The Use of Artificial Intelligence in Caries Detection: A Review

Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI t...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) Vol. 11; no. 9; p. 936
Main Authors: Al-Khalifa, Khalifa S, Ahmed, Walaa Magdy, Azhari, Amr Ahmed, Qaw, Masoumah, Alsheikh, Rasha, Alqudaihi, Fatema, Alfaraj, Amal
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 18-09-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice.
AbstractList Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice.
Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice.Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice.
Audience Academic
Author Alfaraj, Amal
Qaw, Masoumah
Alqudaihi, Fatema
Alsheikh, Rasha
Ahmed, Walaa Magdy
Azhari, Amr Ahmed
Al-Khalifa, Khalifa S
AuthorAffiliation 5 Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia; asalfaraj@kfu.edu.sa
4 Department of Restorative Dentistry, Khobar Dental Complex, Eastern Health Cluster, Dammam 32253, Saudi Arabia; fali-alqudaihi@moh.gov.sa
1 Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
3 Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; mssqaw@iau.edu.sa (M.Q.); ralsheikh@iau.edu.sa (R.A.)
2 Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; wmahmed@kau.edu.sa (W.M.A.); aaaazhari@kau.edu.sa (A.A.A.)
AuthorAffiliation_xml – name: 3 Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; mssqaw@iau.edu.sa (M.Q.); ralsheikh@iau.edu.sa (R.A.)
– name: 5 Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia; asalfaraj@kfu.edu.sa
– name: 1 Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
– name: 2 Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; wmahmed@kau.edu.sa (W.M.A.); aaaazhari@kau.edu.sa (A.A.A.)
– name: 4 Department of Restorative Dentistry, Khobar Dental Complex, Eastern Health Cluster, Dammam 32253, Saudi Arabia; fali-alqudaihi@moh.gov.sa
Author_xml – sequence: 1
  givenname: Khalifa S
  orcidid: 0000-0001-8160-9288
  surname: Al-Khalifa
  fullname: Al-Khalifa, Khalifa S
  organization: Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
– sequence: 2
  givenname: Walaa Magdy
  orcidid: 0000-0003-1810-8733
  surname: Ahmed
  fullname: Ahmed, Walaa Magdy
  organization: Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– sequence: 3
  givenname: Amr Ahmed
  orcidid: 0000-0002-8749-4714
  surname: Azhari
  fullname: Azhari, Amr Ahmed
  organization: Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– sequence: 4
  givenname: Masoumah
  orcidid: 0000-0001-6047-9031
  surname: Qaw
  fullname: Qaw, Masoumah
  organization: Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
– sequence: 5
  givenname: Rasha
  orcidid: 0000-0003-2910-5511
  surname: Alsheikh
  fullname: Alsheikh, Rasha
  organization: Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
– sequence: 6
  givenname: Fatema
  orcidid: 0000-0003-3161-9482
  surname: Alqudaihi
  fullname: Alqudaihi, Fatema
  organization: Department of Restorative Dentistry, Khobar Dental Complex, Eastern Health Cluster, Dammam 32253, Saudi Arabia
– sequence: 7
  givenname: Amal
  surname: Alfaraj
  fullname: Alfaraj, Amal
  organization: Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39329679$$D View this record in MEDLINE/PubMed
BookMark eNptUl1PHCEUnTSaaq1_wUzSl76shWFgoC_tZvvhJiZNGn0mzOUyspkFC7Oa_vuyrrVuY3iAXM453Hs4b6qDEANW1Rkl54wp8qH3EcPgA2LyYaCUKKKYeFUdN4yIGWe8PXh2PqpOc14RQihreCPa19URU6xRolPH1eerG6yvM9bR1fM0eefBm7FehgnH0Q8YAGsf6oVJHnP9BSeEycfwsZ7XP_HO4_3b6tCZMePp435SXX_7erW4mF3--L5czC9n0BI-zQwjsrMObKcstEA6Dsz1jYQeewdG0kahkwaAsd6JnhnJDaWWyELvJUp2Ui13ujaalb5Nfm3Sbx2N1w-FmAZtSv8woqaKMidpZ4VRLQMieysE7wxIbm0j26L1aad1u-nXaAHDlMy4J7p_E_yNHuKdprRtpCRNUXj_qJDirw3mSa99hmKZCRg3WbPyKS0RknQF-u4_6CpuUihePaBYaY2Lf6jBlAl8cLE8DFtRPZflg7ngZGvC-QuosiyuPZSQOF_qewSxI0CKOSd0T0NSordZ0i9nqRDPnlv0RPubHPYHqpDIsQ
Cites_doi 10.1186/s12984-021-00945-w
10.1111/adj.12812
10.1016/j.jdent.2019.103260
10.3390/bioengineering5020047
10.1016/j.jdent.2021.103849
10.1007/978-3-319-51469-7_34
10.1001/jama.2023.25057
10.3390/diagnostics11091672
10.3390/genes12040462
10.1109/TNNLS.2021.3084827
10.1186/s12913-022-08215-8
10.1111/odi.13735
10.1016/j.jdent.2021.103615
10.1177/00220345211032524
10.1038/s41598-024-63422-z
10.1038/s41415-021-3526-6
10.3390/diagnostics13020202
10.3390/diagnostics13020226
10.1177/14604582211007530
10.1016/S0140-6736(07)60031-2
10.3389/fgene.2021.636867
10.1007/s10115-023-01894-7
10.1016/j.jdent.2006.06.001
10.1016/j.jebdp.2014.02.004
10.1007/s11548-021-02319-y
10.1038/s41598-021-95024-4
10.1177/0022034519871884
10.1038/s41598-021-96368-7
10.21037/atm-21-119
10.1007/s11265-016-1214-6
10.14219/jada.archive.2006.0113
10.1016/j.cmpb.2019.105198
10.1177/0895937409335590
10.1016/j.tripleo.2008.03.002
10.3390/s21134613
10.1016/j.joen.2019.03.016
10.25241/stomaeduj.2017.4(1).4
10.1007/s11042-022-12100-1
10.1016/j.prosdent.2023.07.013
10.1186/s12903-024-04120-0
10.3390/dj9120141
10.3390/diagnostics11071136
10.1007/s13755-019-0096-y
10.3389/fcimb.2021.727630
10.3390/ijerph18168613
10.1007/s11282-021-00577-9
10.1186/s12903-021-01528-w
10.1186/1472-6831-15-S1-S3
10.3390/s21155192
10.1038/s41598-021-92121-2
10.1111/ger.12432
10.1016/j.jdent.2022.104115
10.1364/BOE.479818
10.1101/2021.05.04.21256502
10.1038/s41598-023-27808-9
10.1159/000047485
10.1007/s10916-018-1088-1
10.3390/diagnostics12051083
10.1016/j.jdent.2020.103425
10.1016/j.jdent.2018.07.015
10.1590/1807-3107bor-2017.vol31.0091
10.1007/s10278-021-00487-6
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID NPM
AAYXX
CITATION
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering11090936
DatabaseName PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Engineering Database
ProQuest Central Student
Technology Collection
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Dentistry
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_1913f817d6a943c08bd6657ac85dd284
A810956508
10_3390_bioengineering11090936
39329679
Genre Journal Article
Review
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
ABDBF
ABJCF
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PROAC
PTHSS
RPM
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c405t-a3087dfcd79dc4c075c3fb28cbebfca8129ef8acc33bf6b3a85a11d08c40b8e83
IEDL.DBID RPM
ISSN 2306-5354
IngestDate Tue Oct 22 15:16:01 EDT 2024
Mon Sep 30 11:48:19 EDT 2024
Sat Oct 26 02:08:58 EDT 2024
Thu Nov 07 18:38:26 EST 2024
Thu Oct 10 02:26:38 EDT 2024
Tue Oct 08 04:17:15 EDT 2024
Wed Sep 25 14:00:27 EDT 2024
Sat Nov 02 12:01:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords dental caries
treatment planning
diagnosis
detection
artificial intelligence
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-a3087dfcd79dc4c075c3fb28cbebfca8129ef8acc33bf6b3a85a11d08c40b8e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1810-8733
0000-0002-8749-4714
0000-0003-2910-5511
0000-0001-8160-9288
0000-0003-3161-9482
0000-0001-6047-9031
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428802/
PMID 39329679
PQID 3110366556
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_1913f817d6a943c08bd6657ac85dd284
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11428802
proquest_miscellaneous_3110406807
proquest_journals_3110366556
gale_infotracmisc_A810956508
gale_infotracacademiconefile_A810956508
crossref_primary_10_3390_bioengineering11090936
pubmed_primary_39329679
PublicationCentury 2000
PublicationDate 20240918
PublicationDateYYYYMMDD 2024-09-18
PublicationDate_xml – month: 9
  year: 2024
  text: 20240918
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Agrawal (ref_67) 2022; 14
Zandona (ref_8) 2006; 137
ref_57
Pethani (ref_32) 2021; 66
Carey (ref_5) 2014; 14
ref_54
ref_53
ref_52
Azimbagirad (ref_19) 2021; 34
Walsh (ref_14) 2021; 3
ref_59
Motamedian (ref_40) 2022; 122
ref_61
ref_60
Morita (ref_12) 2002; 36
ref_24
ref_68
Sheehy (ref_13) 2001; 35
Cantu (ref_17) 2020; 100
Bayrakdar (ref_21) 2022; 38
ref_66
ref_65
ref_62
Ekert (ref_30) 2019; 45
Duong (ref_42) 2021; 27
Zhang (ref_51) 2022; 28
ref_28
Howell (ref_39) 2024; 331
Karhade (ref_41) 2021; 43
Zheng (ref_58) 2021; 9
Lee (ref_26) 2018; 77
Geetha (ref_47) 2020; 8
Kuhnisch (ref_18) 2022; 101
Devlin (ref_56) 2021; 231
ref_70
Casalegno (ref_23) 2019; 98
Pretty (ref_10) 2006; 34
ref_35
Hung (ref_27) 2019; 36
ref_33
ref_31
Devito (ref_20) 2008; 106
Selwitz (ref_1) 2007; 369
Anwar (ref_15) 2018; 42
ref_38
Schwendicke (ref_63) 2020; 92
ref_37
Wang (ref_49) 2023; 14
ref_46
Pontes (ref_11) 2017; 31
ref_45
Askar (ref_55) 2021; 107
ref_44
Mertens (ref_16) 2021; 115
ref_43
Guetari (ref_34) 2023; 65
Li (ref_22) 2022; 33
ref_3
Aljabri (ref_36) 2022; 81
ref_2
Anil (ref_69) 2023; 15
Ghislieri (ref_29) 2021; 18
Choi (ref_64) 2016; 90
ref_48
ref_9
Spaveras (ref_7) 2017; 4
Chen (ref_25) 2021; 16
ref_4
Featherstone (ref_6) 2009; 21
References_xml – volume: 18
  start-page: 153
  year: 2021
  ident: ref_29
  article-title: Long short-term memory (LSTM) recurrent neural network for muscle activity detection
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-021-00945-w
  contributor:
    fullname: Ghislieri
– volume: 66
  start-page: 124
  year: 2021
  ident: ref_32
  article-title: Promises and perils of artificial intelligence in dentistry
  publication-title: Aust. Dent. J.
  doi: 10.1111/adj.12812
  contributor:
    fullname: Pethani
– volume: 43
  start-page: 191
  year: 2021
  ident: ref_41
  article-title: An Automated Machine Learning Classifier for Early Childhood Caries
  publication-title: Pediatr. Dent.
  contributor:
    fullname: Karhade
– volume: 92
  start-page: 103260
  year: 2020
  ident: ref_63
  article-title: Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2019.103260
  contributor:
    fullname: Schwendicke
– volume: 14
  start-page: e27405
  year: 2022
  ident: ref_67
  article-title: Artificial Intelligence in Dentistry: Past, Present, and Future
  publication-title: Cureus
  contributor:
    fullname: Agrawal
– ident: ref_31
  doi: 10.3390/bioengineering5020047
– volume: 115
  start-page: 103849
  year: 2021
  ident: ref_16
  article-title: Artificial intelligence for caries detection: Randomized trial
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2021.103849
  contributor:
    fullname: Mertens
– ident: ref_65
  doi: 10.1007/978-3-319-51469-7_34
– volume: 331
  start-page: 242
  year: 2024
  ident: ref_39
  article-title: Three Epochs of Artificial Intelligence in Health Care
  publication-title: JAMA
  doi: 10.1001/jama.2023.25057
  contributor:
    fullname: Howell
– volume: 36
  start-page: 188
  year: 2002
  ident: ref_12
  article-title: DIAGNOdent values of occlusal surface in the first permanent molar in vivo (abstract 45)—49th ORCA Congress
  publication-title: Caries Res.
  contributor:
    fullname: Morita
– ident: ref_52
  doi: 10.3390/diagnostics11091672
– volume: 15
  start-page: e41694
  year: 2023
  ident: ref_69
  article-title: Transforming Dental Caries Diagnosis Through Artificial Intelligence-Based Techniques
  publication-title: Cureus
  contributor:
    fullname: Anil
– ident: ref_57
  doi: 10.3390/genes12040462
– volume: 33
  start-page: 6999
  year: 2022
  ident: ref_22
  article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
  contributor:
    fullname: Li
– ident: ref_70
  doi: 10.1186/s12913-022-08215-8
– volume: 28
  start-page: 173
  year: 2022
  ident: ref_51
  article-title: Development and evaluation of deep learning for screening dental caries from oral photographs
  publication-title: Oral. Dis.
  doi: 10.1111/odi.13735
  contributor:
    fullname: Zhang
– volume: 107
  start-page: 103615
  year: 2021
  ident: ref_55
  article-title: Detecting white spot lesions on dental photography using deep learning: A pilot study
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2021.103615
  contributor:
    fullname: Askar
– volume: 101
  start-page: 158
  year: 2022
  ident: ref_18
  article-title: Caries Detection on Intraoral Images Using Artificial Intelligence
  publication-title: J. Dent. Res.
  doi: 10.1177/00220345211032524
  contributor:
    fullname: Kuhnisch
– ident: ref_38
  doi: 10.1038/s41598-024-63422-z
– volume: 231
  start-page: 481
  year: 2021
  ident: ref_56
  article-title: The ADEPT study: A comparative study of dentists’ ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software
  publication-title: Br. Dent. J.
  doi: 10.1038/s41415-021-3526-6
  contributor:
    fullname: Devlin
– ident: ref_66
  doi: 10.3390/diagnostics13020202
– ident: ref_48
  doi: 10.3390/diagnostics13020226
– volume: 27
  start-page: 14604582211007530
  year: 2021
  ident: ref_42
  article-title: Automated caries detection with smartphone color photography using machine learning
  publication-title: Health Inform. J.
  doi: 10.1177/14604582211007530
  contributor:
    fullname: Duong
– volume: 369
  start-page: 51
  year: 2007
  ident: ref_1
  article-title: Dental caries
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60031-2
  contributor:
    fullname: Selwitz
– ident: ref_33
  doi: 10.3389/fgene.2021.636867
– volume: 65
  start-page: 3881
  year: 2023
  ident: ref_34
  article-title: Computer-aided diagnosis systems: A comparative study of classical machine learning versus deep learning-based approaches
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-023-01894-7
  contributor:
    fullname: Guetari
– volume: 34
  start-page: 727
  year: 2006
  ident: ref_10
  article-title: Caries detection and diagnosis: Novel technologies
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2006.06.001
  contributor:
    fullname: Pretty
– volume: 14
  start-page: 95
  year: 2014
  ident: ref_5
  article-title: Focus on fluorides: Update on the use of fluoride for the prevention of dental caries
  publication-title: J. Evid. Based Dent. Pract.
  doi: 10.1016/j.jebdp.2014.02.004
  contributor:
    fullname: Carey
– ident: ref_4
– volume: 16
  start-page: 649
  year: 2021
  ident: ref_25
  article-title: Dental disease detection on periapical radiographs based on deep convolutional neural networks
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-021-02319-y
  contributor:
    fullname: Chen
– ident: ref_28
  doi: 10.1038/s41598-021-95024-4
– volume: 98
  start-page: 1227
  year: 2019
  ident: ref_23
  article-title: Caries Detection with Near-Infrared Transillumination Using Deep Learning
  publication-title: J. Dent. Res.
  doi: 10.1177/0022034519871884
  contributor:
    fullname: Casalegno
– ident: ref_60
  doi: 10.1038/s41598-021-96368-7
– volume: 9
  start-page: 763
  year: 2021
  ident: ref_58
  article-title: Artificial intelligence in digital cariology: A new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-21-119
  contributor:
    fullname: Zheng
– volume: 90
  start-page: 87
  year: 2016
  ident: ref_64
  article-title: Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-016-1214-6
  contributor:
    fullname: Choi
– volume: 137
  start-page: 1675
  year: 2006
  ident: ref_8
  article-title: Diagnostic tools for early caries detection
  publication-title: J. Am. Dent. Assoc.
  doi: 10.14219/jada.archive.2006.0113
  contributor:
    fullname: Zandona
– ident: ref_44
  doi: 10.1016/j.cmpb.2019.105198
– volume: 21
  start-page: 4
  year: 2009
  ident: ref_6
  article-title: Remineralization, the natural caries repair process—The need for new approaches
  publication-title: Adv. Dent. Res.
  doi: 10.1177/0895937409335590
  contributor:
    fullname: Featherstone
– volume: 106
  start-page: 879
  year: 2008
  ident: ref_20
  article-title: An artificial multilayer perceptron neural network for diagnosis of proximal dental caries
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology
  doi: 10.1016/j.tripleo.2008.03.002
  contributor:
    fullname: Devito
– ident: ref_61
  doi: 10.3390/s21134613
– volume: 45
  start-page: 917
  year: 2019
  ident: ref_30
  article-title: Deep Learning for the Radiographic Detection of Apical Lesions
  publication-title: J. Endod.
  doi: 10.1016/j.joen.2019.03.016
  contributor:
    fullname: Ekert
– volume: 4
  start-page: 44
  year: 2017
  ident: ref_7
  article-title: Caries detection with laser fluorescence devices. Limitations of their use
  publication-title: Stomatol. Edu J.
  doi: 10.25241/stomaeduj.2017.4(1).4
  contributor:
    fullname: Spaveras
– volume: 81
  start-page: 25877
  year: 2022
  ident: ref_36
  article-title: Towards a better understanding of annotation tools for medical imaging: A survey
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12100-1
  contributor:
    fullname: Aljabri
– ident: ref_3
– ident: ref_50
  doi: 10.1016/j.prosdent.2023.07.013
– ident: ref_37
  doi: 10.1186/s12903-024-04120-0
– ident: ref_43
  doi: 10.3390/dj9120141
– ident: ref_54
  doi: 10.3390/diagnostics11071136
– volume: 8
  start-page: 8
  year: 2020
  ident: ref_47
  article-title: Dental caries diagnosis in digital radiographs using back-propagation neural network
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-019-0096-y
  contributor:
    fullname: Geetha
– ident: ref_45
  doi: 10.3389/fcimb.2021.727630
– ident: ref_46
  doi: 10.3390/ijerph18168613
– volume: 38
  start-page: 468
  year: 2022
  ident: ref_21
  article-title: Deep-learning approach for caries detection and segmentation on dental bitewing radiographs
  publication-title: Oral. Radiol.
  doi: 10.1007/s11282-021-00577-9
  contributor:
    fullname: Bayrakdar
– ident: ref_9
  doi: 10.1186/s12903-021-01528-w
– ident: ref_24
  doi: 10.1186/1472-6831-15-S1-S3
– ident: ref_53
  doi: 10.3390/s21155192
– ident: ref_59
  doi: 10.1038/s41598-021-92121-2
– volume: 36
  start-page: 395
  year: 2019
  ident: ref_27
  article-title: Application of machine learning for diagnostic prediction of root caries
  publication-title: Gerodontology
  doi: 10.1111/ger.12432
  contributor:
    fullname: Hung
– volume: 122
  start-page: 104115
  year: 2022
  ident: ref_40
  article-title: Deep learning for caries detection: A systematic review
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2022.104115
  contributor:
    fullname: Motamedian
– ident: ref_2
– volume: 14
  start-page: 866
  year: 2023
  ident: ref_49
  article-title: Deep learning and sub-band fluorescence imaging-based method for caries and calculus diagnosis embeddable on different smartphones
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.479818
  contributor:
    fullname: Wang
– ident: ref_62
  doi: 10.1101/2021.05.04.21256502
– ident: ref_35
  doi: 10.1038/s41598-023-27808-9
– volume: 35
  start-page: 421
  year: 2001
  ident: ref_13
  article-title: Comparison between visual examination and a laser fluorescence system for in vivo diagnosis of occlusal caries
  publication-title: Caries Res.
  doi: 10.1159/000047485
  contributor:
    fullname: Sheehy
– volume: 42
  start-page: 226
  year: 2018
  ident: ref_15
  article-title: Medical Image Analysis using Convolutional Neural Networks: A Review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1088-1
  contributor:
    fullname: Anwar
– ident: ref_68
  doi: 10.3390/diagnostics12051083
– volume: 3
  start-page: CD014545
  year: 2021
  ident: ref_14
  article-title: Imaging modalities to inform the detection and diagnosis of early caries
  publication-title: Cochrane Database Syst. Rev.
  contributor:
    fullname: Walsh
– volume: 100
  start-page: 103425
  year: 2020
  ident: ref_17
  article-title: Detecting caries lesions of different radiographic extension on bitewings using deep learning
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2020.103425
  contributor:
    fullname: Cantu
– volume: 77
  start-page: 106
  year: 2018
  ident: ref_26
  article-title: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2018.07.015
  contributor:
    fullname: Lee
– volume: 31
  start-page: e91
  year: 2017
  ident: ref_11
  article-title: Clinical performance of fluorescence-based methods for detection of occlusal caries lesions in primary teeth
  publication-title: Braz. Oral. Res.
  doi: 10.1590/1807-3107bor-2017.vol31.0091
  contributor:
    fullname: Pontes
– volume: 34
  start-page: 1237
  year: 2021
  ident: ref_19
  article-title: Prediction of Radiation-Related Dental Caries Through PyRadiomics Features and Artificial Neural Network on Panoramic Radiography
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-021-00487-6
  contributor:
    fullname: Azimbagirad
SSID ssj0001325264
Score 2.3198886
SecondaryResourceType review_article
Snippet Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 936
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Clinical medicine
Computational linguistics
Datasets
Dental caries
Dental materials
Dentistry
Dentists
detection
Development and progression
diagnosis
Diagnostic tests
Disease prevention
Fluorides
Health aspects
Language processing
Lasers
Morphology
Natural language interfaces
Neural networks
Oral hygiene
Review
Risk assessment
Toiletries industry
treatment planning
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4BEwyIN-ElIyExRW3iOHGYKC_BwgJIbFb8iOiSItr-f-7sUBKBxMIa24r9nc93Z58_A5yJ1NZoyGl7SfA400R5WwoXa7QHSZ6WUju6jXz_VDy-yptboslZPPVFOWGBHjgAN8B4gtcyKWxelRk3Q6ktHRZURgprcW31q-8w7wRTfneFpwJNfbgSzDGuH-jxxH0z_BHPJsbyec8aedL-n0tzxzb18yY7huhuA9ZbD5KNQs83Yck1W7DW4RXchksUPnuZOjapfb3AEsEeOvSbbNywax8nsxs38_lYzQUbsXBWsAMvd7fP1_dx-1RCbNDjmsUVEfvZ2tiitCYz6AcYXutUGoS6NhVa8dLVsjKGc13nmldSVElihxKba-kk34WVZtK4fWBcy9QQgbEbukyKUiPUJrVcC4HKX7gIBl-QqffAiKEwkiCQ1e8gR3BFyC5qE6O1_4ByVq2c1V9yjuCc5KJI7xB8U7XXB7DTxGClRjIhTkX0NyM46tVEfTH94i_JqlZfp4pjXzn-T2BnTxfF1JJy0Bo3mYc6GT1VUkSwFybCYkgc3eAyL8oIZG-K9MbcL2nGb57Nmy4z4yKaHvwHSoewmqKWUUJLIo9gZfYxd8ewPLXzE68gn2aMFKI
  priority: 102
  providerName: Directory of Open Access Journals
Title The Use of Artificial Intelligence in Caries Detection: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/39329679
https://www.proquest.com/docview/3110366556
https://www.proquest.com/docview/3110406807
https://pubmed.ncbi.nlm.nih.gov/PMC11428802
https://doaj.org/article/1913f817d6a943c08bd6657ac85dd284
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLe4PcED4pvCmIKExFPXa9O0KU8ct03jAYQEk3iLGieFk1g77e7-f-y0PVrBE69NoriOHduJ_QvAG5W5hgw5Hy8pGeeWIW8r5WNL9iAtskpbz9XIl1_Lz9_12TnD5BRjLUxI2ke7OW1_XZ-2m58ht_LmGpMxTyz58mnN9Z8kd1mygAU5h5MYPZysyEyRme_LgSXF9InddP4Puh9jbFIcz48XSfJeqoLTuCZGKWD3_71DT0zUPH1yYo8uHsD9wZEUq57gh3DHt4_g3gRe8DG8JxkQV1svuib068EixMcJCqfYtGIdwmVx5nchLat9J1aivzJ4AlcX59_Wl_HwYkKM5Hjt4prx_VyDrqwc5kjuAMrGZhqJ4w3WZMwr3-gaUUrbFFbWWtVp6paahlvttXwKR23X-ucgpNUZMo6xX_pcq8rWqDFz0ipFe0DpI0hGlpmbHhjDUEDB_Db_5ncEH5izh94MbB0-dLc_zLC8hsJH2ei0dEVd5RKX2jq-G6LJlXNkSiN4y-tiWP2I-VgPVQRENANZmZVOGVqR3M4Ijmc9SW1w3jyurBnUdmsk0SppPkXEvj4080hORWt9t-_75PxiSRnBs14QDr80ylMEeiYis3-et5CMB1DvUaZf_P_Ql3A3IxXjbJZUH8PR7nbvX8Fi6_Yn4ajhJOjJb8YaFwc
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcgAOvAuBAkZC4pTm4ThxOLFsW21FWyHRStys-BFYiSZVd_f_M-MkSyI49Zqx5cfMZGbsmc8AH0RqazTkdLwkeJhpgrwthQs12oMkT0upHVUjL74X5z_k4RHB5ORDLYxP2jd6edD8vjpolr98buX1lYmGPLHo29mc6j9R7tJoB-6iwsbxKEr3Zys8FWjou4JgjlF9pJet-4vvRyibGMnT80Uc_Zcyp0SukVny6P3__qNHRmqaQDmySMePbruWx_Cw90HZrKM_gTuueQoPRsiEz-Azig-7XDnW1r5dhzPBTkYAnmzZsLmPtNmhW_uMruYTm7HutuE5XB4fXcwXYf_YQmjQZ1uHFUED2trYorQmM-hJGF7rVBpkVm0q9ANKV8vKGM51nWteSVEliY0ldtfSSb4Hu03buJfAuJapIQhkF7tMilJXRprUci0E_j4KF0A07LW67jA1FMYixCj1f0YF8IVYsm1NmNj-Q3vzU_W7qTDy5LVMCptXZcZNLLWlayUcXFiLVjiAj8RQRZqLXDNVX4CAkyYMLDWTCaEyoscawP6kJWqcmZIHkVC9xq8Ux7lyHE_gZN9vydSTstga1266Nhk9dlIE8KKToO2SBkEMQE5ka7LmKQVFyuOBDyL06vZd38G9xcXZqTo9Of_6Gu6nqKmUFJPIfdhd32zcG9hZ2c1br2Z_AJFqK8U
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiF64P1IKWAkJE5pNnG8cXrqsttVK6CqBJW4WfEjsFKbrLq7_78zTrJNBCe4xmP5MTOZGXvmM8BHkdgSDTkdLwkeppogb3PhQo32IB4nudSOqpFPv2fnP-XshGByjrpaGJ-0b_TisLq6PqwWv31u5fLaRF2eWHTxbUr1nyh3SbS0ZbQD91FpR0kvUvfnKzwRaOybomCOkX2kF7W7w_gjpE2M5ukJI44-TD6mZK6eafII_n_-p3uGaphE2bNK88f_s54n8Kj1RdmkoXkK91z1DPZ6CIXP4RjFiF2uHKtLT9fgTbCzHpAnW1Rs6iNuNnNrn9lVHbEJa24dXsDl_OTH9DRsH10IDfpu67AgiEBbGpvl1qQGPQrDS51Ig0wrTYH-QO5KWRjDuS7HmhdSFHFsRxK7a-kkfwm7VV2518C4lokhKGQ3cqkUuS6MNInlWgj8jWQugKjbb7VssDUUxiTELPV3ZgXwmdiypSZsbP-hvvml2h1VGIHyUsaZHRd5ys1IakvXSzi4sBatcQCfiKmKNBg5Z4q2EAEnTVhYaiJjQmdEzzWAgwElap4ZNndioVrNXymOc-U4nsDJftg2U0_KZqtcvWloUnr0JAvgVSNF2yV1whiAHMjXYM3DFhQrjwveidH-v3d9Dw8uZnP19ez8yxt4mKDCUm5MLA9gd32zcW9hZ2U377ym3QL0ai5F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Artificial+Intelligence+in+Caries+Detection%3A+A+Review&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Al-Khalifa%2C+Khalifa+S&rft.au=Ahmed%2C+Walaa+Magdy&rft.au=Amr+Ahmed+Azhari&rft.au=Qaw%2C+Masoumah&rft.date=2024-09-18&rft.pub=MDPI+AG&rft.eissn=2306-5354&rft.volume=11&rft.issue=9&rft.spage=936&rft_id=info:doi/10.3390%2Fbioengineering11090936&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon