: 481 year: 2021 ident: ref_56 article-title: The ADEPT study: A comparative study of dentists’ ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software publication-title: Br. Dent. J. doi: 10.1038/s41415-021-3526-6 contributor: fullname: Devlin – ident: ref_66 doi: 10.3390/diagnostics13020202 – ident: ref_48 doi: 10.3390/diagnostics13020226 – volume: 27 start-page: 14604582211007530 year: 2021 ident: ref_42 article-title: Automated caries detection with smartphone color photography using machine learning publication-title: Health Inform. J. doi: 10.1177/14604582211007530 contributor: fullname: Duong – volume: 369 start-page: 51 year: 2007 ident: ref_1 article-title: Dental caries publication-title: Lancet doi: 10.1016/S0140-6736(07)60031-2 contributor: fullname: Selwitz – ident: ref_33 doi: 10.3389/fgene.2021.636867 – volume: 65 start-page: 3881 year: 2023 ident: ref_34 article-title: Computer-aided diagnosis systems: A comparative study of classical machine learning versus deep learning-based approaches publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-023-01894-7 contributor: fullname: Guetari – volume: 34 start-page: 727 year: 2006 ident: ref_10 article-title: Caries detection and diagnosis: Novel technologies publication-title: J. Dent. doi: 10.1016/j.jdent.2006.06.001 contributor: fullname: Pretty – volume: 14 start-page: 95 year: 2014 ident: ref_5 article-title: Focus on fluorides: Update on the use of fluoride for the prevention of dental caries publication-title: J. Evid. Based Dent. Pract. doi: 10.1016/j.jebdp.2014.02.004 contributor: fullname: Carey – ident: ref_4 – volume: 16 start-page: 649 year: 2021 ident: ref_25 article-title: Dental disease detection on periapical radiographs based on deep convolutional neural networks publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-021-02319-y contributor: fullname: Chen – ident: ref_28 doi: 10.1038/s41598-021-95024-4 – volume: 98 start-page: 1227 year: 2019 ident: ref_23 article-title: Caries Detection with Near-Infrared Transillumination Using Deep Learning publication-title: J. Dent. Res. doi: 10.1177/0022034519871884 contributor: fullname: Casalegno – ident: ref_60 doi: 10.1038/s41598-021-96368-7 – volume: 9 start-page: 763 year: 2021 ident: ref_58 article-title: Artificial intelligence in digital cariology: A new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks publication-title: Ann. Transl. Med. doi: 10.21037/atm-21-119 contributor: fullname: Zheng – volume: 90 start-page: 87 year: 2016 ident: ref_64 article-title: Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-016-1214-6 contributor: fullname: Choi – volume: 137 start-page: 1675 year: 2006 ident: ref_8 article-title: Diagnostic tools for early caries detection publication-title: J. Am. Dent. Assoc. doi: 10.14219/jada.archive.2006.0113 contributor: fullname: Zandona – ident: ref_44 doi: 10.1016/j.cmpb.2019.105198 – volume: 21 start-page: 4 year: 2009 ident: ref_6 article-title: Remineralization, the natural caries repair process—The need for new approaches publication-title: Adv. Dent. Res. doi: 10.1177/0895937409335590 contributor: fullname: Featherstone – volume: 106 start-page: 879 year: 2008 ident: ref_20 article-title: An artificial multilayer perceptron neural network for diagnosis of proximal dental caries publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology doi: 10.1016/j.tripleo.2008.03.002 contributor: fullname: Devito – ident: ref_61 doi: 10.3390/s21134613 – volume: 45 start-page: 917 year: 2019 ident: ref_30 article-title: Deep Learning for the Radiographic Detection of Apical Lesions publication-title: J. Endod. doi: 10.1016/j.joen.2019.03.016 contributor: fullname: Ekert – volume: 4 start-page: 44 year: 2017 ident: ref_7 article-title: Caries detection with laser fluorescence devices. Limitations of their use publication-title: Stomatol. Edu J. doi: 10.25241/stomaeduj.2017.4(1).4 contributor: fullname: Spaveras – volume: 81 start-page: 25877 year: 2022 ident: ref_36 article-title: Towards a better understanding of annotation tools for medical imaging: A survey publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12100-1 contributor: fullname: Aljabri – ident: ref_3 – ident: ref_50 doi: 10.1016/j.prosdent.2023.07.013 – ident: ref_37 doi: 10.1186/s12903-024-04120-0 – ident: ref_43 doi: 10.3390/dj9120141 – ident: ref_54 doi: 10.3390/diagnostics11071136 – volume: 8 start-page: 8 year: 2020 ident: ref_47 article-title: Dental caries diagnosis in digital radiographs using back-propagation neural network publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-019-0096-y contributor: fullname: Geetha – ident: ref_45 doi: 10.3389/fcimb.2021.727630 – ident: ref_46 doi: 10.3390/ijerph18168613 – volume: 38 start-page: 468 year: 2022 ident: ref_21 article-title: Deep-learning approach for caries detection and segmentation on dental bitewing radiographs publication-title: Oral. Radiol. doi: 10.1007/s11282-021-00577-9 contributor: fullname: Bayrakdar – ident: ref_9 doi: 10.1186/s12903-021-01528-w – ident: ref_24 doi: 10.1186/1472-6831-15-S1-S3 – ident: ref_53 doi: 10.3390/s21155192 – ident: ref_59 doi: 10.1038/s41598-021-92121-2 – volume: 36 start-page: 395 year: 2019 ident: ref_27 article-title: Application of machine learning for diagnostic prediction of root caries publication-title: Gerodontology doi: 10.1111/ger.12432 contributor: fullname: Hung – volume: 122 start-page: 104115 year: 2022 ident: ref_40 article-title: Deep learning for caries detection: A systematic review publication-title: J. Dent. doi: 10.1016/j.jdent.2022.104115 contributor: fullname: Motamedian – ident: ref_2 – volume: 14 start-page: 866 year: 2023 ident: ref_49 article-title: Deep learning and sub-band fluorescence imaging-based method for caries and calculus diagnosis embeddable on different smartphones publication-title: Biomed. Opt. Express doi: 10.1364/BOE.479818 contributor: fullname: Wang – ident: ref_62 doi: 10.1101/2021.05.04.21256502 – ident: ref_35 doi: 10.1038/s41598-023-27808-9 – volume: 35 start-page: 421 year: 2001 ident: ref_13 article-title: Comparison between visual examination and a laser fluorescence system for in vivo diagnosis of occlusal caries publication-title: Caries Res. doi: 10.1159/000047485 contributor: fullname: Sheehy – volume: 42 start-page: 226 year: 2018 ident: ref_15 article-title: Medical Image Analysis using Convolutional Neural Networks: A Review publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1088-1 contributor: fullname: Anwar – ident: ref_68 doi: 10.3390/diagnostics12051083 – volume: 3 start-page: CD014545 year: 2021 ident: ref_14 article-title: Imaging modalities to inform the detection and diagnosis of early caries publication-title: Cochrane Database Syst. Rev. contributor: fullname: Walsh – volume: 100 start-page: 103425 year: 2020 ident: ref_17 article-title: Detecting caries lesions of different radiographic extension on bitewings using deep learning publication-title: J. Dent. doi: 10.1016/j.jdent.2020.103425 contributor: fullname: Cantu – volume: 77 start-page: 106 year: 2018 ident: ref_26 article-title: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm publication-title: J. Dent. doi: 10.1016/j.jdent.2018.07.015 contributor: fullname: Lee – volume: 31 start-page: e91 year: 2017 ident: ref_11 article-title: Clinical performance of fluorescence-based methods for detection of occlusal caries lesions in primary teeth publication-title: Braz. Oral. Res. doi: 10.1590/1807-3107bor-2017.vol31.0091 contributor: fullname: Pontes – volume: 34 start-page: 1237 year: 2021 ident: ref_19 article-title: Prediction of Radiation-Related Dental Caries Through PyRadiomics Features and Artificial Neural Network on Panoramic Radiography publication-title: J. Digit. Imaging doi: 10.1007/s10278-021-00487-6 contributor: fullname: Azimbagirad |
SSID | ssj0001325264 |
Score | 2.3198886 |
SecondaryResourceType | review_article |
Snippet | Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 936 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Clinical medicine Computational linguistics Datasets Dental caries Dental materials Dentistry Dentists detection Development and progression diagnosis Diagnostic tests Disease prevention Fluorides Health aspects Language processing Lasers Morphology Natural language interfaces Neural networks Oral hygiene Review Risk assessment Toiletries industry treatment planning |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4BEwyIN-ElIyExRW3iOHGYKC_BwgJIbFb8iOiSItr-f-7sUBKBxMIa24r9nc93Z58_A5yJ1NZoyGl7SfA400R5WwoXa7QHSZ6WUju6jXz_VDy-yptboslZPPVFOWGBHjgAN8B4gtcyKWxelRk3Q6ktHRZURgprcW31q-8w7wRTfneFpwJNfbgSzDGuH-jxxH0z_BHPJsbyec8aedL-n0tzxzb18yY7huhuA9ZbD5KNQs83Yck1W7DW4RXchksUPnuZOjapfb3AEsEeOvSbbNywax8nsxs38_lYzQUbsXBWsAMvd7fP1_dx-1RCbNDjmsUVEfvZ2tiitCYz6AcYXutUGoS6NhVa8dLVsjKGc13nmldSVElihxKba-kk34WVZtK4fWBcy9QQgbEbukyKUiPUJrVcC4HKX7gIBl-QqffAiKEwkiCQ1e8gR3BFyC5qE6O1_4ByVq2c1V9yjuCc5KJI7xB8U7XXB7DTxGClRjIhTkX0NyM46tVEfTH94i_JqlZfp4pjXzn-T2BnTxfF1JJy0Bo3mYc6GT1VUkSwFybCYkgc3eAyL8oIZG-K9MbcL2nGb57Nmy4z4yKaHvwHSoewmqKWUUJLIo9gZfYxd8ewPLXzE68gn2aMFKI priority: 102 providerName: Directory of Open Access Journals |
Title | The Use of Artificial Intelligence in Caries Detection: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39329679 https://www.proquest.com/docview/3110366556 https://www.proquest.com/docview/3110406807 https://pubmed.ncbi.nlm.nih.gov/PMC11428802 https://doaj.org/article/1913f817d6a943c08bd6657ac85dd284 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLe4PcED4pvCmIKExFPXa9O0KU8ct03jAYQEk3iLGieFk1g77e7-f-y0PVrBE69NoriOHduJ_QvAG5W5hgw5Hy8pGeeWIW8r5WNL9iAtskpbz9XIl1_Lz9_12TnD5BRjLUxI2ke7OW1_XZ-2m58ht_LmGpMxTyz58mnN9Z8kd1mygAU5h5MYPZysyEyRme_LgSXF9InddP4Puh9jbFIcz48XSfJeqoLTuCZGKWD3_71DT0zUPH1yYo8uHsD9wZEUq57gh3DHt4_g3gRe8DG8JxkQV1svuib068EixMcJCqfYtGIdwmVx5nchLat9J1aivzJ4AlcX59_Wl_HwYkKM5Hjt4prx_VyDrqwc5kjuAMrGZhqJ4w3WZMwr3-gaUUrbFFbWWtVp6paahlvttXwKR23X-ucgpNUZMo6xX_pcq8rWqDFz0ipFe0DpI0hGlpmbHhjDUEDB_Db_5ncEH5izh94MbB0-dLc_zLC8hsJH2ei0dEVd5RKX2jq-G6LJlXNkSiN4y-tiWP2I-VgPVQRENANZmZVOGVqR3M4Ijmc9SW1w3jyurBnUdmsk0SppPkXEvj4080hORWt9t-_75PxiSRnBs14QDr80ylMEeiYis3-et5CMB1DvUaZf_P_Ql3A3IxXjbJZUH8PR7nbvX8Fi6_Yn4ajhJOjJb8YaFwc |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcgAOvAuBAkZC4pTm4ThxOLFsW21FWyHRStys-BFYiSZVd_f_M-MkSyI49Zqx5cfMZGbsmc8AH0RqazTkdLwkeJhpgrwthQs12oMkT0upHVUjL74X5z_k4RHB5ORDLYxP2jd6edD8vjpolr98buX1lYmGPLHo29mc6j9R7tJoB-6iwsbxKEr3Zys8FWjou4JgjlF9pJet-4vvRyibGMnT80Uc_Zcyp0SukVny6P3__qNHRmqaQDmySMePbruWx_Cw90HZrKM_gTuueQoPRsiEz-Azig-7XDnW1r5dhzPBTkYAnmzZsLmPtNmhW_uMruYTm7HutuE5XB4fXcwXYf_YQmjQZ1uHFUED2trYorQmM-hJGF7rVBpkVm0q9ANKV8vKGM51nWteSVEliY0ldtfSSb4Hu03buJfAuJapIQhkF7tMilJXRprUci0E_j4KF0A07LW67jA1FMYixCj1f0YF8IVYsm1NmNj-Q3vzU_W7qTDy5LVMCptXZcZNLLWlayUcXFiLVjiAj8RQRZqLXDNVX4CAkyYMLDWTCaEyoscawP6kJWqcmZIHkVC9xq8Ux7lyHE_gZN9vydSTstga1266Nhk9dlIE8KKToO2SBkEMQE5ka7LmKQVFyuOBDyL06vZd38G9xcXZqTo9Of_6Gu6nqKmUFJPIfdhd32zcG9hZ2c1br2Z_AJFqK8U |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiF64P1IKWAkJE5pNnG8cXrqsttVK6CqBJW4WfEjsFKbrLq7_78zTrJNBCe4xmP5MTOZGXvmM8BHkdgSDTkdLwkeppogb3PhQo32IB4nudSOqpFPv2fnP-XshGByjrpaGJ-0b_TisLq6PqwWv31u5fLaRF2eWHTxbUr1nyh3SbS0ZbQD91FpR0kvUvfnKzwRaOybomCOkX2kF7W7w_gjpE2M5ukJI44-TD6mZK6eafII_n_-p3uGaphE2bNK88f_s54n8Kj1RdmkoXkK91z1DPZ6CIXP4RjFiF2uHKtLT9fgTbCzHpAnW1Rs6iNuNnNrn9lVHbEJa24dXsDl_OTH9DRsH10IDfpu67AgiEBbGpvl1qQGPQrDS51Ig0wrTYH-QO5KWRjDuS7HmhdSFHFsRxK7a-kkfwm7VV2518C4lokhKGQ3cqkUuS6MNInlWgj8jWQugKjbb7VssDUUxiTELPV3ZgXwmdiypSZsbP-hvvml2h1VGIHyUsaZHRd5ys1IakvXSzi4sBatcQCfiKmKNBg5Z4q2EAEnTVhYaiJjQmdEzzWAgwElap4ZNndioVrNXymOc-U4nsDJftg2U0_KZqtcvWloUnr0JAvgVSNF2yV1whiAHMjXYM3DFhQrjwveidH-v3d9Dw8uZnP19ez8yxt4mKDCUm5MLA9gd32zcW9hZ2U377ym3QL0ai5F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Artificial+Intelligence+in+Caries+Detection%3A+A+Review&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Al-Khalifa%2C+Khalifa+S&rft.au=Ahmed%2C+Walaa+Magdy&rft.au=Amr+Ahmed+Azhari&rft.au=Qaw%2C+Masoumah&rft.date=2024-09-18&rft.pub=MDPI+AG&rft.eissn=2306-5354&rft.volume=11&rft.issue=9&rft.spage=936&rft_id=info:doi/10.3390%2Fbioengineering11090936&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |