Outlier Detection and Handling for Robust 3-D Active Shape Models Search

This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity me...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 26; no. 2; pp. 212 - 222
Main Authors: Lekadir, K., Merrifield, R., Guang-Zhong Yang
Format: Journal Article
Language:English
Published: United States IEEE 01-02-2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity measure. Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points. A replacement point is then suggested for each outlier based on the tolerance model and the position of the valid points. A geometrically weighted fitness measure is introduced for feature point detection, which limits the presence of outliers and improves the convergence of the proposed segmentation framework. The algorithm is immune to the extremity of the outliers and can handle a highly significant presence of erroneous feature points. The practical value of the technique is validated with 3-D magnetic resonance (MR) segmentation tasks of the carotid artery and myocardial borders of the left ventricle
AbstractList This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity measure. Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points. A replacement point is then suggested for each outlier based on the tolerance model and the position of the valid points. A geometrically weighted fitness measure is introduced for feature point detection, which limits the presence of outliers and improves the convergence of the proposed segmentation framework. The algorithm is immune to the extremity of the outliers and can handle a highly significant presence of erroneous feature points. The practical value of the technique is validated with 3-D magnetic resonance (MR) segmentation tasks of the carotid artery and myocardial borders of the left ventricle.
This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity measure. Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points. A replacement point is then suggested for each outlier based on the tolerance model and the position of the valid points. A geometrically weighted fitness measure is introduced for feature point detection, which limits the presence of outliers and improves the convergence of the proposed segmentation framework. The algorithm is immune to the extremity of the outliers and can handle a highly significant presence of erroneous feature points. The practical value of the technique is validated with 3-D magnetic resonance (MR) segmentation tasks of the carotid artery and myocardial borders of the left ventricle
Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points.
Author Merrifield, R.
Guang-Zhong Yang
Lekadir, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Lekadir
  fullname: Lekadir, K.
  organization: Dept. of Comput., Imperial Coll. London
– sequence: 2
  givenname: R.
  surname: Merrifield
  fullname: Merrifield, R.
  organization: Dept. of Comput., Imperial Coll. London
– sequence: 3
  surname: Guang-Zhong Yang
  fullname: Guang-Zhong Yang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17304735$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1rFEEQBuBGImYTPXsQpPGgp9lU9fccQ6JuICFgIngbentqzITZ6U33jOC_t5ddFDzopfpQT73QvCfsaIwjMfYaYYkI9dn9zdVSAJilc7UV5hlboNauElp9O2ILENZVZSuO2UnOjwCoNNQv2DFaCcpKvWCr23kaekr8kiYKUx9H7seWr8oY-vE772LiX-J6zhOX1SU_L-QH8bsHvyV-E1saMr8jn8LDS_a880OmV4f3lH399PH-YlVd336-uji_roICPVUCvLAAylCL2Mk1dLYjWAujvUAFBIGoFU62GJyi1gfdodMuyDIEWStP2Yd97jbFp5ny1Gz6HGgY_Ehxzo2zCmtQIIt8_09pakBEgf-FAiRaY0yB7_6Cj3FOY_lu44wCo2rcpZ3tUUgx50Rds039xqefDUKzK60ppTW70pp9aeXi7SF2Xm-o_eMPLRXwZg96Ivq9VmCt07X8Ba1vmWQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2012_2202915
crossref_primary_10_1109_TMI_2013_2252431
crossref_primary_10_1109_LRA_2019_2896518
crossref_primary_10_1109_TMI_2012_2216541
crossref_primary_10_1007_s11548_012_0673_x
crossref_primary_10_1002_mp_13998
crossref_primary_10_1002_mrm_25079
crossref_primary_10_1016_j_media_2011_08_004
crossref_primary_10_1166_jmihi_2021_3364
crossref_primary_10_1016_j_media_2012_05_010
crossref_primary_10_1016_j_media_2012_07_007
crossref_primary_10_1097_RMR_0b013e3181ea287d
crossref_primary_10_1016_j_media_2014_03_002
crossref_primary_10_1109_TMI_2010_2060490
crossref_primary_10_1109_TMI_2010_2086465
crossref_primary_10_1109_TMI_2011_2171357
crossref_primary_10_1109_TBME_2014_2327025
crossref_primary_10_1109_TPAMI_2021_3113077
crossref_primary_10_1113_expphysiol_2008_044081
crossref_primary_10_1016_j_patcog_2015_09_001
crossref_primary_10_1118_1_4906197
crossref_primary_10_1007_s10044_019_00822_2
crossref_primary_10_1016_j_bspc_2020_101866
crossref_primary_10_1109_TMI_2015_2497906
crossref_primary_10_1016_j_cviu_2019_01_002
crossref_primary_10_1109_TIP_2019_2948728
crossref_primary_10_1109_TIP_2015_2424311
crossref_primary_10_1186_1532_429X_10_S1_A256
crossref_primary_10_1007_s11263_011_0477_4
crossref_primary_10_1109_ACCESS_2021_3097387
crossref_primary_10_1016_j_media_2014_09_003
crossref_primary_10_1007_s10334_015_0521_4
crossref_primary_10_1109_TR_2010_2048661
Cites_doi 10.1109/TMI.2003.809688
10.1214/aoms/1177731788
10.5244/C.7.64
10.1016/S1361-8415(01)00051-2
10.1006/cviu.1995.1004
10.1109/42.730403
10.2307/2283644
10.1007/978-3-540-28626-4_15
10.1109/TMI.2002.803121
10.1117/12.431101
10.1007/978-3-540-45087-0_2
10.1002/jmri.10294
10.1109/IAI.2002.999927
10.1214/aoms/1177730981
10.1109/42.746716
10.1016/0262-8856(94)90060-4
10.1007/10704282_14
10.1007/978-1-4612-5931-2
10.1016/S0031-3203(03)00052-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2006.889726
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database

MEDLINE
Engineering Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 222
ExternalDocumentID 2333463831
10_1109_TMI_2006_889726
17304735
4077859
Genre orig-research
Validation Studies
Evaluation Studies
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c405t-20a270046ed11f3b0f7fe0b265a2140e0ceed283d1c84edac5f1858c38582e773
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Fri Aug 16 02:12:10 EDT 2024
Fri Aug 16 21:28:25 EDT 2024
Fri Aug 16 03:57:41 EDT 2024
Thu Oct 10 19:23:17 EDT 2024
Fri Aug 23 03:15:31 EDT 2024
Tue Aug 27 07:18:17 EDT 2024
Wed Jun 26 19:26:43 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-20a270046ed11f3b0f7fe0b265a2140e0ceed283d1c84edac5f1858c38582e773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17304735
PQID 864064911
PQPubID 23462
PageCount 11
ParticipantIDs proquest_journals_864064911
pubmed_primary_17304735
ieee_primary_4077859
crossref_primary_10_1109_TMI_2006_889726
proquest_miscellaneous_69011121
proquest_miscellaneous_874190403
proquest_miscellaneous_20317666
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2007
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
dryden (ref19) 1998
davies (ref4) 2002; 2352
barnett (ref20) 1994
ref11
ref2
ref1
ref18
li (ref17) 2004; 3150
guttman (ref21) 1970
li (ref5) 2001; 4322
jiao (ref16) 2003; 1
ref23
ref26
ref25
ref22
rogers (ref10) 2002; 2353
ref27
assen (ref7) 2003; 2878
ref9
ref3
pratt (ref24) 1981
bruijne (ref8) 2003; 2879
dickens (ref6) 2002
References_xml – volume: 1
  start-page: 321
  year: 2003
  ident: ref16
  article-title: face alignment using statistical models and wavelet features
  publication-title: Proc IEEE Conf Comput Vision Pattern Recognition
  contributor:
    fullname: jiao
– ident: ref26
  doi: 10.1109/TMI.2003.809688
– ident: ref25
  doi: 10.1214/aoms/1177731788
– volume: 2878
  start-page: 533
  year: 2003
  ident: ref7
  publication-title: Medical Image Computing and Computer Assisted Intervention
  contributor:
    fullname: assen
– ident: ref13
  doi: 10.5244/C.7.64
– ident: ref14
  doi: 10.1016/S1361-8415(01)00051-2
– ident: ref1
  doi: 10.1006/cviu.1995.1004
– year: 1998
  ident: ref19
  publication-title: Statistical Shape Analysis
  contributor:
    fullname: dryden
– ident: ref2
  doi: 10.1109/42.730403
– year: 1994
  ident: ref20
  publication-title: Outliers in Statistical Data
  contributor:
    fullname: barnett
– ident: ref23
  doi: 10.2307/2283644
– volume: 3150
  start-page: 121
  year: 2004
  ident: ref17
  publication-title: Medical Imaging and Augmented Reality
  doi: 10.1007/978-3-540-28626-4_15
  contributor:
    fullname: li
– volume: 2879
  start-page: 538
  year: 2003
  ident: ref8
  publication-title: Medical Image Computing and Computer Assisted Intervention
  contributor:
    fullname: bruijne
– ident: ref15
  doi: 10.1109/TMI.2002.803121
– volume: 4322
  start-page: 311
  year: 2001
  ident: ref5
  article-title: automatic generation of 3-d shape models and their application to tomographic image segmentation
  publication-title: Proc SPIE Conf Med Imag
  doi: 10.1117/12.431101
  contributor:
    fullname: li
– ident: ref3
  doi: 10.1007/978-3-540-45087-0_2
– ident: ref27
  doi: 10.1002/jmri.10294
– start-page: 248
  year: 2002
  ident: ref6
  article-title: volumetric segmentation via 3-d active shape models
  publication-title: Proc IEEE Symp Image Anal Interpretation
  doi: 10.1109/IAI.2002.999927
  contributor:
    fullname: dickens
– ident: ref22
  doi: 10.1214/aoms/1177730981
– ident: ref11
  doi: 10.1109/42.746716
– volume: 2353
  year: 2002
  ident: ref10
  publication-title: European Conference on Computer Vision
  contributor:
    fullname: rogers
– ident: ref9
  doi: 10.1016/0262-8856(94)90060-4
– ident: ref18
  doi: 10.1007/10704282_14
– year: 1981
  ident: ref24
  publication-title: Concepts of Nonparametric Theory
  doi: 10.1007/978-1-4612-5931-2
  contributor:
    fullname: pratt
– ident: ref12
  doi: 10.1016/S0031-3203(03)00052-9
– volume: 2352
  start-page: 3
  year: 2002
  ident: ref4
  publication-title: European Conference on Computer Vision
  contributor:
    fullname: davies
– year: 1970
  ident: ref21
  publication-title: Statistical Tolerance Regions Classical and Bayesian
  contributor:
    fullname: guttman
SSID ssj0014509
Score 2.1588511
Snippet This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape...
Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 212
SubjectTerms Active shape model
Active shape models
Algorithms
Artificial Intelligence
Carotid arteries
Carotid Arteries - anatomy & histology
Computer vision
Convergence
Extremities
Heart Ventricles - anatomy & histology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
invariant shape metric
Magnetic resonance
Magnetic Resonance Imaging - methods
outlier handling
Pattern Recognition, Automated - methods
Reproducibility of Results
Robustness
Rotation measurement
Sensitivity and Specificity
Shape measurement
Studies
volumetric image segmentation
Weight measurement
Title Outlier Detection and Handling for Robust 3-D Active Shape Models Search
URI https://ieeexplore.ieee.org/document/4077859
https://www.ncbi.nlm.nih.gov/pubmed/17304735
https://www.proquest.com/docview/864064911
https://search.proquest.com/docview/20317666
https://search.proquest.com/docview/69011121
https://search.proquest.com/docview/874190403
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED7EGYpk6MNJWtVNwiFDhiqWqAep0YhtOINToE6AbgIlndChkINI-v-9IxWnQz1kE6ADQZF3vO_0He8ArlDW0uiy8AkOaD9mUzRxLf2gYBYpUklmb8itNur-l54vuEzO991dGES0yWd4w4-Wy6-2Zc-_yqYUfCidZCMYqUy7u1o7xiBOXDqH5IqxQSqHMj5hkE0f1neOddA6U9I2LVLMNtkWb6_OyHZX2Q80rcNZfnjbVD_C-wFYipnThE9wgM0Yjv8pNziGd-uBSD-B1Y--I_T5LObY2WSsRpimEiuuuUCygqCs-Lkt-rYTkT8XM3sqis1v84SC26f9aYVLVD6Fx-Xi4XblD00V_JKwWUdWYZhrjlOswrCOiqBWNQaFTBMjKdjCgL0mYY4qLHWMlSmTmly6LplAlKhUdAaHzbbBLyAwUrGpCaMgFyUrtUkzXdVFKEsamwJfD65fVjd_crUzchtzBFlOe8IdMNPc7YkHJ7yGO7Fh-TyYvOxGPthWm-uUQEhMh7QHl7u3ZBTMdJgGt31LI0dc-DLdL8F9uAhq0hhij4QmrJXRERd58NnpwetHDOrz9f-znsCR-wPMSS_f4LB77vEcRm3VX1id_QtvzuSC
link.rule.ids 315,782,786,798,27934,27935,54769
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkCg9QHm1KS8feuihgcR52DkiFhQES6WylXqLnGQiDiiLSPL_O2OHpYfugVukjCzHnvF8k288A_ANZSONrkqf4ID2YzZFEzfSD0pmkSKVZPaGXP6g7v_oyRWXyfmxuAuDiDb5DM_40XL59bwa-FfZOQUfSifZKqwnsUozd1trwRnEiUvokFwzNkjlWMgnDLLz2fTG8Q5aZ0ratkWK-Sbb5O3NHdn-KsuhpnU519vvm-wn2BqhpbhwurADK9juwsd_Cg7uwsZ0pNL3IP859IQ_X8QEe5uO1QrT1iLnqgskKwjMil_zcuh6EfkTcWHPRfHwaJ5RcAO1p064VOV9-H19NbvM_bGtgl8ROuvJLgyzzXGKdRg2URk0qsGglGliJIVbGLDfJNRRh5WOsTZV0pBT1xVTiBKVig5grZ23-AUERio2DaEU5LJklTZppuumDGVFY1Po68H319Utnl31jMJGHUFW0J5wD8y0cHviwR6v4UJsXD4PDl93oxitqyt0SjAkpmPag9PFWzIL5jpMi_Oho5EjLn2ZLpfgTlwENmkMsURCE9rK6JCLPPjs9ODtI0b1-fr_WZ_Ch3w2vSvubu5vD2HT_Q_mFJgjWOtfBjyG1a4eTqz-_gWjEOfV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outlier+Detection+and+Handling+for+Robust+3-D+Active+Shape+Models+Search&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lekadir%2C+K.&rft.au=Merrifield%2C+R.&rft.au=Guang-Zhong+Yang&rft.date=2007-02-01&rft.pub=IEEE&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=26&rft.issue=2&rft.spage=212&rft.epage=222&rft_id=info:doi/10.1109%2FTMI.2006.889726&rft_id=info%3Apmid%2F17304735&rft.externalDocID=4077859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon