Extraction and processing of real time strain of embedded FBG sensors using a fixed filter FBG circuit and an artificial neural network

•Method to interrogate FBG sensors using the fixed wavelength FBG filters.•FBG filter system to capture data from an embedded FBG sensor in the time domain.•FBG data processing using area integration accounting for the distorted spectra.•Estimation of strain using distorted FBG sensor response spect...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation Vol. 46; no. 10; pp. 4045 - 4051
Main Authors: Kahandawa, Gayan C., Epaarachchi, Jayantha, Wang, Hao, Canning, John, Lau, K.T.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-12-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Method to interrogate FBG sensors using the fixed wavelength FBG filters.•FBG filter system to capture data from an embedded FBG sensor in the time domain.•FBG data processing using area integration accounting for the distorted spectra.•Estimation of strain using distorted FBG sensor response spectra using ANN.•It was found that the error levels were less than 0.3% in predictions using ANN. Fibre Bragg Grating (FBG) sensors have been used in the development of structural health monitoring (SHM) and damage detection systems for advanced composite structures over several decades. Unfortunately, to date only a handful of appropriate configurations and algorithm sare available for using in SHM systems have been developed. This paper reveals a novel configuration of FBG sensors to acquire strain reading and an integrated statistical approach to analyse data in real time. The proposed configuration has proven its capability to overcome practical constraints and the engineering challenges associated with FBG-based SHM systems. A fixed filter decoding system and an integrated artificial neural network algorithm for extracting strain from embedded FBG sensor were proposed and experimentally proved. Furthermore, the laboratory level experimental data was used to verify the accuracy of the system and it was found that the error levels were less than 0.3% in predictions. The developed SMH system using this technology has been submitted to US patent office and will be available for use of aerospace applications in due course.
AbstractList Fibre Bragg Grating (FBG) sensors have been used in the development of structural health monitoring (SHM) and damage detection systems for advanced composite structures over several decades. Unfortunately, to date only a handful of appropriate configurations and algorithm sare available for using in SHM systems have been developed. This paper reveals a novel configuration of FBG sensors to acquire strain reading and an integrated statistical approach to analyse data in real time. The proposed configuration has proven its capability to overcome practical constraints and the engineering challenges associated with FBG-based SHM systems. A fixed filter decoding system and an integrated artificial neural network algorithm for extracting strain from embedded FBG sensor were proposed and experimentally proved. Furthermore, the laboratory level experimental data was used to verify the accuracy of the system and it was found that the error levels were less than 0.3% in predictions. The developed SMH system using this technology has been submitted to US patent office and will be available for use of aerospace applications in due course.
•Method to interrogate FBG sensors using the fixed wavelength FBG filters.•FBG filter system to capture data from an embedded FBG sensor in the time domain.•FBG data processing using area integration accounting for the distorted spectra.•Estimation of strain using distorted FBG sensor response spectra using ANN.•It was found that the error levels were less than 0.3% in predictions using ANN. Fibre Bragg Grating (FBG) sensors have been used in the development of structural health monitoring (SHM) and damage detection systems for advanced composite structures over several decades. Unfortunately, to date only a handful of appropriate configurations and algorithm sare available for using in SHM systems have been developed. This paper reveals a novel configuration of FBG sensors to acquire strain reading and an integrated statistical approach to analyse data in real time. The proposed configuration has proven its capability to overcome practical constraints and the engineering challenges associated with FBG-based SHM systems. A fixed filter decoding system and an integrated artificial neural network algorithm for extracting strain from embedded FBG sensor were proposed and experimentally proved. Furthermore, the laboratory level experimental data was used to verify the accuracy of the system and it was found that the error levels were less than 0.3% in predictions. The developed SMH system using this technology has been submitted to US patent office and will be available for use of aerospace applications in due course.
Author Epaarachchi, Jayantha
Kahandawa, Gayan C.
Lau, K.T.
Canning, John
Wang, Hao
Author_xml – sequence: 1
  givenname: Gayan C.
  surname: Kahandawa
  fullname: Kahandawa, Gayan C.
  email: gayan@usq.edu.au
  organization: Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba QLD 4350, Australia
– sequence: 2
  givenname: Jayantha
  surname: Epaarachchi
  fullname: Epaarachchi, Jayantha
  organization: Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba QLD 4350, Australia
– sequence: 3
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba QLD 4350, Australia
– sequence: 4
  givenname: John
  surname: Canning
  fullname: Canning, John
  organization: Interdisciplinary Photonic Laboratories, School of Chemistry, University of Sydney, Sydney NSW 2000, Australia
– sequence: 5
  givenname: K.T.
  surname: Lau
  fullname: Lau, K.T.
  organization: The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
BookMark eNqNkE9v1DAQxS3USmxbvoO5cUnwv8SbI6zaglSplyL1ZjnOGM2S2MV2oHyCfu16dzlw5DTSzHu_0XsX5CzEAIS856zljPcf9-0CNq8JFgilFYzLlumWieEN2fCtlo3i4vGMbJjoZSOE4m_JRc57xlgvh35DXq6fS7KuYAzUhok-peggZwzfafQ0gZ1pwQVorioMhx0sI0wTTPTm8y3NEHJMma5Hh6Uen-vF41wgHQUOk1uxHNm2vkgFPTqs2ABrOo7yO6YfV-Tc2znDu7_zkny7uX7YfWnu7m-_7j7dNU6xrjTKuWns9GC15COT3iuu3BY004rD0AvegR07KaTySm7Bgh69dxpEJ_tRjlZekg8nbg36c4VczILZwTzbAHHNhneSDQPrhKrS4SR1KeacwJunhItNfwxn5lC-2Zt_yjeH8g3TppZfvbuTF2qWXwjJZIcQHEyYwBUzRfwPyitdlZf4
CitedBy_id crossref_primary_10_1016_j_measurement_2024_114248
crossref_primary_10_1007_s12596_023_01412_6
crossref_primary_10_1038_s41598_023_39058_w
crossref_primary_10_1016_j_rio_2023_100393
crossref_primary_10_1016_j_measurement_2023_112553
crossref_primary_10_1016_j_measurement_2017_02_038
crossref_primary_10_1016_j_yofte_2017_10_005
crossref_primary_10_1016_j_mechatronics_2020_102436
crossref_primary_10_1007_s12200_018_0761_9
crossref_primary_10_1177_07316844221145972
crossref_primary_10_1117_1_OE_56_2_024105
crossref_primary_10_1016_j_measurement_2018_03_023
crossref_primary_10_3390_s24072285
crossref_primary_10_1016_j_measurement_2022_110939
crossref_primary_10_1007_s11029_021_09941_6
crossref_primary_10_1108_AEAT_11_2017_0255
crossref_primary_10_1177_1475921717694812
Cites_doi 10.1016/0266-3538(90)90077-I
10.1016/0266-3538(95)00132-8
10.1016/S0266-3538(96)00142-X
10.1177/1045389X06074085
10.1016/j.sna.2007.02.012
10.1016/S0266-3538(99)00038-X
10.1177/002199838702100904
10.1088/0957-0233/17/5/S17
10.1016/j.sna.2007.05.009
10.1016/j.probengmech.2005.07.002
10.1109/JSEN.2008.926523
10.1016/j.compstruct.2009.11.023
10.1016/j.optlaseng.2004.02.003
10.1016/j.compositesa.2007.07.009
10.1016/S1359-835X(02)00036-2
10.1117/12.786945
10.1088/0964-1726/11/6/314
10.1016/S0266-3538(01)00204-4
10.1016/j.compscitech.2004.05.010
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.measurement.2013.07.029
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 4051
ExternalDocumentID 10_1016_j_measurement_2013_07_029
S026322411300328X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7TB
7U5
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c405t-4ccdb579a731b03ff414c8e70741e96215eab53234f438eae7bffc7e2536b3ba3
ISSN 0263-2241
IngestDate Fri Oct 25 05:19:03 EDT 2024
Thu Sep 26 17:26:42 EDT 2024
Fri Feb 23 02:27:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Composite structures
FBG sensors
Structural health monitoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-4ccdb579a731b03ff414c8e70741e96215eab53234f438eae7bffc7e2536b3ba3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://researchonline.federation.edu.au/vital/access/services/Download/vital:12879/SOURCE2
PQID 1530990524
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1530990524
crossref_primary_10_1016_j_measurement_2013_07_029
elsevier_sciencedirect_doi_10_1016_j_measurement_2013_07_029
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hosni Elhewy, Mesbahi, Pu (b0115) 2006; 21
Kahandawa, Epaarachchi, Wang, Canning (b0075) 2010
Takeda, Okabe, Takeda (b0045) 2003
Zhou, Sim (b0020) 2002; 11
McCartney (b0035) 1998; 58
Nunes, Valente, Braga (b0105) 2004; 42
Takeda, Okabe, Takeda (b0060) 2008; 19
Sorensen, Botsis, Gmur, Cugnoni (b0070) 2007; 38
Chang, Chang (b0005) 1987; 21
P.A.M. Lopes, H.M. Gomes, A.M. Awruch, Reliability analysis of laminated composite structures using finite elements and neural networks, Composite Structures 92 1603-1613.
Chang (b0025) 2003
Lewis, Sheridan, O’Farrell, King, Flanagan, Lyons (b0080) 2007; 136
Zimmermann, Veiga, Encinas (b0095) 2008; 8
Lee, Hwang, Park, Han (b0065) 1999; 59
Takeda, Okabe, Takeda (b0055) 2002; 33
J. Zhang, H. Zhao, X.-w. Rong, Application of BP neural network in FBG sensing system performance improvement, electronic packaging technology and high density packaging, 2008, ICEPT-HDP 2008, International Conference, 2008, pp. 1–4.
Hamdalla, El-Bakry, Moussa (b0140) 2012; 3
Nunes, Olivieri, Kato, Valente, Braga (b0100) 2007; 138
Eric (b0050) 1995
C.L.N. Veiga, L.S. Encinas, A.C. Zimmermann, Neural networks improving robustness on fiber Bragg gratings interrogation systems under optical power variations, in: D.S. David (Ed.), SPIE, 2008, pp. 700462.
McCartney (b0040) 2002; 62
Kamiya, Sekine (b0015) 1996; 56
M.S. Reveley, T. Kurtoglu, K.M. Leone, J.L. Briggs, C.A. Withrow, Assessment of the state of the art of integrated vehicle health management technologies as applicable to damage conditions, NASA/TM-2010-216911, 2010.
Paterno, Silva, Milczewski, Arruda, Kalinowski (b0130) 2006; 17
Garg, Roy Mahapatra, Suresh, Gopalakrishnan, Omkar (b0120) 2004; 64
Khathate, Kamath, Rao (b0135) 2007
Kortscho, Beaumont (b0010) 1990; 39
G.C. Kahandawa, J.A. Epaarachchi, H. Wang, Identification of distrotions to FBG spectrum using FBG fixed filters, ICCM18, jeju Island, Korea, 2011.
Paterno (10.1016/j.measurement.2013.07.029_b0130) 2006; 17
Hosni Elhewy (10.1016/j.measurement.2013.07.029_b0115) 2006; 21
Eric (10.1016/j.measurement.2013.07.029_b0050) 1995
Nunes (10.1016/j.measurement.2013.07.029_b0100) 2007; 138
Hamdalla (10.1016/j.measurement.2013.07.029_b0140) 2012; 3
10.1016/j.measurement.2013.07.029_b0085
Kortscho (10.1016/j.measurement.2013.07.029_b0010) 1990; 39
Sorensen (10.1016/j.measurement.2013.07.029_b0070) 2007; 38
Chang (10.1016/j.measurement.2013.07.029_b0005) 1987; 21
Chang (10.1016/j.measurement.2013.07.029_b0025) 2003
Takeda (10.1016/j.measurement.2013.07.029_b0045) 2003
Lee (10.1016/j.measurement.2013.07.029_b0065) 1999; 59
10.1016/j.measurement.2013.07.029_b0125
Khathate (10.1016/j.measurement.2013.07.029_b0135) 2007
McCartney (10.1016/j.measurement.2013.07.029_b0040) 2002; 62
McCartney (10.1016/j.measurement.2013.07.029_b0035) 1998; 58
Zimmermann (10.1016/j.measurement.2013.07.029_b0095) 2008; 8
Garg (10.1016/j.measurement.2013.07.029_b0120) 2004; 64
10.1016/j.measurement.2013.07.029_b0090
Kahandawa (10.1016/j.measurement.2013.07.029_b0075) 2010
10.1016/j.measurement.2013.07.029_b0030
10.1016/j.measurement.2013.07.029_b0110
Kamiya (10.1016/j.measurement.2013.07.029_b0015) 1996; 56
Lewis (10.1016/j.measurement.2013.07.029_b0080) 2007; 136
Zhou (10.1016/j.measurement.2013.07.029_b0020) 2002; 11
Takeda (10.1016/j.measurement.2013.07.029_b0060) 2008; 19
Takeda (10.1016/j.measurement.2013.07.029_b0055) 2002; 33
Nunes (10.1016/j.measurement.2013.07.029_b0105) 2004; 42
References_xml – volume: 3
  start-page: 351
  year: 2012
  end-page: 355
  ident: b0140
  article-title: Fiber Bragg grating as temperature sensor using neural network modeling
  publication-title: International Journal of Scientific and Engineering Research
  contributor:
    fullname: Moussa
– volume: 39
  start-page: 289
  year: 1990
  end-page: 301
  ident: b0010
  article-title: Damage mechanics of composite materials: I-measurements of damage and strength
  publication-title: Composites Science and Technology
  contributor:
    fullname: Beaumont
– volume: 136
  start-page: 28
  year: 2007
  end-page: 38
  ident: b0080
  article-title: Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals
  publication-title: Sensors and Actuators A: Physical
  contributor:
    fullname: Lyons
– volume: 33
  start-page: 971
  year: 2002
  end-page: 980
  ident: b0055
  article-title: Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors
  publication-title: Composites Part A: Applied Science and Manufacturing
  contributor:
    fullname: Takeda
– volume: 42
  start-page: 529
  year: 2004
  end-page: 542
  ident: b0105
  article-title: Analysis of a demodulation system for fiber bragg grating sensors using two fixed filters
  publication-title: Optics and Lasers in Engineering
  contributor:
    fullname: Braga
– year: 2003
  ident: b0025
  article-title: Structural Health Monitoring
  contributor:
    fullname: Chang
– volume: 59
  start-page: 1779
  year: 1999
  end-page: 1788
  ident: b0065
  article-title: Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks
  publication-title: Composites Science and Technology
  contributor:
    fullname: Han
– volume: 19
  start-page: 437
  year: 2008
  end-page: 444
  ident: b0060
  article-title: Monitoring of delamination growth in CFRP laminates using chirped FBG sensors
  publication-title: Journal of Intelligent Material Systems and Structures
  contributor:
    fullname: Takeda
– volume: 8
  start-page: 1229
  year: 2008
  end-page: 1235
  ident: b0095
  article-title: Unambiguous signal processing and measuring range extension for fiber bragg gratings sensors using artificial neural networks – a temperature case
  publication-title: Sensors Journal, IEEE
  contributor:
    fullname: Encinas
– year: 2003
  ident: b0045
  article-title: Application of chirped FBG sensors for detection of local delamination in composite laminates
  contributor:
    fullname: Takeda
– volume: 138
  start-page: 341
  year: 2007
  end-page: 349
  ident: b0100
  article-title: FBG sensor multiplexing system based on the TDM and fixed filters approach
  publication-title: Sensors and Actuators A: Physical
  contributor:
    fullname: Braga
– volume: 64
  start-page: 2477
  year: 2004
  end-page: 2493
  ident: b0120
  article-title: Estimation of composite damage model parameters using spectral finite element and neural network
  publication-title: Composites Science and Technology
  contributor:
    fullname: Omkar
– volume: 11
  start-page: 925
  year: 2002
  ident: b0020
  article-title: Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review
  publication-title: Smart Materials and Structures
  contributor:
    fullname: Sim
– year: 2010
  ident: b0075
  article-title: Effects of the self distortions of embedded FBG sensors on spectral response due to torsional and combined loads, APWSHM3
  contributor:
    fullname: Canning
– volume: 62
  start-page: 1619
  year: 2002
  end-page: 1631
  ident: b0040
  article-title: Prediction of ply crack formation and failure in laminates
  publication-title: Composites Science and Technology
  contributor:
    fullname: McCartney
– volume: 17
  start-page: 1039
  year: 2006
  ident: b0130
  article-title: Radial-basis function network for the approximation of FBG sensor spectra with distorted peaks
  publication-title: Measurement Science and Technology
  contributor:
    fullname: Kalinowski
– year: 1995
  ident: b0050
  article-title: Fibre Optic Smart Structures
  contributor:
    fullname: Eric
– volume: 38
  start-page: 2087
  year: 2007
  end-page: 2096
  ident: b0070
  article-title: Delamination detection and characterisation of bridging tractions using long FBG optical sensors
  publication-title: Composites Part A: Applied Science and Manufacturing
  contributor:
    fullname: Cugnoni
– volume: 21
  start-page: 44
  year: 2006
  end-page: 53
  ident: b0115
  article-title: Reliability analysis of structures using neural network method
  publication-title: Probabilistic Engineering Mechanics
  contributor:
    fullname: Pu
– year: 2007
  ident: b0135
  article-title: Sensor failure detection for robustness of shm using a combined artificial neural network and finite element analysis approach
  contributor:
    fullname: Rao
– volume: 58
  start-page: 1069
  year: 1998
  end-page: 1081
  ident: b0035
  article-title: Prediction transverce crack formation in cross-ply laminates
  publication-title: Composites Science and Technology
  contributor:
    fullname: McCartney
– volume: 21
  start-page: 834
  year: 1987
  end-page: 855
  ident: b0005
  article-title: A progressive damage model for laminated composites containing stress-concentrations
  publication-title: Journal of Composite Materials
  contributor:
    fullname: Chang
– volume: 56
  start-page: 11
  year: 1996
  end-page: 21
  ident: b0015
  article-title: Prediction of the fracture strength of notched continuous fiber-reinforced laminates by interlaminar crack extension analysis
  publication-title: Composites Science and Technology
  contributor:
    fullname: Sekine
– volume: 39
  start-page: 289
  year: 1990
  ident: 10.1016/j.measurement.2013.07.029_b0010
  article-title: Damage mechanics of composite materials: I-measurements of damage and strength
  publication-title: Composites Science and Technology
  doi: 10.1016/0266-3538(90)90077-I
  contributor:
    fullname: Kortscho
– volume: 56
  start-page: 11
  year: 1996
  ident: 10.1016/j.measurement.2013.07.029_b0015
  article-title: Prediction of the fracture strength of notched continuous fiber-reinforced laminates by interlaminar crack extension analysis
  publication-title: Composites Science and Technology
  doi: 10.1016/0266-3538(95)00132-8
  contributor:
    fullname: Kamiya
– volume: 58
  start-page: 1069
  year: 1998
  ident: 10.1016/j.measurement.2013.07.029_b0035
  article-title: Prediction transverce crack formation in cross-ply laminates
  publication-title: Composites Science and Technology
  doi: 10.1016/S0266-3538(96)00142-X
  contributor:
    fullname: McCartney
– year: 2007
  ident: 10.1016/j.measurement.2013.07.029_b0135
  contributor:
    fullname: Khathate
– volume: 19
  start-page: 437
  year: 2008
  ident: 10.1016/j.measurement.2013.07.029_b0060
  article-title: Monitoring of delamination growth in CFRP laminates using chirped FBG sensors
  publication-title: Journal of Intelligent Material Systems and Structures
  doi: 10.1177/1045389X06074085
  contributor:
    fullname: Takeda
– volume: 136
  start-page: 28
  year: 2007
  ident: 10.1016/j.measurement.2013.07.029_b0080
  article-title: Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2007.02.012
  contributor:
    fullname: Lewis
– year: 1995
  ident: 10.1016/j.measurement.2013.07.029_b0050
  contributor:
    fullname: Eric
– volume: 59
  start-page: 1779
  year: 1999
  ident: 10.1016/j.measurement.2013.07.029_b0065
  article-title: Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks
  publication-title: Composites Science and Technology
  doi: 10.1016/S0266-3538(99)00038-X
  contributor:
    fullname: Lee
– volume: 21
  start-page: 834
  year: 1987
  ident: 10.1016/j.measurement.2013.07.029_b0005
  article-title: A progressive damage model for laminated composites containing stress-concentrations
  publication-title: Journal of Composite Materials
  doi: 10.1177/002199838702100904
  contributor:
    fullname: Chang
– volume: 17
  start-page: 1039
  year: 2006
  ident: 10.1016/j.measurement.2013.07.029_b0130
  article-title: Radial-basis function network for the approximation of FBG sensor spectra with distorted peaks
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/17/5/S17
  contributor:
    fullname: Paterno
– ident: 10.1016/j.measurement.2013.07.029_b0125
– volume: 138
  start-page: 341
  year: 2007
  ident: 10.1016/j.measurement.2013.07.029_b0100
  article-title: FBG sensor multiplexing system based on the TDM and fixed filters approach
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2007.05.009
  contributor:
    fullname: Nunes
– volume: 21
  start-page: 44
  year: 2006
  ident: 10.1016/j.measurement.2013.07.029_b0115
  article-title: Reliability analysis of structures using neural network method
  publication-title: Probabilistic Engineering Mechanics
  doi: 10.1016/j.probengmech.2005.07.002
  contributor:
    fullname: Hosni Elhewy
– volume: 8
  start-page: 1229
  year: 2008
  ident: 10.1016/j.measurement.2013.07.029_b0095
  article-title: Unambiguous signal processing and measuring range extension for fiber bragg gratings sensors using artificial neural networks – a temperature case
  publication-title: Sensors Journal, IEEE
  doi: 10.1109/JSEN.2008.926523
  contributor:
    fullname: Zimmermann
– ident: 10.1016/j.measurement.2013.07.029_b0110
– ident: 10.1016/j.measurement.2013.07.029_b0085
  doi: 10.1016/j.compstruct.2009.11.023
– volume: 42
  start-page: 529
  year: 2004
  ident: 10.1016/j.measurement.2013.07.029_b0105
  article-title: Analysis of a demodulation system for fiber bragg grating sensors using two fixed filters
  publication-title: Optics and Lasers in Engineering
  doi: 10.1016/j.optlaseng.2004.02.003
  contributor:
    fullname: Nunes
– volume: 38
  start-page: 2087
  year: 2007
  ident: 10.1016/j.measurement.2013.07.029_b0070
  article-title: Delamination detection and characterisation of bridging tractions using long FBG optical sensors
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2007.07.009
  contributor:
    fullname: Sorensen
– volume: 33
  start-page: 971
  year: 2002
  ident: 10.1016/j.measurement.2013.07.029_b0055
  article-title: Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/S1359-835X(02)00036-2
  contributor:
    fullname: Takeda
– ident: 10.1016/j.measurement.2013.07.029_b0090
  doi: 10.1117/12.786945
– year: 2003
  ident: 10.1016/j.measurement.2013.07.029_b0045
  contributor:
    fullname: Takeda
– year: 2010
  ident: 10.1016/j.measurement.2013.07.029_b0075
  contributor:
    fullname: Kahandawa
– volume: 11
  start-page: 925
  year: 2002
  ident: 10.1016/j.measurement.2013.07.029_b0020
  article-title: Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/11/6/314
  contributor:
    fullname: Zhou
– volume: 3
  start-page: 351
  year: 2012
  ident: 10.1016/j.measurement.2013.07.029_b0140
  article-title: Fiber Bragg grating as temperature sensor using neural network modeling
  publication-title: International Journal of Scientific and Engineering Research
  contributor:
    fullname: Hamdalla
– volume: 62
  start-page: 1619
  year: 2002
  ident: 10.1016/j.measurement.2013.07.029_b0040
  article-title: Prediction of ply crack formation and failure in laminates
  publication-title: Composites Science and Technology
  doi: 10.1016/S0266-3538(01)00204-4
  contributor:
    fullname: McCartney
– ident: 10.1016/j.measurement.2013.07.029_b0030
– year: 2003
  ident: 10.1016/j.measurement.2013.07.029_b0025
  contributor:
    fullname: Chang
– volume: 64
  start-page: 2477
  year: 2004
  ident: 10.1016/j.measurement.2013.07.029_b0120
  article-title: Estimation of composite damage model parameters using spectral finite element and neural network
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2004.05.010
  contributor:
    fullname: Garg
SSID ssj0006396
Score 2.198212
Snippet •Method to interrogate FBG sensors using the fixed wavelength FBG filters.•FBG filter system to capture data from an embedded FBG sensor in the time...
Fibre Bragg Grating (FBG) sensors have been used in the development of structural health monitoring (SHM) and damage detection systems for advanced composite...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 4045
SubjectTerms Algorithms
Artificial neural networks
Composite structures
Extraction
FBG sensors
Health monitoring (engineering)
Offices
Real time
Sensors
Strain
Structural health monitoring
Title Extraction and processing of real time strain of embedded FBG sensors using a fixed filter FBG circuit and an artificial neural network
URI https://dx.doi.org/10.1016/j.measurement.2013.07.029
https://search.proquest.com/docview/1530990524
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZNy8b2MLZuY90NFfYWXGJLvsFeus5tVthe2kHejCTL1IUkJRfW_oL-7Z0jyZZTVugYe1GCLF_i80X6dHT0HUI-5UAKqorFQahkHHAJRcYzHoR5mscV56qucEV3fJb-mGRfC15sDdr8mL7uv1oa6sDWuHP2L6zdXRQq4DvYHEqwOpQPsntxvVq0-b-NBoDZCOBimxfa7BKZoqws5obAOj2VGnqfanj85WS4hFktpt9ZmzPEsG6u4Ujd4Jq6aaCahVo3K6fxihJJjdOgQGVM82Hiyvuk97v3QxoPRE-twsdutk7JfmOzHRGlQTeiBQQ6-8Uvw3pPxA08xdFBNzG4EihAfaFMruLhKR5eXfihx3nHx2LuF19M0qaNsGTnBQnZnYiSbnuOj4VaGlVZFiBHsYOd7eGzlAU8NDncuyHAeUEd1Ee9Dp2PrNqlIwdAb8M_DjzWB3J5MPUvCeMGmVGGdT6dTV3vM3w6fDhcUGRRNhmQnQh6S-isdw6_FZPTjlAAiUysq9D-msdk34cp3nPD-2jWHcJhWNT5c_LMTX_oocXtC7KlZ7vkaU8Uc5c8MkHJavmS3HosUzA59Vim85oililimVosY12LZQpQpQ7L1GCZCmqwTC2WTQOHZXNtAbfosEwtlqnD8ivy87g4PxoHLnFIoMBAq4ArVck4zUXKQjlidc1DrjKdIn3WeQIsVwsZs4jxmrNMC53KulapjmKWSCYFe022Z_OZfkNoOoqqrJKJAiLOdZ3IHAa5LMlg5gF1MtojUfueyyurD1O2gZOXZc84JRqnHKUlGGePfG4tUjqiawlsCXB6yOn7rRVLGAxwhU_M9Hy9LIG-4EJ3HPG3_3aLd-SJ_5e9J9urxVp_IINltf7o0PkbTGviJw
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+and+processing+of+real+time+strain+of+embedded+FBG+sensors+using+a+fixed+filter+FBG+circuit+and+an+artificial+neural+network&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Kahandawa%2C+Gayan+C.&rft.au=Epaarachchi%2C+Jayantha&rft.au=Wang%2C+Hao&rft.au=Canning%2C+John&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=46&rft.issue=10&rft.spage=4045&rft.epage=4051&rft_id=info:doi/10.1016%2Fj.measurement.2013.07.029&rft.externalDocID=S026322411300328X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon