A prediction model for finding the optimal laser parameters in additive manufacturing of NiTi shape memory alloy

Shape memory alloys (SMAs) have been applied for various applications in the fields of aerospace, automotive, and medical. Nickel-titanium (NiTi) is the most well-known alloy among the others due to its outstanding functional characteristics including superelasticity (SE) and shape memory effect (SM...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 105; no. 11; pp. 4691 - 4699
Main Authors: Mehrpouya, Mehrshad, Gisario, Annamaria, Rahimzadeh, Atabak, Nematollahi, Mohammadreza, Baghbaderani, Keyvan Safaei, Elahinia, Mohammad
Format: Journal Article
Language:English
Published: London Springer London 01-12-2019
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Shape memory alloys (SMAs) have been applied for various applications in the fields of aerospace, automotive, and medical. Nickel-titanium (NiTi) is the most well-known alloy among the others due to its outstanding functional characteristics including superelasticity (SE) and shape memory effect (SME). These particular properties are the result of the reversible martensite-to-austenite and austenite-to-martensite transformations. In recent years, additive manufacturing (AM) has provided a great opportunity for fabricating NiTi products with complex shapes. Many researchers have been investigating the AM process to set the optimal operational parameters, which can significantly affect the properties of the end-products. Indeed, the functional and mechanical behavior of printed NiTi parts can be tailored by controlling laser power, laser scan speed, and hatch spacing having them a crucial role in properties of 3D-printed parts. In particular, the effect of the input parameters can significantly alter the mechanical properties such as strain recovery rates and the transformation temperatures; therefore, using suitable parameter combination is of paramount importance. In this framework, the present study develops a prediction model based on artificial neural network (ANN) to generate a nonlinear map between inputs and outputs of the AM process. Accordingly, a prototyping tool for the AM process, also useful for dealing with the settings of the optimal operational parameters, will be built, tested, and validated.
AbstractList Shape memory alloys (SMAs) have been applied for various applications in the fields of aerospace, automotive, and medical. Nickel-titanium (NiTi) is the most well-known alloy among the others due to its outstanding functional characteristics including superelasticity (SE) and shape memory effect (SME). These particular properties are the result of the reversible martensite-to-austenite and austenite-to-martensite transformations. In recent years, additive manufacturing (AM) has provided a great opportunity for fabricating NiTi products with complex shapes. Many researchers have been investigating the AM process to set the optimal operational parameters, which can significantly affect the properties of the end-products. Indeed, the functional and mechanical behavior of printed NiTi parts can be tailored by controlling laser power, laser scan speed, and hatch spacing having them a crucial role in properties of 3D-printed parts. In particular, the effect of the input parameters can significantly alter the mechanical properties such as strain recovery rates and the transformation temperatures; therefore, using suitable parameter combination is of paramount importance. In this framework, the present study develops a prediction model based on artificial neural network (ANN) to generate a nonlinear map between inputs and outputs of the AM process. Accordingly, a prototyping tool for the AM process, also useful for dealing with the settings of the optimal operational parameters, will be built, tested, and validated.
Author Gisario, Annamaria
Nematollahi, Mohammadreza
Mehrpouya, Mehrshad
Elahinia, Mohammad
Rahimzadeh, Atabak
Baghbaderani, Keyvan Safaei
Author_xml – sequence: 1
  givenname: Mehrshad
  orcidid: 0000-0001-8939-7937
  surname: Mehrpouya
  fullname: Mehrpouya, Mehrshad
  email: mehrshad.mehrpouya@uniroma3.it
  organization: Department of Mechanical and Industrial Engineering, The University of Roma Tre
– sequence: 2
  givenname: Annamaria
  surname: Gisario
  fullname: Gisario, Annamaria
  organization: Department of Mechanical and Aerospace Engineering, Sapienza University of Rome
– sequence: 3
  givenname: Atabak
  surname: Rahimzadeh
  fullname: Rahimzadeh, Atabak
  organization: Department of Mechanical and Aerospace Engineering, Sapienza University of Rome
– sequence: 4
  givenname: Mohammadreza
  surname: Nematollahi
  fullname: Nematollahi, Mohammadreza
  organization: Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo
– sequence: 5
  givenname: Keyvan Safaei
  surname: Baghbaderani
  fullname: Baghbaderani, Keyvan Safaei
  organization: Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo
– sequence: 6
  givenname: Mohammad
  surname: Elahinia
  fullname: Elahinia, Mohammad
  organization: Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo
BookMark eNp9kD1PwzAQQC0EEqXwB5gsMQfOsWMnY1XxJSFYymw58Zm6SuJgp0jl15NSJLZON9x7d9K7IKd96JGQawa3DEDdJQCmIANWZSCKSmbfJ2TGBOcZB1ackhnkssy4kuU5uUhpM-GSyXJGhgUdIlrfjD70tAsWW-pCpM731vcfdFwjDcPoO9PS1iSMdDDRdDhiTNT31FjrR_-FtDP91plm3Ma9Fhx99StP09oM0w67EHfUtG3YXZIzZ9qEV39zTt4f7lfLp-zl7fF5uXjJGgHFmPG6ql1d1DWrBGAhsTBWKWxAVoVzYKCRtrFOlcqo0om8ZhJdzmzBJeaCA5-Tm8PdIYbPLaZRb8I29tNLnYsKSsWYEEcpnkOlGEg-UfmBamJIKaLTQ5yKxJ1moPf99aG_nvrr3_76e5L4QUrDPgnG_9NHrB-puour
CitedBy_id crossref_primary_10_1007_s00170_020_05071_w
crossref_primary_10_1016_j_jallcom_2021_159791
crossref_primary_10_1007_s11665_022_06995_y
crossref_primary_10_1115_1_4053181
crossref_primary_10_1177_09544089231215683
crossref_primary_10_1007_s11831_023_09969_y
crossref_primary_10_1002_pat_5020
crossref_primary_10_1007_s00170_020_06378_4
crossref_primary_10_1007_s00521_022_07370_7
crossref_primary_10_1038_s41467_022_34122_x
crossref_primary_10_1007_s11837_023_06134_5
crossref_primary_10_1007_s12540_023_01401_1
crossref_primary_10_1016_j_matdes_2021_109654
crossref_primary_10_1016_j_rcim_2023_102525
crossref_primary_10_1007_s10845_022_01957_6
crossref_primary_10_1016_j_actamat_2021_117017
crossref_primary_10_1557_jmr_2020_60
crossref_primary_10_1007_s10853_023_08931_4
crossref_primary_10_3390_app11178010
crossref_primary_10_1039_D0BM01369B
crossref_primary_10_1007_s00170_021_08381_9
crossref_primary_10_1016_j_addma_2022_102691
crossref_primary_10_1007_s40436_020_00304_3
crossref_primary_10_1007_s40964_022_00387_3
crossref_primary_10_3390_ma17051006
crossref_primary_10_1007_s40964_021_00236_9
crossref_primary_10_3390_ma13092104
crossref_primary_10_1007_s00170_024_12974_5
crossref_primary_10_1016_j_optlastec_2020_106653
crossref_primary_10_1007_s00170_022_10522_7
crossref_primary_10_1016_j_jmrt_2022_10_015
crossref_primary_10_1088_2631_7990_acc7d9
crossref_primary_10_1007_s12046_021_01684_3
crossref_primary_10_3390_met10010151
crossref_primary_10_1016_j_matdes_2024_113086
crossref_primary_10_1007_s40192_022_00252_9
crossref_primary_10_1016_j_finmec_2021_100055
crossref_primary_10_3390_coatings10111104
crossref_primary_10_1016_j_jmrt_2023_04_195
crossref_primary_10_1016_j_mtcomm_2021_102022
crossref_primary_10_3390_met10111522
crossref_primary_10_1115_1_4054935
crossref_primary_10_1016_j_matlet_2021_129648
crossref_primary_10_1016_j_tibtech_2022_01_005
Cites_doi 10.1016/j.scriptamat.2017.11.047
10.1038/srep46707
10.1016/j.jmapro.2016.05.005
10.1243/09544100JAERO211
10.1016/j.jmsy.2019.08.005
10.1016/j.jmbbm.2017.01.047
10.1007/s00170-014-6679-5
10.1007/s40830-016-0083-y
10.1016/S0921-5093(01)01183-2
10.1007/s00170-018-03259-9
10.1016/S1359-6454(00)00153-1
10.1038/s41598-018-36641-4
10.1007/s00339-019-2782-7
10.1016/j.optlastec.2019.05.010
10.1080/10426914.2017.1279290
10.1002/9781118426913
10.1016/j.pmatsci.2016.08.001
10.1016/j.msea.2017.01.008
10.1002/adem.201300558
10.3390/ma12050808
10.1016/j.ins.2014.01.038
10.1016/j.jmapro.2019.06.013
10.4028/www.scientific.net/AMM.564.533
10.1201/9780203736166
10.1007/s40516-019-00084-0
10.1016/j.advengsoft.2008.12.001
10.1016/j.actamat.2017.10.072
10.1007/s10856-018-6044-6
10.1007/s11665-014-0958-z
10.1016/j.jmapro.2019.02.026
10.1557/mrs.2016.209
10.1115/MSEC2016-8784
10.1016/j.msea.2015.10.032
10.3390/bioengineering6020037
10.2174/1876402908666161102151453
10.1007/s00170-015-7576-2
10.1016/j.optlaseng.2016.09.004
10.1108/RPJ-11-2014-0149
10.1016/j.ijleo.2016.09.042
10.1088/0964-1726/23/10/104002
10.1016/j.rcim.2015.12.004
10.1016/j.addma.2016.07.001
10.1016/j.jmapro.2017.11.011
10.1177/1045389X16635848
10.1016/j.scriptamat.2017.10.016
10.1016/j.addma.2015.07.002
10.1111/ffe.12560
10.1115/1.4038293
10.1016/j.msea.2003.10.326
10.1007/s40830-019-00214-9
10.1117/12.2299817
10.3390/app9183865
10.1016/j.cad.2015.12.003
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-019-04596-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Engineering Database

Engineering Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 4699
ExternalDocumentID 10_1007_s00170_019_04596_z
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABYXP
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c405t-3b9bfb5bb1940e56e5ad77ec0695ff0a0c6dcdf787a78f42b16ef21d536e24303
IEDL.DBID AEJHL
ISSN 0268-3768
IngestDate Mon Nov 04 11:08:59 EST 2024
Mon Nov 04 11:16:08 EST 2024
Fri Nov 22 00:18:30 EST 2024
Sat Dec 16 12:02:55 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Shape memory alloys
Additive manufacturing
Artificial neural network
NiTi
Modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-3b9bfb5bb1940e56e5ad77ec0695ff0a0c6dcdf787a78f42b16ef21d536e24303
ORCID 0000-0001-8939-7937
PQID 2320971063
PQPubID 2044010
PageCount 9
ParticipantIDs proquest_journals_2490871144
proquest_journals_2320971063
crossref_primary_10_1007_s00170_019_04596_z
springer_journals_10_1007_s00170_019_04596_z
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ChenHZhaoYFProcess parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing processRapid Prototyp J201622352753810.1108/RPJ-11-2014-01493458339
HartlDJLagoudasDCAerospace applications of shape memory alloysProceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2007221453555210.1243/09544100JAERO211
DingDTowards an automated robotic arc-welding-based additive manufacturing system from CAD to finished partComput Aided Des201673667510.1016/j.cad.2015.12.003
FiratMGungorMGeneralized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piersAdv Eng Softw200940873173710.1016/j.advengsoft.2008.12.0011167.62466
NingJAnalytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditionsJ Manuf Process20194431932610.1016/j.jmapro.2019.06.013
HaberlandCOn the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturingSmart Mater Struct2014231010400210.1088/0964-1726/23/10/104002
SaediSTexture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloysMater Sci Eng A201768611010.1016/j.msea.2017.01.008
NematollahiMApplication of NiTi in assistive and rehabilitation devices: a reviewBioengineering2019623710.3390/bioengineering6020037
Elahinia MH (2016) Shape memory alloy actuators: design, fabrication, and experimental evaluation: John Wiley & Sons
MehrpouyaMCheraghi BidsorkhiHMEMS applications of NiTi based shape memory alloys: a reviewMicro and Nanosystems201682799110.2174/1876402908666161102151453
GisarioAMetal additive manufacturing in the commercial aviation industry: a reviewJ Manuf Syst20195312414910.1016/j.jmsy.2019.08.005
SpeirsMOn the transformation behavior of NiTi shape-memory alloy produced by SLMShape Memory and Superelasticity20162431031610.1007/s40830-016-0083-y
GisarioALaserOrigami (LO) of three-dimensional (3D) components: experimental analysis and numerical modellingJ Manuf Process20162324224810.1016/j.jmapro.2016.05.005
Mehrpouya M et al. (2019) Dissimilar laser welding of NiTi wires. Lasers in Manufacturing and Materials Processing: p. 1-14
Card SK (2018) The psychology of human-computer interaction: CRC Press.
BikasHStavropoulosPChryssolourisGAdditive manufacturing methods and modelling approaches: a critical reviewInt J Adv Manuf Technol2016831-438940510.1007/s00170-015-7576-2
FrazierWEMetal additive manufacturing: a reviewJ Mater Eng Perform20142361917192810.1007/s11665-014-0958-z
SaediSSaghaianSEJahadakbarAShayesteh MoghaddamNTaheri AndaniMSaghaianSMLuYCElahiniaMKaracaHEShape memory response of porous NiTi shape memory alloys fabricated by selective laser meltingJ Mater Sci Mater Med20182944010.1007/s10856-018-6044-6
Mehrpouya M (2017) Laser welding of NiTi shape memory sheets: experimental analysis and numerical modeling, in Department of Mechanical and Aerospace Engineering, Sapienza University of Rome. p. 134
DingDBead modelling and implementation of adaptive MAT path in wire and arc additive manufacturingRobot Comput Integr Manuf201639324210.1016/j.rcim.2015.12.004
SehitogluHCompressive response of NiTi single crystalsActa Mater200048133311332610.1016/S1359-6454(00)00153-1
DadbakhshSLaser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applicationsMRS Bull2016411076577410.1557/mrs.2016.209
VijayaraghavanVProcess characterisation of 3D-printed FDM components using improved evolutionary computational approachInt J Adv Manuf Technol2015785-878179310.1007/s00170-014-6679-5
DadbakhshSTexture and anisotropy in selective laser melting of NiTi alloyMater Sci Eng A201665022523210.1016/j.msea.2015.10.032
Nematollahi M et al. (2018) A two-way architectural actuator using NiTi SE wire and SME spring. in Active and Passive Smart Structures and Integrated Systems XII. International Society for Optics and Photonics
AkbariMNumerical simulation and designing artificial neural network for estimating melt pool geometry and temperature distribution in laser welding of Ti6Al4V alloyOptik201612723111611117210.1016/j.ijleo.2016.09.042
Mehrpouya M et al. (2017) An investigation on the optimum machinability of NiTi based shape memory alloy. Materials and Manufacturing Processes: p. 1-8
ShamsaeiNAn overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and controlAdditive Manufacturing20158123510.1016/j.addma.2015.07.002
HassanMehrpouyaMDawoodSReview of the machining difficulties of nickel-titanium based shape memory alloysAppl Mech Mater201456453310.4028/www.scientific.net/AMM.564.533
ElahiniaMAdditive manufacturing of NiTiHf high temperature shape memory alloyScr Mater2018145909410.1016/j.scriptamat.2017.10.016
AndaniMTMechanical and shape memory properties of porous Ni50. 1Ti49. 9 alloys manufactured by selective laser meltingJ Mech Behav Biomed Mater20176822423110.1016/j.jmbbm.2017.01.047
HuangYKhameseeMBToyserkaniEA comprehensive analytical model for laser powder-fed additive manufacturingAdditive Manufacturing201612909910.1016/j.addma.2016.07.001
Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall PTR
NingJAnalytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packingMaterials201912580810.3390/ma12050808
Chowdhury S (2016) Artificial neural network based geometric compensation for thermal deformation in additive manufacturing processes, University of Cincinnati
MehrpouyaMThe potential of additive manufacturing in the smart factory industrial 4.0: a reviewAppl Sci2019918386510.3390/app9183865
MoghaddamNSAchieving superelasticity in additively manufactured NiTi in compression without post-process heat treatmentSci Rep2019914110.1038/s41598-018-36641-44031945
GisarioALaser-assisted bending of titanium grade-2 sheets: experimental analysis and numerical simulationOpt Lasers Eng20179211011910.1016/j.optlaseng.2016.09.004
MorganNMedical shape memory alloy applications—the market and its productsMater Sci Eng A20043781-2162310.1016/j.msea.2003.10.326
Lagoudas DC, Rediniotis OK, Khan MM (2000) Applications of shape memory alloys to bioengineering and biomedical technology, in Scattering Theory and Biomedical Engineering Modelling and Applications, World Scientific. p. 195-207
MirjaliliSMirjaliliSMLewisALet a biogeography-based optimizer train your multi-layer perceptronInf Sci201426918820910.1016/j.ins.2014.01.0383180809
MehrpouyaMNumerical study for prediction of optimum operational parameters in laser welding of NiTi alloyOpt Laser Technol201911815916910.1016/j.optlastec.2019.05.010
Namatollahi M et al. (2019) Additive manufacturing (AM), in Metals for Biomedical Devices, Elsevier. p. 331-353
WangXSelective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effectScr Mater201814624625010.1016/j.scriptamat.2017.11.047
SaediSOn the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTiActa Mater201814455256010.1016/j.actamat.2017.10.072
NematollahiMAdditive manufacturing of Ni-rich NiTiHf 20: manufacturability, composition, density, and transformation behaviorShape Memory and Superelasticity20195111312410.1007/s40830-019-00214-9
NingJAnalytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stagesApplied Physics A2019125849610.1007/s00339-019-2782-7
GallKOn the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenonMater Sci Eng A20013171-2859210.1016/S0921-5093(01)01183-2
ChowdhurySMhapsekarKAnandSPart build orientation optimization and neural network-based geometry compensation for additive manufacturing processJ Manuf Sci Eng2018140303100910.1115/1.4038293
Mehrpouya M et al. (2019) An artificial neural network model for laser transmission welding of biodegradable polyethylene terephthalate/polyethylene vinyl acetate (PET/PEVA) blends. Int J Adv Manuf Technol, p. 1-11
ElahiniaMFabrication of NiTi through additive manufacturing: a reviewProg Mater Sci20168363066310.1016/j.pmatsci.2016.08.001
MehrpouyaMGisarioAElahiniaMLaser welding of NiTi shape memory alloy: a reviewJ Manuf Process201820183116218610.1016/j.jmapro.2017.11.011
Mehrpouya M (2013) Modeling of machining perocess of nickel based shape memory alloy in Department of Mechanical and Manufacturing, Universiti Putra Malaysia. p. 130
MehrpouyaMLaserOrigami (LO) of three-dimensional (3D) components: experimental analysis and numerical modeling-part IIJ Manuf Process20193919219910.1016/j.jmapro.2019.02.026
WalkerJMProcess development and characterization of additively manufactured nickel–titanium shape memory partsJ Intell Mater Syst Struct201627192653266010.1177/1045389X16635848
MaJSpatial control of functional response in 4D-printed active metallic structuresSci Rep201774670710.1038/srep46707
DadbakhshSEffect of SLM parameters on transformation temperatures of shape memory nickel titanium partsAdv Eng Mater20141691140114610.1002/adem.201300558
FerganiOAnalytical modelling of residual stress in additive manufacturingFatigue Fract Eng Mater Struct201740697197810.1111/ffe.12560
A Gisario (4596_CR42) 2017; 92
A Gisario (4596_CR40) 2016; 23
S Saedi (4596_CR18) 2018; 29
Y Huang (4596_CR37) 2016; 12
Hassan (4596_CR11) 2014; 564
MT Andani (4596_CR19) 2017; 68
S Chowdhury (4596_CR45) 2018; 140
S Saedi (4596_CR58) 2017; 686
M Elahinia (4596_CR2) 2016; 83
M Nematollahi (4596_CR5) 2019; 6
4596_CR1
D Ding (4596_CR46) 2016; 39
K Gall (4596_CR55) 2001; 317
M Speirs (4596_CR30) 2016; 2
M Akbari (4596_CR54) 2016; 127
4596_CR8
M Mehrpouya (4596_CR3) 2018; 2018
4596_CR9
M Nematollahi (4596_CR23) 2019; 5
J Ning (4596_CR35) 2019; 125
4596_CR39
H Chen (4596_CR33) 2016; 22
D Ding (4596_CR47) 2016; 73
DJ Hartl (4596_CR7) 2007; 221
V Vijayaraghavan (4596_CR48) 2015; 78
4596_CR43
H Sehitoglu (4596_CR56) 2000; 48
S Dadbakhsh (4596_CR57) 2016; 650
C Haberland (4596_CR25) 2014; 23
M Elahinia (4596_CR24) 2018; 145
M Mehrpouya (4596_CR41) 2019; 39
4596_CR44
M Mehrpouya (4596_CR16) 2019; 9
N Morgan (4596_CR6) 2004; 378
WE Frazier (4596_CR15) 2014; 23
4596_CR50
X Wang (4596_CR29) 2018; 146
4596_CR51
4596_CR10
A Gisario (4596_CR17) 2019; 53
J Ma (4596_CR28) 2017; 7
M Mehrpouya (4596_CR52) 2019; 118
H Bikas (4596_CR36) 2016; 83
4596_CR12
4596_CR13
S Mirjalili (4596_CR49) 2014; 269
M Mehrpouya (4596_CR4) 2016; 8
4596_CR14
N Shamsaei (4596_CR31) 2015; 8
NS Moghaddam (4596_CR22) 2019; 9
S Dadbakhsh (4596_CR20) 2016; 41
JM Walker (4596_CR27) 2016; 27
J Ning (4596_CR32) 2019; 44
S Dadbakhsh (4596_CR26) 2014; 16
M Firat (4596_CR53) 2009; 40
O Fergani (4596_CR38) 2017; 40
S Saedi (4596_CR21) 2018; 144
J Ning (4596_CR34) 2019; 12
References_xml – volume: 146
  start-page: 246
  year: 2018
  ident: 4596_CR29
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2017.11.047
  contributor:
    fullname: X Wang
– ident: 4596_CR12
– volume: 7
  start-page: 46707
  year: 2017
  ident: 4596_CR28
  publication-title: Sci Rep
  doi: 10.1038/srep46707
  contributor:
    fullname: J Ma
– volume: 23
  start-page: 242
  year: 2016
  ident: 4596_CR40
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2016.05.005
  contributor:
    fullname: A Gisario
– volume: 221
  start-page: 535
  issue: 4
  year: 2007
  ident: 4596_CR7
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
  doi: 10.1243/09544100JAERO211
  contributor:
    fullname: DJ Hartl
– volume: 53
  start-page: 124
  year: 2019
  ident: 4596_CR17
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.08.005
  contributor:
    fullname: A Gisario
– volume: 68
  start-page: 224
  year: 2017
  ident: 4596_CR19
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2017.01.047
  contributor:
    fullname: MT Andani
– volume: 78
  start-page: 781
  issue: 5-8
  year: 2015
  ident: 4596_CR48
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6679-5
  contributor:
    fullname: V Vijayaraghavan
– volume: 2
  start-page: 310
  issue: 4
  year: 2016
  ident: 4596_CR30
  publication-title: Shape Memory and Superelasticity
  doi: 10.1007/s40830-016-0083-y
  contributor:
    fullname: M Speirs
– volume: 317
  start-page: 85
  issue: 1-2
  year: 2001
  ident: 4596_CR55
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(01)01183-2
  contributor:
    fullname: K Gall
– ident: 4596_CR50
  doi: 10.1007/s00170-018-03259-9
– volume: 48
  start-page: 3311
  issue: 13
  year: 2000
  ident: 4596_CR56
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(00)00153-1
  contributor:
    fullname: H Sehitoglu
– ident: 4596_CR51
– volume: 9
  start-page: 41
  issue: 1
  year: 2019
  ident: 4596_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-36641-4
  contributor:
    fullname: NS Moghaddam
– volume: 125
  start-page: 496
  issue: 8
  year: 2019
  ident: 4596_CR35
  publication-title: Applied Physics A
  doi: 10.1007/s00339-019-2782-7
  contributor:
    fullname: J Ning
– volume: 118
  start-page: 159
  year: 2019
  ident: 4596_CR52
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2019.05.010
  contributor:
    fullname: M Mehrpouya
– ident: 4596_CR13
  doi: 10.1080/10426914.2017.1279290
– ident: 4596_CR1
  doi: 10.1002/9781118426913
– volume: 83
  start-page: 630
  year: 2016
  ident: 4596_CR2
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2016.08.001
  contributor:
    fullname: M Elahinia
– volume: 686
  start-page: 1
  year: 2017
  ident: 4596_CR58
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2017.01.008
  contributor:
    fullname: S Saedi
– volume: 16
  start-page: 1140
  issue: 9
  year: 2014
  ident: 4596_CR26
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.201300558
  contributor:
    fullname: S Dadbakhsh
– volume: 12
  start-page: 808
  issue: 5
  year: 2019
  ident: 4596_CR34
  publication-title: Materials
  doi: 10.3390/ma12050808
  contributor:
    fullname: J Ning
– volume: 269
  start-page: 188
  year: 2014
  ident: 4596_CR49
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.01.038
  contributor:
    fullname: S Mirjalili
– volume: 44
  start-page: 319
  year: 2019
  ident: 4596_CR32
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.06.013
  contributor:
    fullname: J Ning
– volume: 564
  start-page: 533
  year: 2014
  ident: 4596_CR11
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.564.533
  contributor:
    fullname: Hassan
– ident: 4596_CR43
  doi: 10.1201/9780203736166
– ident: 4596_CR10
  doi: 10.1007/s40516-019-00084-0
– volume: 40
  start-page: 731
  issue: 8
  year: 2009
  ident: 4596_CR53
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.12.001
  contributor:
    fullname: M Firat
– volume: 144
  start-page: 552
  year: 2018
  ident: 4596_CR21
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.10.072
  contributor:
    fullname: S Saedi
– volume: 29
  start-page: 40
  issue: 4
  year: 2018
  ident: 4596_CR18
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/s10856-018-6044-6
  contributor:
    fullname: S Saedi
– volume: 23
  start-page: 1917
  issue: 6
  year: 2014
  ident: 4596_CR15
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-014-0958-z
  contributor:
    fullname: WE Frazier
– ident: 4596_CR39
– volume: 39
  start-page: 192
  year: 2019
  ident: 4596_CR41
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.02.026
  contributor:
    fullname: M Mehrpouya
– ident: 4596_CR14
– volume: 41
  start-page: 765
  issue: 10
  year: 2016
  ident: 4596_CR20
  publication-title: MRS Bull
  doi: 10.1557/mrs.2016.209
  contributor:
    fullname: S Dadbakhsh
– ident: 4596_CR44
  doi: 10.1115/MSEC2016-8784
– volume: 650
  start-page: 225
  year: 2016
  ident: 4596_CR57
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2015.10.032
  contributor:
    fullname: S Dadbakhsh
– volume: 6
  start-page: 37
  issue: 2
  year: 2019
  ident: 4596_CR5
  publication-title: Bioengineering
  doi: 10.3390/bioengineering6020037
  contributor:
    fullname: M Nematollahi
– volume: 8
  start-page: 79
  issue: 2
  year: 2016
  ident: 4596_CR4
  publication-title: Micro and Nanosystems
  doi: 10.2174/1876402908666161102151453
  contributor:
    fullname: M Mehrpouya
– volume: 83
  start-page: 389
  issue: 1-4
  year: 2016
  ident: 4596_CR36
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7576-2
  contributor:
    fullname: H Bikas
– volume: 92
  start-page: 110
  year: 2017
  ident: 4596_CR42
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.09.004
  contributor:
    fullname: A Gisario
– volume: 22
  start-page: 527
  issue: 3
  year: 2016
  ident: 4596_CR33
  publication-title: Rapid Prototyp J
  doi: 10.1108/RPJ-11-2014-0149
  contributor:
    fullname: H Chen
– volume: 127
  start-page: 11161
  issue: 23
  year: 2016
  ident: 4596_CR54
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.09.042
  contributor:
    fullname: M Akbari
– volume: 23
  start-page: 104002
  issue: 10
  year: 2014
  ident: 4596_CR25
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/23/10/104002
  contributor:
    fullname: C Haberland
– volume: 39
  start-page: 32
  year: 2016
  ident: 4596_CR46
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2015.12.004
  contributor:
    fullname: D Ding
– volume: 12
  start-page: 90
  year: 2016
  ident: 4596_CR37
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2016.07.001
  contributor:
    fullname: Y Huang
– volume: 2018
  start-page: 162
  issue: 31
  year: 2018
  ident: 4596_CR3
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2017.11.011
  contributor:
    fullname: M Mehrpouya
– volume: 27
  start-page: 2653
  issue: 19
  year: 2016
  ident: 4596_CR27
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X16635848
  contributor:
    fullname: JM Walker
– volume: 145
  start-page: 90
  year: 2018
  ident: 4596_CR24
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2017.10.016
  contributor:
    fullname: M Elahinia
– volume: 8
  start-page: 12
  year: 2015
  ident: 4596_CR31
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2015.07.002
  contributor:
    fullname: N Shamsaei
– volume: 40
  start-page: 971
  issue: 6
  year: 2017
  ident: 4596_CR38
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12560
  contributor:
    fullname: O Fergani
– volume: 140
  start-page: 031009
  issue: 3
  year: 2018
  ident: 4596_CR45
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4038293
  contributor:
    fullname: S Chowdhury
– volume: 378
  start-page: 16
  issue: 1-2
  year: 2004
  ident: 4596_CR6
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2003.10.326
  contributor:
    fullname: N Morgan
– volume: 5
  start-page: 113
  issue: 1
  year: 2019
  ident: 4596_CR23
  publication-title: Shape Memory and Superelasticity
  doi: 10.1007/s40830-019-00214-9
  contributor:
    fullname: M Nematollahi
– ident: 4596_CR9
  doi: 10.1117/12.2299817
– ident: 4596_CR8
– volume: 9
  start-page: 3865
  issue: 18
  year: 2019
  ident: 4596_CR16
  publication-title: Appl Sci
  doi: 10.3390/app9183865
  contributor:
    fullname: M Mehrpouya
– volume: 73
  start-page: 66
  year: 2016
  ident: 4596_CR47
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2015.12.003
  contributor:
    fullname: D Ding
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.5314698
Snippet Shape memory alloys (SMAs) have been applied for various applications in the fields of aerospace, automotive, and medical. Nickel-titanium (NiTi) is the most...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 4691
SubjectTerms Additive manufacturing
Alloys
Artificial neural networks
Austenite
Automotive parts
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Intermetallic compounds
Lasers
Martensite
Martensitic transformations
Mathematical models
Mechanical Engineering
Mechanical properties
Media Management
Nickel base alloys
Nickel titanides
Original Article
Parameters
Prediction models
Prototyping
Shape effects
Shape memory alloys
Strain
Superelasticity
Surgical implants
Three dimensional printing
Transformation temperature
Title A prediction model for finding the optimal laser parameters in additive manufacturing of NiTi shape memory alloy
URI https://link.springer.com/article/10.1007/s00170-019-04596-z
https://www.proquest.com/docview/2320971063
https://www.proquest.com/docview/2490871144
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4LDDwRpSXPLBBUOzYTjJW0FIQ6kKR2CI7caBCTas-hvLruXOTFlAZYMrgxFbuzneffS9CLgBkSK0j40kWKjigxMrTRjAP2G2slrmyPiYKt57C9kt028AyOcH86qJ4v648kk5Rz3PdXKUXOPniXb6EKT9WyTrYHgnCvV5vPLQeKzFicYitMOdixmPsP78Q40DIYObcKp0NirmMOTiNRLjfojK3Zvmq3-3XApT-8KM689Tc_teP7ZCtEo3S-kx8dsmKLfbI5pcahftkUKeDIXpzkIPUNc6hAHSpc3YXrxQAJO2D3unBPIDE7ZBiNfEeRtmMaLegGLCEKpX2dDHBNAqXF0n7OW13O106etMDGMN43ynFIIDpAXluNjo3La9s0-ClgPbGXmBikxtpDIuFb6WyUmdhaFNfxTLPfe2nKkuzHDSDDqNccMOUzTnLZKAsF2BCD8la0S_sEaGhyQzj8GlgIyFgYm6ylGnFU821H4c1clkRPxnMqnEk87rLjo4J0DFxdEw-auS04k9S7sxRAggSy2YBMls-jI5QEBYhauSq4tdi-PfFjv_2-gnZ4MhyFxhzStbGw4k9I6ujbHJeijM-7zt3zU8byez0
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LU9swEN6B5EA5UB5lCKVUB27gGUuWZPuY4TFhCLk0zMDJI9lyySFOJiEH-PXsKnbSduihPcuWxrur1Sfv7rcAZwgylDGJDRSPNV5QUh0YK3mA6rbOqFK7kAqFez_iwWNydU00ObKphfHZ7k1I0nvqVbGbp3rBqy_9zFc459smtIntXLSg3X18erpq7IinMfXCXNmZSKkB_dqOI6miZXSrjjZo7kvm8DqS0IZL6uKaj1f9_QBbo9I_Aqn-fLr5_H9ftgs7NR5l3aUB7cGGq_Zh-xeWwgOYdtl0RvEc0iHzrXMYQl3mw93VT4YQkk3Q84xxHsTibsaIT3xMeTZzNqoYpSyRU2VjUy2okMJXRrJJyQaj4YjNn80Uxyjj95VRGsDrF3i4uR5e9oK6UUOQI957CSKb2tIqa3kqQ6e0U6aIY5eHOlVlGZow10VelOgbTJyUUliuXSl4oSLthMRD9BBa1aRyR8BiW1gu8NXIJVLixMIWOTda5EaYMI07cN5IP5su-TiyFfOyl2OGcsy8HLO3Dpw0CsrqvTnPEEMScRZis4-HKRSK1iJlBy4afa2H_77Y8b89_h22esP7fta_Hdx9hU-C1O_TZE6g9TJbuG-wOS8Wp7VtvwM6le-Y
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3BIlXtoUA_1G2B-sCtjYgd20mOq8IWRLVCYiv1FtmJ3e5hs9F-HODXd8ab7LaIHlDPTmzFM7afM_PeAJwiyFDGZDZSPNV4Qcl1ZKzkEZrbOqO8djERhS9v09GP7PyCZHI2LP6Q7d6FJNecBlJpqpdnTeXPNsS3IPuC12D6sa-w__td2KPfYrIHe4Or8ddh51M8T6ku5sbnRE7F6Lc-nUiVrCNdbeRB80Cfw6tJRosva4k2j4_692G2RagPgqrhrBru__9XHsDLFqeywdqxDmHH1a_gxR_qha-hGbBmTnEesi0LJXUYQmAWwuD1T4bQks1wR5piP4jR3ZyRzviU8m8WbFIzSmWizZZNTb0igkVgTLKZZ6PJeMIWv0yDbZQJfMcoPeDuDXwfXoy_XEZtAYeoRBy4jBKbW2-VtTyXsVPaKVOlqStjnSvvYxOXuiorj3uGSTMvheXaecErlWgnJB6ub6FXz2r3DlhqK8sFvpq4TErsWNiq5EaL0ggT52kfPnWWKJq1TkexUWQO81jgPBZhHov7Phx1xiraNbsoEFuSoBZitsebKUSKniNlHz53tts2_3uw9097_CM8uzkfFt-uRtcf4Lkg64fsmSPoLecrdwy7i2p10rr5b7fb-C8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+prediction+model+for+finding+the+optimal+laser+parameters+in+additive+manufacturing+of+NiTi+shape+memory+alloy&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Mehrpouya%2C+Mehrshad&rft.au=Gisario%2C+Annamaria&rft.au=Rahimzadeh%2C+Atabak&rft.au=Nematollahi%2C+Mohammadreza&rft.date=2019-12-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=105&rft.issue=11&rft.spage=4691&rft.epage=4699&rft_id=info:doi/10.1007%2Fs00170-019-04596-z&rft.externalDocID=10_1007_s00170_019_04596_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon