The Cellular Prion Protein PrPc Is Expressed in Human Enterocytes in Cell-Cell Junctional Domains
The physiological function of PrPc, the cellular isoform of prion protein, still remains unclear, although it has been established, in vitro or by using nerve cells, that it can homodimerize, bind copper, or interact with other proteins. Expression of PrPc was demonstrated as necessary for prion inf...
Saved in:
Published in: | The Journal of biological chemistry Vol. 279; no. 2; pp. 1499 - 1505 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
09-01-2004
American Society for Biochemistry and Molecular Biology |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The physiological function of PrPc, the cellular isoform of prion protein, still remains unclear, although it has been established, in vitro or by using nerve cells, that it can homodimerize, bind copper, or interact with other proteins. Expression of PrPc was demonstrated as necessary for prion infection propagation. Considering the importance of the intestinal barrier in the process of oral prion infectivity, we have analyzed the expression of PrPc in enterocytes, which represent the major cell population of the intestinal epithelium. Our study, conducted both on normal human intestinal tissues and on the enterocytic cell line Caco-2/TC7, shows for the first time that PrPc is present in enterocytes. Interestingly, we found that this glycosylphosphatidylinositol-anchored glycoprotein was localized in cholesterol-dependent raft domains of the upper lateral membranes of enterocytes, beneath tight junctions, in cell-cell junctional domains. We observed that PrPc, E-cadherin, and Src co-localized in adherens junctions and that PrPc was co-immunoprecipitated with Src kinase but not with E-cadherin. Alteration of cell polarity after cholesterol depletion or loosening of the cell-cell junctions after EGTA treatment rapidly impaired membrane targeting of PrPc. Overall, our results point out the signaling of cell-cell contacts as a putative role for PrPc in epithelial cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M308578200 |