Outlier Detection and Handling for Robust 3-D Active Shape Models Search
This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity me...
Saved in:
Published in: | IEEE transactions on medical imaging Vol. 26; no. 2; pp. 212 - 222 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-02-2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity measure. Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points. A replacement point is then suggested for each outlier based on the tolerance model and the position of the valid points. A geometrically weighted fitness measure is introduced for feature point detection, which limits the presence of outliers and improves the convergence of the proposed segmentation framework. The algorithm is immune to the extremity of the outliers and can handle a highly significant presence of erroneous feature points. The practical value of the technique is validated with 3-D magnetic resonance (MR) segmentation tasks of the carotid artery and myocardial borders of the left ventricle |
---|---|
AbstractList | This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity measure. Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points. A replacement point is then suggested for each outlier based on the tolerance model and the position of the valid points. A geometrically weighted fitness measure is introduced for feature point detection, which limits the presence of outliers and improves the convergence of the proposed segmentation framework. The algorithm is immune to the extremity of the outliers and can handle a highly significant presence of erroneous feature points. The practical value of the technique is validated with 3-D magnetic resonance (MR) segmentation tasks of the carotid artery and myocardial borders of the left ventricle. This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity measure. Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points. A replacement point is then suggested for each outlier based on the tolerance model and the position of the valid points. A geometrically weighted fitness measure is introduced for feature point detection, which limits the presence of outliers and improves the convergence of the proposed segmentation framework. The algorithm is immune to the extremity of the outliers and can handle a highly significant presence of erroneous feature points. The practical value of the technique is validated with 3-D magnetic resonance (MR) segmentation tasks of the carotid artery and myocardial borders of the left ventricle Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points. |
Author | Merrifield, R. Guang-Zhong Yang Lekadir, K. |
Author_xml | – sequence: 1 givenname: K. surname: Lekadir fullname: Lekadir, K. organization: Dept. of Comput., Imperial Coll. London – sequence: 2 givenname: R. surname: Merrifield fullname: Merrifield, R. organization: Dept. of Comput., Imperial Coll. London – sequence: 3 surname: Guang-Zhong Yang fullname: Guang-Zhong Yang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17304735$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1rFEEQBuBGImYTPXsQpPGgp9lU9fccQ6JuICFgIngbentqzITZ6U33jOC_t5ddFDzopfpQT73QvCfsaIwjMfYaYYkI9dn9zdVSAJilc7UV5hlboNauElp9O2ILENZVZSuO2UnOjwCoNNQv2DFaCcpKvWCr23kaekr8kiYKUx9H7seWr8oY-vE772LiX-J6zhOX1SU_L-QH8bsHvyV-E1saMr8jn8LDS_a880OmV4f3lH399PH-YlVd336-uji_roICPVUCvLAAylCL2Mk1dLYjWAujvUAFBIGoFU62GJyi1gfdodMuyDIEWStP2Yd97jbFp5ny1Gz6HGgY_Ehxzo2zCmtQIIt8_09pakBEgf-FAiRaY0yB7_6Cj3FOY_lu44wCo2rcpZ3tUUgx50Rds039xqefDUKzK60ppTW70pp9aeXi7SF2Xm-o_eMPLRXwZg96Ivq9VmCt07X8Ba1vmWQ |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1109_TMI_2012_2202915 crossref_primary_10_1109_TMI_2013_2252431 crossref_primary_10_1109_LRA_2019_2896518 crossref_primary_10_1109_TMI_2012_2216541 crossref_primary_10_1007_s11548_012_0673_x crossref_primary_10_1002_mp_13998 crossref_primary_10_1002_mrm_25079 crossref_primary_10_1016_j_media_2011_08_004 crossref_primary_10_1166_jmihi_2021_3364 crossref_primary_10_1016_j_media_2012_05_010 crossref_primary_10_1016_j_media_2012_07_007 crossref_primary_10_1097_RMR_0b013e3181ea287d crossref_primary_10_1016_j_media_2014_03_002 crossref_primary_10_1109_TMI_2010_2060490 crossref_primary_10_1109_TMI_2010_2086465 crossref_primary_10_1109_TMI_2011_2171357 crossref_primary_10_1109_TBME_2014_2327025 crossref_primary_10_1109_TPAMI_2021_3113077 crossref_primary_10_1113_expphysiol_2008_044081 crossref_primary_10_1016_j_patcog_2015_09_001 crossref_primary_10_1118_1_4906197 crossref_primary_10_1007_s10044_019_00822_2 crossref_primary_10_1016_j_bspc_2020_101866 crossref_primary_10_1109_TMI_2015_2497906 crossref_primary_10_1016_j_cviu_2019_01_002 crossref_primary_10_1109_TIP_2019_2948728 crossref_primary_10_1109_TIP_2015_2424311 crossref_primary_10_1186_1532_429X_10_S1_A256 crossref_primary_10_1007_s11263_011_0477_4 crossref_primary_10_1109_ACCESS_2021_3097387 crossref_primary_10_1016_j_media_2014_09_003 crossref_primary_10_1007_s10334_015_0521_4 crossref_primary_10_1109_TR_2010_2048661 |
Cites_doi | 10.1109/TMI.2003.809688 10.1214/aoms/1177731788 10.5244/C.7.64 10.1016/S1361-8415(01)00051-2 10.1006/cviu.1995.1004 10.1109/42.730403 10.2307/2283644 10.1007/978-3-540-28626-4_15 10.1109/TMI.2002.803121 10.1117/12.431101 10.1007/978-3-540-45087-0_2 10.1002/jmri.10294 10.1109/IAI.2002.999927 10.1214/aoms/1177730981 10.1109/42.746716 10.1016/0262-8856(94)90060-4 10.1007/10704282_14 10.1007/978-1-4612-5931-2 10.1016/S0031-3203(03)00052-9 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
DBID | 97E RIA RIE CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2006.889726 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE Engineering Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 222 |
ExternalDocumentID | 2333463831 10_1109_TMI_2006_889726 17304735 4077859 |
Genre | orig-research Validation Studies Evaluation Studies Journal Article |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RIG RNS RXW TAE TN5 VH1 XFK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c405t-20a270046ed11f3b0f7fe0b265a2140e0ceed283d1c84edac5f1858c38582e773 |
IEDL.DBID | RIE |
ISSN | 0278-0062 |
IngestDate | Fri Aug 16 02:12:10 EDT 2024 Fri Aug 16 21:28:25 EDT 2024 Fri Aug 16 03:57:41 EDT 2024 Thu Oct 10 19:23:17 EDT 2024 Fri Aug 23 03:15:31 EDT 2024 Tue Aug 27 07:18:17 EDT 2024 Wed Jun 26 19:26:43 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-20a270046ed11f3b0f7fe0b265a2140e0ceed283d1c84edac5f1858c38582e773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17304735 |
PQID | 864064911 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_journals_864064911 pubmed_primary_17304735 ieee_primary_4077859 crossref_primary_10_1109_TMI_2006_889726 proquest_miscellaneous_69011121 proquest_miscellaneous_874190403 proquest_miscellaneous_20317666 |
PublicationCentury | 2000 |
PublicationDate | 2007-02-01 |
PublicationDateYYYYMMDD | 2007-02-01 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2007 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 dryden (ref19) 1998 davies (ref4) 2002; 2352 barnett (ref20) 1994 ref11 ref2 ref1 ref18 li (ref17) 2004; 3150 guttman (ref21) 1970 li (ref5) 2001; 4322 jiao (ref16) 2003; 1 ref23 ref26 ref25 ref22 rogers (ref10) 2002; 2353 ref27 assen (ref7) 2003; 2878 ref9 ref3 pratt (ref24) 1981 bruijne (ref8) 2003; 2879 dickens (ref6) 2002 |
References_xml | – volume: 1 start-page: 321 year: 2003 ident: ref16 article-title: face alignment using statistical models and wavelet features publication-title: Proc IEEE Conf Comput Vision Pattern Recognition contributor: fullname: jiao – ident: ref26 doi: 10.1109/TMI.2003.809688 – ident: ref25 doi: 10.1214/aoms/1177731788 – volume: 2878 start-page: 533 year: 2003 ident: ref7 publication-title: Medical Image Computing and Computer Assisted Intervention contributor: fullname: assen – ident: ref13 doi: 10.5244/C.7.64 – ident: ref14 doi: 10.1016/S1361-8415(01)00051-2 – ident: ref1 doi: 10.1006/cviu.1995.1004 – year: 1998 ident: ref19 publication-title: Statistical Shape Analysis contributor: fullname: dryden – ident: ref2 doi: 10.1109/42.730403 – year: 1994 ident: ref20 publication-title: Outliers in Statistical Data contributor: fullname: barnett – ident: ref23 doi: 10.2307/2283644 – volume: 3150 start-page: 121 year: 2004 ident: ref17 publication-title: Medical Imaging and Augmented Reality doi: 10.1007/978-3-540-28626-4_15 contributor: fullname: li – volume: 2879 start-page: 538 year: 2003 ident: ref8 publication-title: Medical Image Computing and Computer Assisted Intervention contributor: fullname: bruijne – ident: ref15 doi: 10.1109/TMI.2002.803121 – volume: 4322 start-page: 311 year: 2001 ident: ref5 article-title: automatic generation of 3-d shape models and their application to tomographic image segmentation publication-title: Proc SPIE Conf Med Imag doi: 10.1117/12.431101 contributor: fullname: li – ident: ref3 doi: 10.1007/978-3-540-45087-0_2 – ident: ref27 doi: 10.1002/jmri.10294 – start-page: 248 year: 2002 ident: ref6 article-title: volumetric segmentation via 3-d active shape models publication-title: Proc IEEE Symp Image Anal Interpretation doi: 10.1109/IAI.2002.999927 contributor: fullname: dickens – ident: ref22 doi: 10.1214/aoms/1177730981 – ident: ref11 doi: 10.1109/42.746716 – volume: 2353 year: 2002 ident: ref10 publication-title: European Conference on Computer Vision contributor: fullname: rogers – ident: ref9 doi: 10.1016/0262-8856(94)90060-4 – ident: ref18 doi: 10.1007/10704282_14 – year: 1981 ident: ref24 publication-title: Concepts of Nonparametric Theory doi: 10.1007/978-1-4612-5931-2 contributor: fullname: pratt – ident: ref12 doi: 10.1016/S0031-3203(03)00052-9 – volume: 2352 start-page: 3 year: 2002 ident: ref4 publication-title: European Conference on Computer Vision contributor: fullname: davies – year: 1970 ident: ref21 publication-title: Statistical Tolerance Regions Classical and Bayesian contributor: fullname: guttman |
SSID | ssj0014509 |
Score | 2.1588511 |
Snippet | This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape... Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 212 |
SubjectTerms | Active shape model Active shape models Algorithms Artificial Intelligence Carotid arteries Carotid Arteries - anatomy & histology Computer vision Convergence Extremities Heart Ventricles - anatomy & histology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods invariant shape metric Magnetic resonance Magnetic Resonance Imaging - methods outlier handling Pattern Recognition, Automated - methods Reproducibility of Results Robustness Rotation measurement Sensitivity and Specificity Shape measurement Studies volumetric image segmentation Weight measurement |
Title | Outlier Detection and Handling for Robust 3-D Active Shape Models Search |
URI | https://ieeexplore.ieee.org/document/4077859 https://www.ncbi.nlm.nih.gov/pubmed/17304735 https://www.proquest.com/docview/864064911 https://search.proquest.com/docview/20317666 https://search.proquest.com/docview/69011121 https://search.proquest.com/docview/874190403 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED7EGYpk6MNJWtVNwiFDhiqWqAep0YhtOINToE6AbgIlndChkINI-v-9IxWnQz1kE6ADQZF3vO_0He8ArlDW0uiy8AkOaD9mUzRxLf2gYBYpUklmb8itNur-l54vuEzO991dGES0yWd4w4-Wy6-2Zc-_yqYUfCidZCMYqUy7u1o7xiBOXDqH5IqxQSqHMj5hkE0f1neOddA6U9I2LVLMNtkWb6_OyHZX2Q80rcNZfnjbVD_C-wFYipnThE9wgM0Yjv8pNziGd-uBSD-B1Y--I_T5LObY2WSsRpimEiuuuUCygqCs-Lkt-rYTkT8XM3sqis1v84SC26f9aYVLVD6Fx-Xi4XblD00V_JKwWUdWYZhrjlOswrCOiqBWNQaFTBMjKdjCgL0mYY4qLHWMlSmTmly6LplAlKhUdAaHzbbBLyAwUrGpCaMgFyUrtUkzXdVFKEsamwJfD65fVjd_crUzchtzBFlOe8IdMNPc7YkHJ7yGO7Fh-TyYvOxGPthWm-uUQEhMh7QHl7u3ZBTMdJgGt31LI0dc-DLdL8F9uAhq0hhij4QmrJXRERd58NnpwetHDOrz9f-znsCR-wPMSS_f4LB77vEcRm3VX1id_QtvzuSC |
link.rule.ids | 315,782,786,798,27934,27935,54769 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkCg9QHm1KS8feuihgcR52DkiFhQES6WylXqLnGQiDiiLSPL_O2OHpYfugVukjCzHnvF8k288A_ANZSONrkqf4ID2YzZFEzfSD0pmkSKVZPaGXP6g7v_oyRWXyfmxuAuDiDb5DM_40XL59bwa-FfZOQUfSifZKqwnsUozd1trwRnEiUvokFwzNkjlWMgnDLLz2fTG8Q5aZ0ratkWK-Sbb5O3NHdn-KsuhpnU519vvm-wn2BqhpbhwurADK9juwsd_Cg7uwsZ0pNL3IP859IQ_X8QEe5uO1QrT1iLnqgskKwjMil_zcuh6EfkTcWHPRfHwaJ5RcAO1p064VOV9-H19NbvM_bGtgl8ROuvJLgyzzXGKdRg2URk0qsGglGliJIVbGLDfJNRRh5WOsTZV0pBT1xVTiBKVig5grZ23-AUERio2DaEU5LJklTZppuumDGVFY1Po68H319Utnl31jMJGHUFW0J5wD8y0cHviwR6v4UJsXD4PDl93oxitqyt0SjAkpmPag9PFWzIL5jpMi_Oho5EjLn2ZLpfgTlwENmkMsURCE9rK6JCLPPjs9ODtI0b1-fr_WZ_Ch3w2vSvubu5vD2HT_Q_mFJgjWOtfBjyG1a4eTqz-_gWjEOfV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outlier+Detection+and+Handling+for+Robust+3-D+Active+Shape+Models+Search&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lekadir%2C+K.&rft.au=Merrifield%2C+R.&rft.au=Guang-Zhong+Yang&rft.date=2007-02-01&rft.pub=IEEE&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=26&rft.issue=2&rft.spage=212&rft.epage=222&rft_id=info:doi/10.1109%2FTMI.2006.889726&rft_id=info%3Apmid%2F17304735&rft.externalDocID=4077859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |