Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination

Structures made of heterogeneous materials, such as composites, often require a multiscale approach when their behavior is simulated using the finite element method. By solving the boundary value problem of the macroscale model, for previously homogenized material properties, the resulting stress ma...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 17; no. 1; p. 154
Main Authors: Kuś, Wacław, Mucha, Waldemar, Jiregna, Iyasu Tafese
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 27-12-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Structures made of heterogeneous materials, such as composites, often require a multiscale approach when their behavior is simulated using the finite element method. By solving the boundary value problem of the macroscale model, for previously homogenized material properties, the resulting stress maps can be obtained. However, such stress results do not describe the actual behavior of the material and are often significantly different from the actual stresses in the heterogeneous microstructure. Finding high-accuracy stress results for such materials leads to time-consuming analyses in both scales. This paper focuses on the application of machine learning to multiscale analysis of structures made of composite materials, to substantially decrease the time of computations of such localization problems. The presented methodology was validated by a numerical example where a structure made of resin epoxy with randomly distributed short glass fibers was analyzed using a computational multiscale approach. Carefully prepared training data allowed artificial neural networks to learn relationships between two scales and significantly increased the efficiency of the multiscale approach.
AbstractList Structures made of heterogeneous materials, such as composites, often require a multiscale approach when their behavior is simulated using the finite element method. By solving the boundary value problem of the macroscale model, for previously homogenized material properties, the resulting stress maps can be obtained. However, such stress results do not describe the actual behavior of the material and are often significantly different from the actual stresses in the heterogeneous microstructure. Finding high-accuracy stress results for such materials leads to time-consuming analyses in both scales. This paper focuses on the application of machine learning to multiscale analysis of structures made of composite materials, to substantially decrease the time of computations of such localization problems. The presented methodology was validated by a numerical example where a structure made of resin epoxy with randomly distributed short glass fibers was analyzed using a computational multiscale approach. Carefully prepared training data allowed artificial neural networks to learn relationships between two scales and significantly increased the efficiency of the multiscale approach.
Audience Academic
Author Kuś, Wacław
Jiregna, Iyasu Tafese
Mucha, Waldemar
AuthorAffiliation Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; waclaw.kus@polsl.pl (W.K.); iyasu.tafese.jiregna@polsl.pl (I.T.J.)
AuthorAffiliation_xml – name: Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; waclaw.kus@polsl.pl (W.K.); iyasu.tafese.jiregna@polsl.pl (I.T.J.)
Author_xml – sequence: 1
  givenname: Wacław
  orcidid: 0000-0001-7616-6881
  surname: Kuś
  fullname: Kuś, Wacław
  organization: Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
– sequence: 2
  givenname: Waldemar
  orcidid: 0000-0002-9724-1817
  surname: Mucha
  fullname: Mucha, Waldemar
  organization: Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
– sequence: 3
  givenname: Iyasu Tafese
  orcidid: 0000-0001-6610-8696
  surname: Jiregna
  fullname: Jiregna, Iyasu Tafese
  organization: Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38204008$$D View this record in MEDLINE/PubMed
BookMark eNpdkktPHSEUx0ljUx910w_QkHTTNLmW58ywam5uHzbRdmG7JlzmoNgZGIHR-O1Fr68Ki0Pgd_4c_oddtBViAITeUXLAuSKfR0NbQgmV4hXaoUo1C6qE2Hq23kb7OZ-TOjinHVNv0DbvGBGEdDvo8ngeis_WDICXwQzX2WccHV7FcYrZF8AnJc22zAkyvvLlDC9T8c5bbwb8C-Z0F8pVTP_wyTxNMRXsYsLH3qY4xh6GWwHIGX-FAmn0wRQfw1v02pkhw_593EN_v3_7szpcHP3-8XO1PFpYQWRZUMJ66JkhknBw1hrSiLVqmBCqF45XxgFw1hO1ZqAaI5sW2q4mSM7WIC3fQ182utO8HqG3EEqtWE_JjyZd62i8_v8k-DN9Gi81JW1HiBBV4eO9QooXM-Six2oXDIMJEOesmaJcCCk7VtEPL9DzOKdq6h3Fmo5WrFIHG-q0eq59cLFebOvsYfS2Ntf5ur9sW8WF7JSqCZ82CdXRnBO4x_Ip0bd_QD_9gQq_f_7gR_Sh4_wGtNmv3w
Cites_doi 10.1016/j.compositesb.2018.12.118
10.1016/S0045-7825(01)00179-7
10.1016/j.cma.2019.112594
10.1007/s00466-019-01704-4
10.1088/0957-0233/17/5/S39
10.1016/j.jmps.2019.03.004
10.1088/1742-6596/2512/1/012015
10.3390/ma16124287
10.1016/j.compstruct.2021.114058
10.1016/j.cma.2018.09.020
10.1007/s10854-022-09318-y
10.1016/j.cma.2021.113952
10.1016/j.cma.2021.113914
10.1016/j.probengmech.2005.07.007
10.1016/S0045-7825(98)00079-6
10.3390/ma11091746
10.3390/s19224933
10.1016/j.cma.2009.02.026
10.1016/j.commatsci.2020.109850
10.1016/S0020-7683(98)00341-2
10.1016/j.euromechsol.2021.104384
10.1002/nme.4953
10.1073/pnas.1911815116
10.1007/s11012-023-01675-0
10.1007/s00466-018-1643-0
10.1016/j.compscitech.2021.108713
10.1016/j.cma.2003.12.073
10.1007/s00707-009-0211-2
10.1016/j.tafmec.2013.12.004
10.1016/j.cma.2016.02.001
10.1016/j.jmps.2020.104239
10.1007/s00466-021-02131-0
10.1016/j.jmps.2020.103972
10.1002/9781118536445
10.3390/ma14216564
10.1016/S0045-7825(03)00348-7
10.1109/TII.2017.2777460
10.1007/s00466-018-1665-7
10.1016/j.ast.2019.03.039
10.1016/S0045-7825(97)00030-3
10.1109/IJCNN.1990.137819
10.1016/j.cma.2021.114300
10.1016/j.ast.2019.01.060
10.1038/s41563-020-00913-0
10.1016/j.compstruct.2021.115132
10.1016/j.cma.2020.112913
10.1016/j.ijplas.2019.09.004
10.1016/j.cma.2020.113299
10.1016/j.tust.2022.104463
10.3390/ma16186209
10.1016/j.matdes.2020.108509
10.1007/s10439-020-02550-9
10.1016/j.cma.2020.112893
10.1016/j.cma.2020.113136
10.1016/j.jmps.2020.103984
10.1177/1475921718764082
10.3390/s20247087
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOI 10.3390/ma17010154
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
Materials Science Database
Materials Science Collection
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic

PubMed

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID A779345899
10_3390_ma17010154
38204008
Genre Journal Article
GrantInformation_xml – fundername: Faculty of Mechanical Engineering, Silesian University of Technology
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CZ9
D1I
E3Z
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
NPM
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
TR2
TUS
AAYXX
CITATION
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c405t-102ded2a0503efcca064b962449d4f3405fee32d09b2e96a567e78d2a532be5c3
IEDL.DBID RPM
ISSN 1996-1944
IngestDate Tue Sep 17 21:28:59 EDT 2024
Sat Oct 26 00:29:11 EDT 2024
Fri Nov 08 21:34:12 EST 2024
Tue Nov 12 23:51:57 EST 2024
Thu Nov 21 20:31:18 EST 2024
Sat Nov 02 12:08:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords artificial neural network
homogenization
fiber-reinforced composite
finite element method
composite material
multiscale modeling
machine learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-102ded2a0503efcca064b962449d4f3405fee32d09b2e96a567e78d2a532be5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9724-1817
0000-0001-6610-8696
0000-0001-7616-6881
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780044/
PMID 38204008
PQID 2912681558
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780044
proquest_miscellaneous_2913445582
proquest_journals_2912681558
gale_infotracacademiconefile_A779345899
crossref_primary_10_3390_ma17010154
pubmed_primary_38204008
PublicationCentury 2000
PublicationDate 20231227
PublicationDateYYYYMMDD 2023-12-27
PublicationDate_xml – month: 12
  year: 2023
  text: 20231227
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Nezamabadi (ref_10) 2009; 198
Karapiperis (ref_37) 2021; 147
Nguyen (ref_15) 2022; 91
Nguyen (ref_30) 2022; 389
ref_58
ref_13
Mozaffar (ref_21) 2019; 116
ref_56
Vlassis (ref_24) 2020; 371
Mucha (ref_57) 2023; 58
ref_52
ref_51
Fish (ref_8) 1997; 148
Wu (ref_29) 2021; 270
Jung (ref_47) 2021; 207
Terroba (ref_39) 2019; 18
Fish (ref_1) 2021; 20
Bhattacharjee (ref_62) 2013; 9
Li (ref_41) 2019; 86
Ghavamian (ref_20) 2019; 357
Gajek (ref_33) 2021; 384
Kouznetsova (ref_6) 2004; 193
ref_64
Bayesteh (ref_9) 2017; 118–119
Liu (ref_25) 2019; 345
Kirchdoerfer (ref_34) 2016; 304
Yang (ref_22) 2020; 189
Rao (ref_23) 2020; 184
Robert (ref_44) 2022; 124
Lu (ref_18) 2019; 64
Xu (ref_16) 2020; 363
Liu (ref_28) 2019; 64
Terada (ref_53) 2000; 37
Lv (ref_63) 2018; 14
Hughes (ref_4) 1998; 166
Liu (ref_27) 2019; 127
Serafini (ref_40) 2019; 88
Doweidar (ref_36) 2020; 368
Feyel (ref_5) 2003; 192
Le (ref_17) 2015; 104
Pingaro (ref_55) 2019; 64
Gorji (ref_19) 2020; 143
Liu (ref_31) 2021; 384
Zhou (ref_2) 2022; 284
Doweidar (ref_35) 2021; 49
Liu (ref_32) 2020; 363
Khan (ref_48) 2019; 161
Mucha (ref_59) 2023; 2512
ref_46
Hoh (ref_61) 2010; 210
Han (ref_12) 2020; 125
ref_43
ref_42
(ref_54) 2006; 21
ref_3
Schroeder (ref_45) 2006; 17
Gajek (ref_26) 2020; 142
Mucha (ref_60) 2022; 33
Budarapu (ref_11) 2014; 69
Brodacka (ref_38) 2010; 48
ref_49
Terada (ref_50) 2001; 190
Gajek (ref_14) 2022; 69
ref_7
References_xml – volume: 161
  start-page: 586
  year: 2019
  ident: ref_48
  article-title: Structural Vibration-Based Classification and Prediction of Delamination in Smart Composite Laminates Using Deep Learning Neural Network
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.12.118
  contributor:
    fullname: Khan
– volume: 190
  start-page: 5427
  year: 2001
  ident: ref_50
  article-title: A Class of General Algorithms for Multi-Scale Analyses of Heterogeneous Media
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00179-7
  contributor:
    fullname: Terada
– volume: 357
  start-page: 112594
  year: 2019
  ident: ref_20
  article-title: Accelerating Multiscale Finite Element Simulations of History-Dependent Materials Using a Recurrent Neural Network
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112594
  contributor:
    fullname: Ghavamian
– volume: 64
  start-page: 451
  year: 2019
  ident: ref_28
  article-title: Transfer Learning of Deep Material Network for Seamless Structure–Property Predictions
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01704-4
  contributor:
    fullname: Liu
– ident: ref_49
– volume: 17
  start-page: 1167
  year: 2006
  ident: ref_45
  article-title: A Fibre Bragg Grating Sensor System Monitors Operational Load in a Wind Turbine Rotor Blade
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/5/S39
  contributor:
    fullname: Schroeder
– ident: ref_51
– volume: 127
  start-page: 20
  year: 2019
  ident: ref_27
  article-title: Exploring the 3D Architectures of Deep Material Network in Data-Driven Multiscale Mechanics
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2019.03.004
  contributor:
    fullname: Liu
– volume: 2512
  start-page: 012015
  year: 2023
  ident: ref_59
  article-title: New Operational Load Monitoring Approach Using Digital Image Correlation and Image Classification Networks
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2512/1/012015
  contributor:
    fullname: Mucha
– ident: ref_3
  doi: 10.3390/ma16124287
– ident: ref_58
– volume: 9
  start-page: 515
  year: 2013
  ident: ref_62
  article-title: Structural Safety Evaluation Using Modified Latin Hypercube Sampling Technique
  publication-title: Int. J. Perform. Eng.
  contributor:
    fullname: Bhattacharjee
– volume: 270
  start-page: 114058
  year: 2021
  ident: ref_29
  article-title: Micro-Mechanics and Data-Driven Based Reduced Order Models for Multi-Scale Analyses of Woven Composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114058
  contributor:
    fullname: Wu
– volume: 345
  start-page: 1138
  year: 2019
  ident: ref_25
  article-title: A Deep Material Network for Multiscale Topology Learning and Accelerated Nonlinear Modeling of Heterogeneous Materials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.09.020
  contributor:
    fullname: Liu
– volume: 33
  start-page: 26368
  year: 2022
  ident: ref_60
  article-title: Chemiresistor Gas Sensors Based on Conductive Copolymer and ZnO Blend—Prototype Fabrication, Experimental Testing, and Response Prediction by Artificial Neural Networks
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-022-09318-y
  contributor:
    fullname: Mucha
– volume: 384
  start-page: 113952
  year: 2021
  ident: ref_33
  article-title: An FE–DMN Method for the Multiscale Analysis of Short Fiber Reinforced Plastic Components
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113952
  contributor:
    fullname: Gajek
– volume: 384
  start-page: 113914
  year: 2021
  ident: ref_31
  article-title: Cell Division in Deep Material Networks Applied to Multiscale Strain Localization Modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113914
  contributor:
    fullname: Liu
– volume: 21
  start-page: 112
  year: 2006
  ident: ref_54
  article-title: Material Spatial Randomness: From Statistical to Representative Volume Element
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2005.07.007
– volume: 166
  start-page: 3
  year: 1998
  ident: ref_4
  article-title: The Variational Multiscale Method—A Paradigm for Computational Mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00079-6
  contributor:
    fullname: Hughes
– ident: ref_7
  doi: 10.3390/ma11091746
– ident: ref_13
– ident: ref_46
  doi: 10.3390/s19224933
– volume: 198
  start-page: 2099
  year: 2009
  ident: ref_10
  article-title: A Multilevel Computational Strategy for Handling Microscopic and Macroscopic Instabilities
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2009.02.026
  contributor:
    fullname: Nezamabadi
– volume: 184
  start-page: 109850
  year: 2020
  ident: ref_23
  article-title: Three-Dimensional Convolutional Neural Network (3D-CNN) for Heterogeneous Material Homogenization
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109850
  contributor:
    fullname: Rao
– volume: 37
  start-page: 2285
  year: 2000
  ident: ref_53
  article-title: Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(98)00341-2
  contributor:
    fullname: Terada
– volume: 91
  start-page: 104384
  year: 2022
  ident: ref_15
  article-title: Micromechanics-Based Material Networks Revisited from the Interaction Viewpoint; Robust and Efficient Implementation for Multi-Phase Composites
  publication-title: Eur. J. Mech. ASolids
  doi: 10.1016/j.euromechsol.2021.104384
  contributor:
    fullname: Nguyen
– volume: 104
  start-page: 1061
  year: 2015
  ident: ref_17
  article-title: Computational Homogenization of Nonlinear Elastic Materials Using Neural Networks
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4953
  contributor:
    fullname: Le
– volume: 116
  start-page: 26414
  year: 2019
  ident: ref_21
  article-title: Deep Learning Predicts Path-Dependent Plasticity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1911815116
  contributor:
    fullname: Mozaffar
– volume: 58
  start-page: 1409
  year: 2023
  ident: ref_57
  article-title: Application of Dynamic Condensation for Model Order Reduction in Real-Time Hybrid Simulations
  publication-title: Meccanica
  doi: 10.1007/s11012-023-01675-0
  contributor:
    fullname: Mucha
– volume: 64
  start-page: 307
  year: 2019
  ident: ref_18
  article-title: A Data-Driven Computational Homogenization Method Based on Neural Networks for the Nonlinear Anisotropic Electrical Response of Graphene/Polymer Nanocomposites
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1643-0
  contributor:
    fullname: Lu
– volume: 207
  start-page: 108713
  year: 2021
  ident: ref_47
  article-title: Advanced Deep Learning Model-Based Impact Characterization Method for Composite Laminates
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.108713
  contributor:
    fullname: Jung
– volume: 193
  start-page: 5525
  year: 2004
  ident: ref_6
  article-title: Multi-Scale Second-Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2003.12.073
  contributor:
    fullname: Kouznetsova
– volume: 210
  start-page: 305
  year: 2010
  ident: ref_61
  article-title: On the Plastic Zone Size and Crack Tip Opening Displacement of a Dugdale Crack Interacting with a Circular Inclusion
  publication-title: Acta Mech.
  doi: 10.1007/s00707-009-0211-2
  contributor:
    fullname: Hoh
– volume: 69
  start-page: 126
  year: 2014
  ident: ref_11
  article-title: Efficient Coarse Graining in Multiscale Modeling of Fracture
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2013.12.004
  contributor:
    fullname: Budarapu
– volume: 304
  start-page: 81
  year: 2016
  ident: ref_34
  article-title: Data-Driven Computational Mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.02.001
  contributor:
    fullname: Kirchdoerfer
– volume: 147
  start-page: 104239
  year: 2021
  ident: ref_37
  article-title: Data-Driven Multiscale Modeling in Mechanics
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.104239
  contributor:
    fullname: Karapiperis
– volume: 69
  start-page: 1087
  year: 2022
  ident: ref_14
  article-title: An FE-DMN Method for the Multiscale Analysis of Thermomechanical Composites
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-021-02131-0
  contributor:
    fullname: Gajek
– volume: 143
  start-page: 103972
  year: 2020
  ident: ref_19
  article-title: On the Potential of Recurrent Neural Networks for Modeling Path Dependent Plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.103972
  contributor:
    fullname: Gorji
– ident: ref_52
  doi: 10.1002/9781118536445
– ident: ref_42
  doi: 10.3390/ma14216564
– volume: 192
  start-page: 3233
  year: 2003
  ident: ref_5
  article-title: A Multilevel Finite Element Method (FE2) to Describe the Response of Highly Non-Linear Structures Using Generalized Continua
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(03)00348-7
  contributor:
    fullname: Feyel
– volume: 14
  start-page: 3436
  year: 2018
  ident: ref_63
  article-title: Levenberg–Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2777460
  contributor:
    fullname: Lv
– volume: 64
  start-page: 197
  year: 2019
  ident: ref_55
  article-title: Fast Statistical Homogenization Procedure (FSHP) for Particle Random Composites Using Virtual Element Method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1665-7
  contributor:
    fullname: Pingaro
– volume: 48
  start-page: 855
  year: 2010
  ident: ref_38
  article-title: Multiscale Modeling of Osseous Tissues
  publication-title: J. Theor. Appl. Mech.
  contributor:
    fullname: Brodacka
– volume: 88
  start-page: 436
  year: 2019
  ident: ref_40
  article-title: In-Flight Health Monitoring of Helicopter Blades via Differential Analysis
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.03.039
  contributor:
    fullname: Serafini
– volume: 118–119
  start-page: 24
  year: 2017
  ident: ref_9
  article-title: 3D Hierarchical Multiscale Analysis of Heterogeneous SMA Based Materials
  publication-title: Int. J. Solids Struct.
  contributor:
    fullname: Bayesteh
– volume: 148
  start-page: 53
  year: 1997
  ident: ref_8
  article-title: Computational Plasticity for Composite Structures Based on Mathematical Homogenization: Theory and Practice
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(97)00030-3
  contributor:
    fullname: Fish
– ident: ref_64
  doi: 10.1109/IJCNN.1990.137819
– volume: 389
  start-page: 114300
  year: 2022
  ident: ref_30
  article-title: Interaction-Based Material Network: A General Framework for (Porous) Microstructured Materials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114300
  contributor:
    fullname: Nguyen
– volume: 86
  start-page: 613
  year: 2019
  ident: ref_41
  article-title: Damage Development and Lifetime Prediction of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at 1300 °C in Vacuum, Inert and Oxidative Atmospheres
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.01.060
  contributor:
    fullname: Li
– volume: 20
  start-page: 774
  year: 2021
  ident: ref_1
  article-title: Mesoscopic and Multiscale Modelling in Materials
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00913-0
  contributor:
    fullname: Fish
– volume: 284
  start-page: 115132
  year: 2022
  ident: ref_2
  article-title: A Review on Stochastic Multiscale Analysis for FRP Composite Structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.115132
  contributor:
    fullname: Zhou
– volume: 363
  start-page: 112913
  year: 2020
  ident: ref_32
  article-title: Deep Material Network with Cohesive Layers: Multi-Stage Training and Interfacial Failure Analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112913
  contributor:
    fullname: Liu
– volume: 125
  start-page: 97
  year: 2020
  ident: ref_12
  article-title: Microstructure-Based Multiscale Modeling of Large Strain Plastic Deformation by Coupling a Full-Field Crystal Plasticity-Spectral Solver with an Implicit Finite Element Solver
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.09.004
  contributor:
    fullname: Han
– volume: 371
  start-page: 113299
  year: 2020
  ident: ref_24
  article-title: Geometric Deep Learning for Computational Mechanics Part I: Anisotropic Hyperelasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113299
  contributor:
    fullname: Vlassis
– volume: 124
  start-page: 104463
  year: 2022
  ident: ref_44
  article-title: Effects of Operational Loads on Buried Water Pipes Using Field Tests
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104463
  contributor:
    fullname: Robert
– ident: ref_56
  doi: 10.3390/ma16186209
– volume: 189
  start-page: 108509
  year: 2020
  ident: ref_22
  article-title: Prediction of Composite Microstructure Stress-Strain Curves Using Convolutional Neural Networks
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108509
  contributor:
    fullname: Yang
– volume: 49
  start-page: 407
  year: 2021
  ident: ref_35
  article-title: Data-Driven Computational Simulation in Bone Mechanics
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-020-02550-9
  contributor:
    fullname: Doweidar
– volume: 363
  start-page: 112893
  year: 2020
  ident: ref_16
  article-title: Data-Driven Multiscale Finite Element Method: From Concurrence to Separation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112893
  contributor:
    fullname: Xu
– volume: 368
  start-page: 113136
  year: 2020
  ident: ref_36
  article-title: A Multiscale Data-Driven Approach for Bone Tissue Biomechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113136
  contributor:
    fullname: Doweidar
– volume: 142
  start-page: 103984
  year: 2020
  ident: ref_26
  article-title: On the Micromechanics of Deep Material Networks
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.103984
  contributor:
    fullname: Gajek
– volume: 18
  start-page: 635
  year: 2019
  ident: ref_39
  article-title: Structural Health and Usage Monitoring of an Unmanned Turbojet Target Drone
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718764082
  contributor:
    fullname: Terroba
– ident: ref_43
  doi: 10.3390/s20247087
SSID ssj0000331829
Score 2.4259887
Snippet Structures made of heterogeneous materials, such as composites, often require a multiscale approach when their behavior is simulated using the finite element...
SourceID pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 154
SubjectTerms Artificial neural networks
Boundary conditions
Boundary value problems
Composite materials
Composite structures
Efficiency
Epoxy resins
Finite element analysis
Finite element method
Fourier transforms
Glass fiber reinforced plastics
Glass-epoxy composites
Homogenization
Load
Localization
Machine learning
Material properties
Methods
Microstructure
Multiscale analysis
Neural networks
Numerical analysis
Simulation
Title Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination
URI https://www.ncbi.nlm.nih.gov/pubmed/38204008
https://www.proquest.com/docview/2912681558
https://search.proquest.com/docview/2913445582
https://pubmed.ncbi.nlm.nih.gov/PMC10780044
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1RDggOiJ2wyQgkTqGtnc1HxCIuICRA4hY59lgg0bRSKd_PjNOUliMnH-Iklt94luT5GeCcUmhtVdKLXeZknDiUsVF9F2NmK1Pl3mofjk54zh_fiptblsnJ2r0wgbRvq4_L-nNwWX-8B27laGC7LU-s-_RwTSVLwX8iux3oUHI4V6MH_6vITqVutEgV1fTdgWHVcc4WVmFFUcwjwy0WAtFfdzwXjxa5knPB524D1qdZo7hqRrcJS1hvwdqcluA2fIettGOachSt0ogYesELnolZKJ6DVOyE6mvBX1_D0xr9CMESHaEJnHDBR31SWi4ooRUPDWPP4Sc_gPyiuGkZNIzpDrze3b5c38fTQxViS7nZF7ld6dBJwzow6Ak_ykkqnVGU1y7xhFrqEZV0PV1J1JlJsxzzgm5IlawwtWoXluthjfsgvE8KowxS0SQTqy01fW2x57UjmHMfwVk7w-Wo0c4oqeZgSMpfSCK44MkveUHRDFsz3RdA72BpqvIqJxeSpFQXRnDU4lNOV9q4lLovs4KyoiKC09llWiP848PUOJyEPipJqIuMYK-Bczag1hwiKBaAnnVg_e3FK2SWQYe7NcOD_996CKt8fj3zY2R-BMtkCHgMnbGbnASj_gE2zwDo
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VKhV6KBRom_JRI5A4hc3a-fIR8SFQWYQESNwixx6rSGwWabv8fmaczXa3R0452MlGmjfjN5vnZ4BDotDaqjSJXe5knDqUsVF9F2Nua1MX3mofjk64K24ey7NztsnJu70wQbRv66fj5nl43Dz9CdrKl6HtdTqx3u3glFqWkr9E9pbgIyVsksx16aECK0Kq1K0bqaKuvjc07DvOfGEVPila9Qi65cJS9H9BnluRFtWSc8vPxdp7X3wdvkwJpzhpx7_CB2w24POcDeEmvIZduGOKForOpESMvOBawZouFHfBZXZCrbngP27D01rrCcHuHuES5OSCTwklRi-IC4tBK_Zz-MwPoJIqzjrxDcNhCx4uzu9PL-PpeQyxJVr3lyq2dOikYQsZ9BR6ojO1zokgaJd6CnjmEZV0ia4l6txkeYFFSTdkStaYWfUNlptRgz9AeJ-WRhmkfkumVlu69LXFxGtHCCl8BAddaKqX1najonaFY1n9i2UERxy1inORQmPNdEsB_Qa7WlUnBVWfNKOWMoKdLrDVNEnHldR9mZdEqMoI9mfDlF78zcQ0OJqEOSpNaYqM4HuLg9kLdTiKoFxAyGwCW3cvjhAwgoV3B4Sf77_1F6xc3g-uq-urm9_bsCqJfLHMRhY7sEygwF1YGrvJXsiMNwRGFpk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKiF6aMurTUuLEUicQnbtvNwbYlm14iEkQOIWOfZYILHZlbbb398ZZ7Pd7bE95RDnIc0342-Sz58BjolCa6vSXuxyJ-PUoYyN6rsYc1ubuvBW-7B1wl1x81gOLtgm51u3FiaI9m39fNq8jE6b56egrZyMbNLpxJLb63NqWUr-E5lMnE_W4DUlbU8udeqhCitCq9StI6mizj4ZGfYeZ86wCRuKZj6Cb7kyHf1dlJdmpVXF5NIUNHz3Py__Ht7Oiac4a8dswStstuHNkh3hDvwKq3GnFDUUnVmJGHvBNYO1XSjugtvsjFp0wR9ww91aCwrBLh_hEGTlgncLJWYviBOL61b05_CFb0ClVQw6EQ7DYhcehhf359_j-b4MsSV695Mqt3TopGErGfQEAaI1tc6JKGiXegp85hGVdD1dS9S5yfICi5IuyJSsMbNqD9abcYMfQXiflkYZpL5LplZbOvS1xZ7XjpBS-AiOuvBUk9Z-o6K2heNZ_YlnBCccuYpzksJjzXxpAT2D3a2qs4KqUJpRaxnBfhfcap6s00rqvsxLIlZlBIeL05Rm_O_ENDiehTEqTWmIjOBDi4XFC3VYiqBcQcliAFt4r54hcAQr7w4Mn_790gPYuB0Mq6sfN5efYVMSB2O1jSz2YZ0wgV9gbepmX0Ny_AaqPxkZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Analysis+of+Composite+Structures+with+Artificial+Neural+Network+Support+for+Micromodel+Stress+Determination&rft.jtitle=Materials&rft.au=Ku%C5%9B%2C+Wac%C5%82aw&rft.au=Mucha%2C+Waldemar&rft.au=Jiregna%2C+Iyasu+Tafese&rft.date=2023-12-27&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=17&rft.issue=1&rft.spage=154&rft_id=info:doi/10.3390%2Fma17010154&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon