Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion
Background Adhesion formation remains a major complication following hernia repair surgery. Physical barriers though effective for adhesion prevention in clinical settings are associated with major disadvantages, therefore, needs further investigation. This study evaluates silk fibroin hydrogel as a...
Saved in:
Published in: | Hernia : the journal of hernias and abdominal wall surgery Vol. 21; no. 1; pp. 125 - 137 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Paris
Springer Paris
01-02-2017
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Adhesion formation remains a major complication following hernia repair surgery. Physical barriers though effective for adhesion prevention in clinical settings are associated with major disadvantages, therefore, needs further investigation. This study evaluates silk fibroin hydrogel as a physical barrier on polypropylene mesh for the prevention of adhesion following ventral hernia repair.
Study design
Peritoneal explants were cultured on silk fibroin scaffold to evaluate its support for mesothelial cell growth. Full thickness uniform sized defects were created on the ventral abdominal wall of rabbits, and the defects were covered either with silk hydrogel coated polypropylene mesh or with plain polypropylene mesh as a control. The animals were killed after 1 month, and the adhesion formation was graded; healing response of peritoneum was evaluated by immunohistochemistry with calretinin, collagen staining of peritoneal sections, and expression of PCNA, collagen-I, TNFα, IL6 by real time PCR; and its adverse effect if any was determined.
Results
Silk fibroin scaffold showed excellent support for peritoneal cell growth in vitro and the cells expressed calretinin. A remarkable prevention of adhesion formation was observed in the animals implanted with silk hydrogel coated mesh compared to the control group; in these animals peritoneal healing was complete and predominantly by mesothelial cells with minimum fibrotic changes. Expression of inflammatory cytokines decreased compared to control animals, histology of abdominal organs, haematological and blood biochemical parameters remained normal.
Conclusion
Therefore, silk hydrogel coating of polypropylene mesh can improve peritoneal healing, minimize adhesion formation, is safe and can augment the outcome of hernia surgery. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1265-4906 1248-9204 |
DOI: | 10.1007/s10029-016-1484-8 |