Extraction and processing of real time strain of embedded FBG sensors using a fixed filter FBG circuit and an artificial neural network
•Method to interrogate FBG sensors using the fixed wavelength FBG filters.•FBG filter system to capture data from an embedded FBG sensor in the time domain.•FBG data processing using area integration accounting for the distorted spectra.•Estimation of strain using distorted FBG sensor response spect...
Saved in:
Published in: | Measurement : journal of the International Measurement Confederation Vol. 46; no. 10; pp. 4045 - 4051 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-12-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Method to interrogate FBG sensors using the fixed wavelength FBG filters.•FBG filter system to capture data from an embedded FBG sensor in the time domain.•FBG data processing using area integration accounting for the distorted spectra.•Estimation of strain using distorted FBG sensor response spectra using ANN.•It was found that the error levels were less than 0.3% in predictions using ANN.
Fibre Bragg Grating (FBG) sensors have been used in the development of structural health monitoring (SHM) and damage detection systems for advanced composite structures over several decades. Unfortunately, to date only a handful of appropriate configurations and algorithm sare available for using in SHM systems have been developed. This paper reveals a novel configuration of FBG sensors to acquire strain reading and an integrated statistical approach to analyse data in real time. The proposed configuration has proven its capability to overcome practical constraints and the engineering challenges associated with FBG-based SHM systems. A fixed filter decoding system and an integrated artificial neural network algorithm for extracting strain from embedded FBG sensor were proposed and experimentally proved. Furthermore, the laboratory level experimental data was used to verify the accuracy of the system and it was found that the error levels were less than 0.3% in predictions. The developed SMH system using this technology has been submitted to US patent office and will be available for use of aerospace applications in due course. |
---|---|
AbstractList | Fibre Bragg Grating (FBG) sensors have been used in the development of structural health monitoring (SHM) and damage detection systems for advanced composite structures over several decades. Unfortunately, to date only a handful of appropriate configurations and algorithm sare available for using in SHM systems have been developed. This paper reveals a novel configuration of FBG sensors to acquire strain reading and an integrated statistical approach to analyse data in real time. The proposed configuration has proven its capability to overcome practical constraints and the engineering challenges associated with FBG-based SHM systems. A fixed filter decoding system and an integrated artificial neural network algorithm for extracting strain from embedded FBG sensor were proposed and experimentally proved. Furthermore, the laboratory level experimental data was used to verify the accuracy of the system and it was found that the error levels were less than 0.3% in predictions. The developed SMH system using this technology has been submitted to US patent office and will be available for use of aerospace applications in due course. •Method to interrogate FBG sensors using the fixed wavelength FBG filters.•FBG filter system to capture data from an embedded FBG sensor in the time domain.•FBG data processing using area integration accounting for the distorted spectra.•Estimation of strain using distorted FBG sensor response spectra using ANN.•It was found that the error levels were less than 0.3% in predictions using ANN. Fibre Bragg Grating (FBG) sensors have been used in the development of structural health monitoring (SHM) and damage detection systems for advanced composite structures over several decades. Unfortunately, to date only a handful of appropriate configurations and algorithm sare available for using in SHM systems have been developed. This paper reveals a novel configuration of FBG sensors to acquire strain reading and an integrated statistical approach to analyse data in real time. The proposed configuration has proven its capability to overcome practical constraints and the engineering challenges associated with FBG-based SHM systems. A fixed filter decoding system and an integrated artificial neural network algorithm for extracting strain from embedded FBG sensor were proposed and experimentally proved. Furthermore, the laboratory level experimental data was used to verify the accuracy of the system and it was found that the error levels were less than 0.3% in predictions. The developed SMH system using this technology has been submitted to US patent office and will be available for use of aerospace applications in due course. |
Author | Epaarachchi, Jayantha Kahandawa, Gayan C. Lau, K.T. Canning, John Wang, Hao |
Author_xml | – sequence: 1 givenname: Gayan C. surname: Kahandawa fullname: Kahandawa, Gayan C. email: gayan@usq.edu.au organization: Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba QLD 4350, Australia – sequence: 2 givenname: Jayantha surname: Epaarachchi fullname: Epaarachchi, Jayantha organization: Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba QLD 4350, Australia – sequence: 3 givenname: Hao surname: Wang fullname: Wang, Hao organization: Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba QLD 4350, Australia – sequence: 4 givenname: John surname: Canning fullname: Canning, John organization: Interdisciplinary Photonic Laboratories, School of Chemistry, University of Sydney, Sydney NSW 2000, Australia – sequence: 5 givenname: K.T. surname: Lau fullname: Lau, K.T. organization: The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
BookMark | eNqNkE9v1DAQxS3USmxbvoO5cUnwv8SbI6zaglSplyL1ZjnOGM2S2MV2oHyCfu16dzlw5DTSzHu_0XsX5CzEAIS856zljPcf9-0CNq8JFgilFYzLlumWieEN2fCtlo3i4vGMbJjoZSOE4m_JRc57xlgvh35DXq6fS7KuYAzUhok-peggZwzfafQ0gZ1pwQVorioMhx0sI0wTTPTm8y3NEHJMma5Hh6Uen-vF41wgHQUOk1uxHNm2vkgFPTqs2ABrOo7yO6YfV-Tc2znDu7_zkny7uX7YfWnu7m-_7j7dNU6xrjTKuWns9GC15COT3iuu3BY004rD0AvegR07KaTySm7Bgh69dxpEJ_tRjlZekg8nbg36c4VczILZwTzbAHHNhneSDQPrhKrS4SR1KeacwJunhItNfwxn5lC-2Zt_yjeH8g3TppZfvbuTF2qWXwjJZIcQHEyYwBUzRfwPyitdlZf4 |
CitedBy_id | crossref_primary_10_1016_j_measurement_2024_114248 crossref_primary_10_1007_s12596_023_01412_6 crossref_primary_10_1038_s41598_023_39058_w crossref_primary_10_1016_j_rio_2023_100393 crossref_primary_10_1016_j_measurement_2023_112553 crossref_primary_10_1016_j_measurement_2017_02_038 crossref_primary_10_1016_j_yofte_2017_10_005 crossref_primary_10_1016_j_mechatronics_2020_102436 crossref_primary_10_1007_s12200_018_0761_9 crossref_primary_10_1177_07316844221145972 crossref_primary_10_1117_1_OE_56_2_024105 crossref_primary_10_1016_j_measurement_2018_03_023 crossref_primary_10_3390_s24072285 crossref_primary_10_1016_j_measurement_2022_110939 crossref_primary_10_1007_s11029_021_09941_6 crossref_primary_10_1108_AEAT_11_2017_0255 crossref_primary_10_1177_1475921717694812 |
Cites_doi | 10.1016/0266-3538(90)90077-I 10.1016/0266-3538(95)00132-8 10.1016/S0266-3538(96)00142-X 10.1177/1045389X06074085 10.1016/j.sna.2007.02.012 10.1016/S0266-3538(99)00038-X 10.1177/002199838702100904 10.1088/0957-0233/17/5/S17 10.1016/j.sna.2007.05.009 10.1016/j.probengmech.2005.07.002 10.1109/JSEN.2008.926523 10.1016/j.compstruct.2009.11.023 10.1016/j.optlaseng.2004.02.003 10.1016/j.compositesa.2007.07.009 10.1016/S1359-835X(02)00036-2 10.1117/12.786945 10.1088/0964-1726/11/6/314 10.1016/S0266-3538(01)00204-4 10.1016/j.compscitech.2004.05.010 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.measurement.2013.07.029 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
EndPage | 4051 |
ExternalDocumentID | 10_1016_j_measurement_2013_07_029 S026322411300328X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SC 7TB 7U5 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c405t-4ccdb579a731b03ff414c8e70741e96215eab53234f438eae7bffc7e2536b3ba3 |
ISSN | 0263-2241 |
IngestDate | Fri Oct 25 05:19:03 EDT 2024 Thu Sep 26 17:26:42 EDT 2024 Fri Feb 23 02:27:18 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Composite structures FBG sensors Structural health monitoring |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-4ccdb579a731b03ff414c8e70741e96215eab53234f438eae7bffc7e2536b3ba3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://researchonline.federation.edu.au/vital/access/services/Download/vital:12879/SOURCE2 |
PQID | 1530990524 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1530990524 crossref_primary_10_1016_j_measurement_2013_07_029 elsevier_sciencedirect_doi_10_1016_j_measurement_2013_07_029 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hosni Elhewy, Mesbahi, Pu (b0115) 2006; 21 Kahandawa, Epaarachchi, Wang, Canning (b0075) 2010 Takeda, Okabe, Takeda (b0045) 2003 Zhou, Sim (b0020) 2002; 11 McCartney (b0035) 1998; 58 Nunes, Valente, Braga (b0105) 2004; 42 Takeda, Okabe, Takeda (b0060) 2008; 19 Sorensen, Botsis, Gmur, Cugnoni (b0070) 2007; 38 Chang, Chang (b0005) 1987; 21 P.A.M. Lopes, H.M. Gomes, A.M. Awruch, Reliability analysis of laminated composite structures using finite elements and neural networks, Composite Structures 92 1603-1613. Chang (b0025) 2003 Lewis, Sheridan, O’Farrell, King, Flanagan, Lyons (b0080) 2007; 136 Zimmermann, Veiga, Encinas (b0095) 2008; 8 Lee, Hwang, Park, Han (b0065) 1999; 59 Takeda, Okabe, Takeda (b0055) 2002; 33 J. Zhang, H. Zhao, X.-w. Rong, Application of BP neural network in FBG sensing system performance improvement, electronic packaging technology and high density packaging, 2008, ICEPT-HDP 2008, International Conference, 2008, pp. 1–4. Hamdalla, El-Bakry, Moussa (b0140) 2012; 3 Nunes, Olivieri, Kato, Valente, Braga (b0100) 2007; 138 Eric (b0050) 1995 C.L.N. Veiga, L.S. Encinas, A.C. Zimmermann, Neural networks improving robustness on fiber Bragg gratings interrogation systems under optical power variations, in: D.S. David (Ed.), SPIE, 2008, pp. 700462. McCartney (b0040) 2002; 62 Kamiya, Sekine (b0015) 1996; 56 M.S. Reveley, T. Kurtoglu, K.M. Leone, J.L. Briggs, C.A. Withrow, Assessment of the state of the art of integrated vehicle health management technologies as applicable to damage conditions, NASA/TM-2010-216911, 2010. Paterno, Silva, Milczewski, Arruda, Kalinowski (b0130) 2006; 17 Garg, Roy Mahapatra, Suresh, Gopalakrishnan, Omkar (b0120) 2004; 64 Khathate, Kamath, Rao (b0135) 2007 Kortscho, Beaumont (b0010) 1990; 39 G.C. Kahandawa, J.A. Epaarachchi, H. Wang, Identification of distrotions to FBG spectrum using FBG fixed filters, ICCM18, jeju Island, Korea, 2011. Paterno (10.1016/j.measurement.2013.07.029_b0130) 2006; 17 Hosni Elhewy (10.1016/j.measurement.2013.07.029_b0115) 2006; 21 Eric (10.1016/j.measurement.2013.07.029_b0050) 1995 Nunes (10.1016/j.measurement.2013.07.029_b0100) 2007; 138 Hamdalla (10.1016/j.measurement.2013.07.029_b0140) 2012; 3 10.1016/j.measurement.2013.07.029_b0085 Kortscho (10.1016/j.measurement.2013.07.029_b0010) 1990; 39 Sorensen (10.1016/j.measurement.2013.07.029_b0070) 2007; 38 Chang (10.1016/j.measurement.2013.07.029_b0005) 1987; 21 Chang (10.1016/j.measurement.2013.07.029_b0025) 2003 Takeda (10.1016/j.measurement.2013.07.029_b0045) 2003 Lee (10.1016/j.measurement.2013.07.029_b0065) 1999; 59 10.1016/j.measurement.2013.07.029_b0125 Khathate (10.1016/j.measurement.2013.07.029_b0135) 2007 McCartney (10.1016/j.measurement.2013.07.029_b0040) 2002; 62 McCartney (10.1016/j.measurement.2013.07.029_b0035) 1998; 58 Zimmermann (10.1016/j.measurement.2013.07.029_b0095) 2008; 8 Garg (10.1016/j.measurement.2013.07.029_b0120) 2004; 64 10.1016/j.measurement.2013.07.029_b0090 Kahandawa (10.1016/j.measurement.2013.07.029_b0075) 2010 10.1016/j.measurement.2013.07.029_b0030 10.1016/j.measurement.2013.07.029_b0110 Kamiya (10.1016/j.measurement.2013.07.029_b0015) 1996; 56 Lewis (10.1016/j.measurement.2013.07.029_b0080) 2007; 136 Zhou (10.1016/j.measurement.2013.07.029_b0020) 2002; 11 Takeda (10.1016/j.measurement.2013.07.029_b0060) 2008; 19 Takeda (10.1016/j.measurement.2013.07.029_b0055) 2002; 33 Nunes (10.1016/j.measurement.2013.07.029_b0105) 2004; 42 |
References_xml | – volume: 3 start-page: 351 year: 2012 end-page: 355 ident: b0140 article-title: Fiber Bragg grating as temperature sensor using neural network modeling publication-title: International Journal of Scientific and Engineering Research contributor: fullname: Moussa – volume: 39 start-page: 289 year: 1990 end-page: 301 ident: b0010 article-title: Damage mechanics of composite materials: I-measurements of damage and strength publication-title: Composites Science and Technology contributor: fullname: Beaumont – volume: 136 start-page: 28 year: 2007 end-page: 38 ident: b0080 article-title: Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals publication-title: Sensors and Actuators A: Physical contributor: fullname: Lyons – volume: 33 start-page: 971 year: 2002 end-page: 980 ident: b0055 article-title: Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors publication-title: Composites Part A: Applied Science and Manufacturing contributor: fullname: Takeda – volume: 42 start-page: 529 year: 2004 end-page: 542 ident: b0105 article-title: Analysis of a demodulation system for fiber bragg grating sensors using two fixed filters publication-title: Optics and Lasers in Engineering contributor: fullname: Braga – year: 2003 ident: b0025 article-title: Structural Health Monitoring contributor: fullname: Chang – volume: 59 start-page: 1779 year: 1999 end-page: 1788 ident: b0065 article-title: Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks publication-title: Composites Science and Technology contributor: fullname: Han – volume: 19 start-page: 437 year: 2008 end-page: 444 ident: b0060 article-title: Monitoring of delamination growth in CFRP laminates using chirped FBG sensors publication-title: Journal of Intelligent Material Systems and Structures contributor: fullname: Takeda – volume: 8 start-page: 1229 year: 2008 end-page: 1235 ident: b0095 article-title: Unambiguous signal processing and measuring range extension for fiber bragg gratings sensors using artificial neural networks – a temperature case publication-title: Sensors Journal, IEEE contributor: fullname: Encinas – year: 2003 ident: b0045 article-title: Application of chirped FBG sensors for detection of local delamination in composite laminates contributor: fullname: Takeda – volume: 138 start-page: 341 year: 2007 end-page: 349 ident: b0100 article-title: FBG sensor multiplexing system based on the TDM and fixed filters approach publication-title: Sensors and Actuators A: Physical contributor: fullname: Braga – volume: 64 start-page: 2477 year: 2004 end-page: 2493 ident: b0120 article-title: Estimation of composite damage model parameters using spectral finite element and neural network publication-title: Composites Science and Technology contributor: fullname: Omkar – volume: 11 start-page: 925 year: 2002 ident: b0020 article-title: Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review publication-title: Smart Materials and Structures contributor: fullname: Sim – year: 2010 ident: b0075 article-title: Effects of the self distortions of embedded FBG sensors on spectral response due to torsional and combined loads, APWSHM3 contributor: fullname: Canning – volume: 62 start-page: 1619 year: 2002 end-page: 1631 ident: b0040 article-title: Prediction of ply crack formation and failure in laminates publication-title: Composites Science and Technology contributor: fullname: McCartney – volume: 17 start-page: 1039 year: 2006 ident: b0130 article-title: Radial-basis function network for the approximation of FBG sensor spectra with distorted peaks publication-title: Measurement Science and Technology contributor: fullname: Kalinowski – year: 1995 ident: b0050 article-title: Fibre Optic Smart Structures contributor: fullname: Eric – volume: 38 start-page: 2087 year: 2007 end-page: 2096 ident: b0070 article-title: Delamination detection and characterisation of bridging tractions using long FBG optical sensors publication-title: Composites Part A: Applied Science and Manufacturing contributor: fullname: Cugnoni – volume: 21 start-page: 44 year: 2006 end-page: 53 ident: b0115 article-title: Reliability analysis of structures using neural network method publication-title: Probabilistic Engineering Mechanics contributor: fullname: Pu – year: 2007 ident: b0135 article-title: Sensor failure detection for robustness of shm using a combined artificial neural network and finite element analysis approach contributor: fullname: Rao – volume: 58 start-page: 1069 year: 1998 end-page: 1081 ident: b0035 article-title: Prediction transverce crack formation in cross-ply laminates publication-title: Composites Science and Technology contributor: fullname: McCartney – volume: 21 start-page: 834 year: 1987 end-page: 855 ident: b0005 article-title: A progressive damage model for laminated composites containing stress-concentrations publication-title: Journal of Composite Materials contributor: fullname: Chang – volume: 56 start-page: 11 year: 1996 end-page: 21 ident: b0015 article-title: Prediction of the fracture strength of notched continuous fiber-reinforced laminates by interlaminar crack extension analysis publication-title: Composites Science and Technology contributor: fullname: Sekine – volume: 39 start-page: 289 year: 1990 ident: 10.1016/j.measurement.2013.07.029_b0010 article-title: Damage mechanics of composite materials: I-measurements of damage and strength publication-title: Composites Science and Technology doi: 10.1016/0266-3538(90)90077-I contributor: fullname: Kortscho – volume: 56 start-page: 11 year: 1996 ident: 10.1016/j.measurement.2013.07.029_b0015 article-title: Prediction of the fracture strength of notched continuous fiber-reinforced laminates by interlaminar crack extension analysis publication-title: Composites Science and Technology doi: 10.1016/0266-3538(95)00132-8 contributor: fullname: Kamiya – volume: 58 start-page: 1069 year: 1998 ident: 10.1016/j.measurement.2013.07.029_b0035 article-title: Prediction transverce crack formation in cross-ply laminates publication-title: Composites Science and Technology doi: 10.1016/S0266-3538(96)00142-X contributor: fullname: McCartney – year: 2007 ident: 10.1016/j.measurement.2013.07.029_b0135 contributor: fullname: Khathate – volume: 19 start-page: 437 year: 2008 ident: 10.1016/j.measurement.2013.07.029_b0060 article-title: Monitoring of delamination growth in CFRP laminates using chirped FBG sensors publication-title: Journal of Intelligent Material Systems and Structures doi: 10.1177/1045389X06074085 contributor: fullname: Takeda – volume: 136 start-page: 28 year: 2007 ident: 10.1016/j.measurement.2013.07.029_b0080 article-title: Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2007.02.012 contributor: fullname: Lewis – year: 1995 ident: 10.1016/j.measurement.2013.07.029_b0050 contributor: fullname: Eric – volume: 59 start-page: 1779 year: 1999 ident: 10.1016/j.measurement.2013.07.029_b0065 article-title: Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks publication-title: Composites Science and Technology doi: 10.1016/S0266-3538(99)00038-X contributor: fullname: Lee – volume: 21 start-page: 834 year: 1987 ident: 10.1016/j.measurement.2013.07.029_b0005 article-title: A progressive damage model for laminated composites containing stress-concentrations publication-title: Journal of Composite Materials doi: 10.1177/002199838702100904 contributor: fullname: Chang – volume: 17 start-page: 1039 year: 2006 ident: 10.1016/j.measurement.2013.07.029_b0130 article-title: Radial-basis function network for the approximation of FBG sensor spectra with distorted peaks publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/17/5/S17 contributor: fullname: Paterno – ident: 10.1016/j.measurement.2013.07.029_b0125 – volume: 138 start-page: 341 year: 2007 ident: 10.1016/j.measurement.2013.07.029_b0100 article-title: FBG sensor multiplexing system based on the TDM and fixed filters approach publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2007.05.009 contributor: fullname: Nunes – volume: 21 start-page: 44 year: 2006 ident: 10.1016/j.measurement.2013.07.029_b0115 article-title: Reliability analysis of structures using neural network method publication-title: Probabilistic Engineering Mechanics doi: 10.1016/j.probengmech.2005.07.002 contributor: fullname: Hosni Elhewy – volume: 8 start-page: 1229 year: 2008 ident: 10.1016/j.measurement.2013.07.029_b0095 article-title: Unambiguous signal processing and measuring range extension for fiber bragg gratings sensors using artificial neural networks – a temperature case publication-title: Sensors Journal, IEEE doi: 10.1109/JSEN.2008.926523 contributor: fullname: Zimmermann – ident: 10.1016/j.measurement.2013.07.029_b0110 – ident: 10.1016/j.measurement.2013.07.029_b0085 doi: 10.1016/j.compstruct.2009.11.023 – volume: 42 start-page: 529 year: 2004 ident: 10.1016/j.measurement.2013.07.029_b0105 article-title: Analysis of a demodulation system for fiber bragg grating sensors using two fixed filters publication-title: Optics and Lasers in Engineering doi: 10.1016/j.optlaseng.2004.02.003 contributor: fullname: Nunes – volume: 38 start-page: 2087 year: 2007 ident: 10.1016/j.measurement.2013.07.029_b0070 article-title: Delamination detection and characterisation of bridging tractions using long FBG optical sensors publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2007.07.009 contributor: fullname: Sorensen – volume: 33 start-page: 971 year: 2002 ident: 10.1016/j.measurement.2013.07.029_b0055 article-title: Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/S1359-835X(02)00036-2 contributor: fullname: Takeda – ident: 10.1016/j.measurement.2013.07.029_b0090 doi: 10.1117/12.786945 – year: 2003 ident: 10.1016/j.measurement.2013.07.029_b0045 contributor: fullname: Takeda – year: 2010 ident: 10.1016/j.measurement.2013.07.029_b0075 contributor: fullname: Kahandawa – volume: 11 start-page: 925 year: 2002 ident: 10.1016/j.measurement.2013.07.029_b0020 article-title: Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/11/6/314 contributor: fullname: Zhou – volume: 3 start-page: 351 year: 2012 ident: 10.1016/j.measurement.2013.07.029_b0140 article-title: Fiber Bragg grating as temperature sensor using neural network modeling publication-title: International Journal of Scientific and Engineering Research contributor: fullname: Hamdalla – volume: 62 start-page: 1619 year: 2002 ident: 10.1016/j.measurement.2013.07.029_b0040 article-title: Prediction of ply crack formation and failure in laminates publication-title: Composites Science and Technology doi: 10.1016/S0266-3538(01)00204-4 contributor: fullname: McCartney – ident: 10.1016/j.measurement.2013.07.029_b0030 – year: 2003 ident: 10.1016/j.measurement.2013.07.029_b0025 contributor: fullname: Chang – volume: 64 start-page: 2477 year: 2004 ident: 10.1016/j.measurement.2013.07.029_b0120 article-title: Estimation of composite damage model parameters using spectral finite element and neural network publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2004.05.010 contributor: fullname: Garg |
SSID | ssj0006396 |
Score | 2.198212 |
Snippet | •Method to interrogate FBG sensors using the fixed wavelength FBG filters.•FBG filter system to capture data from an embedded FBG sensor in the time... Fibre Bragg Grating (FBG) sensors have been used in the development of structural health monitoring (SHM) and damage detection systems for advanced composite... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 4045 |
SubjectTerms | Algorithms Artificial neural networks Composite structures Extraction FBG sensors Health monitoring (engineering) Offices Real time Sensors Strain Structural health monitoring |
Title | Extraction and processing of real time strain of embedded FBG sensors using a fixed filter FBG circuit and an artificial neural network |
URI | https://dx.doi.org/10.1016/j.measurement.2013.07.029 https://search.proquest.com/docview/1530990524 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZNy8b2MLZuY90NFfYWXGJLvsFeus5tVthe2kHejCTL1IUkJRfW_oL-7Z0jyZZTVugYe1GCLF_i80X6dHT0HUI-5UAKqorFQahkHHAJRcYzHoR5mscV56qucEV3fJb-mGRfC15sDdr8mL7uv1oa6sDWuHP2L6zdXRQq4DvYHEqwOpQPsntxvVq0-b-NBoDZCOBimxfa7BKZoqws5obAOj2VGnqfanj85WS4hFktpt9ZmzPEsG6u4Ujd4Jq6aaCahVo3K6fxihJJjdOgQGVM82Hiyvuk97v3QxoPRE-twsdutk7JfmOzHRGlQTeiBQQ6-8Uvw3pPxA08xdFBNzG4EihAfaFMruLhKR5eXfihx3nHx2LuF19M0qaNsGTnBQnZnYiSbnuOj4VaGlVZFiBHsYOd7eGzlAU8NDncuyHAeUEd1Ee9Dp2PrNqlIwdAb8M_DjzWB3J5MPUvCeMGmVGGdT6dTV3vM3w6fDhcUGRRNhmQnQh6S-isdw6_FZPTjlAAiUysq9D-msdk34cp3nPD-2jWHcJhWNT5c_LMTX_oocXtC7KlZ7vkaU8Uc5c8MkHJavmS3HosUzA59Vim85oililimVosY12LZQpQpQ7L1GCZCmqwTC2WTQOHZXNtAbfosEwtlqnD8ivy87g4PxoHLnFIoMBAq4ArVck4zUXKQjlidc1DrjKdIn3WeQIsVwsZs4jxmrNMC53KulapjmKWSCYFe022Z_OZfkNoOoqqrJKJAiLOdZ3IHAa5LMlg5gF1MtojUfueyyurD1O2gZOXZc84JRqnHKUlGGePfG4tUjqiawlsCXB6yOn7rRVLGAxwhU_M9Hy9LIG-4EJ3HPG3_3aLd-SJ_5e9J9urxVp_IINltf7o0PkbTGviJw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+and+processing+of+real+time+strain+of+embedded+FBG+sensors+using+a+fixed+filter+FBG+circuit+and+an+artificial+neural+network&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Kahandawa%2C+Gayan+C.&rft.au=Epaarachchi%2C+Jayantha&rft.au=Wang%2C+Hao&rft.au=Canning%2C+John&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=46&rft.issue=10&rft.spage=4045&rft.epage=4051&rft_id=info:doi/10.1016%2Fj.measurement.2013.07.029&rft.externalDocID=S026322411300328X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |