Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination
Structures made of heterogeneous materials, such as composites, often require a multiscale approach when their behavior is simulated using the finite element method. By solving the boundary value problem of the macroscale model, for previously homogenized material properties, the resulting stress ma...
Saved in:
Published in: | Materials Vol. 17; no. 1; p. 154 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
27-12-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Structures made of heterogeneous materials, such as composites, often require a multiscale approach when their behavior is simulated using the finite element method. By solving the boundary value problem of the macroscale model, for previously homogenized material properties, the resulting stress maps can be obtained. However, such stress results do not describe the actual behavior of the material and are often significantly different from the actual stresses in the heterogeneous microstructure. Finding high-accuracy stress results for such materials leads to time-consuming analyses in both scales. This paper focuses on the application of machine learning to multiscale analysis of structures made of composite materials, to substantially decrease the time of computations of such localization problems. The presented methodology was validated by a numerical example where a structure made of resin epoxy with randomly distributed short glass fibers was analyzed using a computational multiscale approach. Carefully prepared training data allowed artificial neural networks to learn relationships between two scales and significantly increased the efficiency of the multiscale approach. |
---|---|
AbstractList | Structures made of heterogeneous materials, such as composites, often require a multiscale approach when their behavior is simulated using the finite element method. By solving the boundary value problem of the macroscale model, for previously homogenized material properties, the resulting stress maps can be obtained. However, such stress results do not describe the actual behavior of the material and are often significantly different from the actual stresses in the heterogeneous microstructure. Finding high-accuracy stress results for such materials leads to time-consuming analyses in both scales. This paper focuses on the application of machine learning to multiscale analysis of structures made of composite materials, to substantially decrease the time of computations of such localization problems. The presented methodology was validated by a numerical example where a structure made of resin epoxy with randomly distributed short glass fibers was analyzed using a computational multiscale approach. Carefully prepared training data allowed artificial neural networks to learn relationships between two scales and significantly increased the efficiency of the multiscale approach. |
Audience | Academic |
Author | Kuś, Wacław Jiregna, Iyasu Tafese Mucha, Waldemar |
AuthorAffiliation | Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; waclaw.kus@polsl.pl (W.K.); iyasu.tafese.jiregna@polsl.pl (I.T.J.) |
AuthorAffiliation_xml | – name: Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; waclaw.kus@polsl.pl (W.K.); iyasu.tafese.jiregna@polsl.pl (I.T.J.) |
Author_xml | – sequence: 1 givenname: Wacław orcidid: 0000-0001-7616-6881 surname: Kuś fullname: Kuś, Wacław organization: Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland – sequence: 2 givenname: Waldemar orcidid: 0000-0002-9724-1817 surname: Mucha fullname: Mucha, Waldemar organization: Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland – sequence: 3 givenname: Iyasu Tafese orcidid: 0000-0001-6610-8696 surname: Jiregna fullname: Jiregna, Iyasu Tafese organization: Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38204008$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktPHSEUx0ljUx910w_QkHTTNLmW58ywam5uHzbRdmG7JlzmoNgZGIHR-O1Fr68Ki0Pgd_4c_oddtBViAITeUXLAuSKfR0NbQgmV4hXaoUo1C6qE2Hq23kb7OZ-TOjinHVNv0DbvGBGEdDvo8ngeis_WDICXwQzX2WccHV7FcYrZF8AnJc22zAkyvvLlDC9T8c5bbwb8C-Z0F8pVTP_wyTxNMRXsYsLH3qY4xh6GWwHIGX-FAmn0wRQfw1v02pkhw_593EN_v3_7szpcHP3-8XO1PFpYQWRZUMJ66JkhknBw1hrSiLVqmBCqF45XxgFw1hO1ZqAaI5sW2q4mSM7WIC3fQ182utO8HqG3EEqtWE_JjyZd62i8_v8k-DN9Gi81JW1HiBBV4eO9QooXM-Six2oXDIMJEOesmaJcCCk7VtEPL9DzOKdq6h3Fmo5WrFIHG-q0eq59cLFebOvsYfS2Ntf5ur9sW8WF7JSqCZ82CdXRnBO4x_Ip0bd_QD_9gQq_f_7gR_Sh4_wGtNmv3w |
Cites_doi | 10.1016/j.compositesb.2018.12.118 10.1016/S0045-7825(01)00179-7 10.1016/j.cma.2019.112594 10.1007/s00466-019-01704-4 10.1088/0957-0233/17/5/S39 10.1016/j.jmps.2019.03.004 10.1088/1742-6596/2512/1/012015 10.3390/ma16124287 10.1016/j.compstruct.2021.114058 10.1016/j.cma.2018.09.020 10.1007/s10854-022-09318-y 10.1016/j.cma.2021.113952 10.1016/j.cma.2021.113914 10.1016/j.probengmech.2005.07.007 10.1016/S0045-7825(98)00079-6 10.3390/ma11091746 10.3390/s19224933 10.1016/j.cma.2009.02.026 10.1016/j.commatsci.2020.109850 10.1016/S0020-7683(98)00341-2 10.1016/j.euromechsol.2021.104384 10.1002/nme.4953 10.1073/pnas.1911815116 10.1007/s11012-023-01675-0 10.1007/s00466-018-1643-0 10.1016/j.compscitech.2021.108713 10.1016/j.cma.2003.12.073 10.1007/s00707-009-0211-2 10.1016/j.tafmec.2013.12.004 10.1016/j.cma.2016.02.001 10.1016/j.jmps.2020.104239 10.1007/s00466-021-02131-0 10.1016/j.jmps.2020.103972 10.1002/9781118536445 10.3390/ma14216564 10.1016/S0045-7825(03)00348-7 10.1109/TII.2017.2777460 10.1007/s00466-018-1665-7 10.1016/j.ast.2019.03.039 10.1016/S0045-7825(97)00030-3 10.1109/IJCNN.1990.137819 10.1016/j.cma.2021.114300 10.1016/j.ast.2019.01.060 10.1038/s41563-020-00913-0 10.1016/j.compstruct.2021.115132 10.1016/j.cma.2020.112913 10.1016/j.ijplas.2019.09.004 10.1016/j.cma.2020.113299 10.1016/j.tust.2022.104463 10.3390/ma16186209 10.1016/j.matdes.2020.108509 10.1007/s10439-020-02550-9 10.1016/j.cma.2020.112893 10.1016/j.cma.2020.113136 10.1016/j.jmps.2020.103984 10.1177/1475921718764082 10.3390/s20247087 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI 7X8 5PM |
DOI | 10.3390/ma17010154 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database Materials Science Database Materials Science Collection Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | A779345899 10_3390_ma17010154 38204008 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Faculty of Mechanical Engineering, Silesian University of Technology |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CZ9 D1I E3Z EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E NPM OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RPM TR2 TUS AAYXX CITATION 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c405t-102ded2a0503efcca064b962449d4f3405fee32d09b2e96a567e78d2a532be5c3 |
IEDL.DBID | RPM |
ISSN | 1996-1944 |
IngestDate | Tue Sep 17 21:28:59 EDT 2024 Sat Oct 26 00:29:11 EDT 2024 Fri Nov 08 21:34:12 EST 2024 Tue Nov 12 23:51:57 EST 2024 Thu Nov 21 20:31:18 EST 2024 Sat Nov 02 12:08:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | artificial neural network homogenization fiber-reinforced composite finite element method composite material multiscale modeling machine learning |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-102ded2a0503efcca064b962449d4f3405fee32d09b2e96a567e78d2a532be5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9724-1817 0000-0001-6610-8696 0000-0001-7616-6881 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780044/ |
PMID | 38204008 |
PQID | 2912681558 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780044 proquest_miscellaneous_2913445582 proquest_journals_2912681558 gale_infotracacademiconefile_A779345899 crossref_primary_10_3390_ma17010154 pubmed_primary_38204008 |
PublicationCentury | 2000 |
PublicationDate | 20231227 |
PublicationDateYYYYMMDD | 2023-12-27 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231227 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Nezamabadi (ref_10) 2009; 198 Karapiperis (ref_37) 2021; 147 Nguyen (ref_15) 2022; 91 Nguyen (ref_30) 2022; 389 ref_58 ref_13 Mozaffar (ref_21) 2019; 116 ref_56 Vlassis (ref_24) 2020; 371 Mucha (ref_57) 2023; 58 ref_52 ref_51 Fish (ref_8) 1997; 148 Wu (ref_29) 2021; 270 Jung (ref_47) 2021; 207 Terroba (ref_39) 2019; 18 Fish (ref_1) 2021; 20 Bhattacharjee (ref_62) 2013; 9 Li (ref_41) 2019; 86 Ghavamian (ref_20) 2019; 357 Gajek (ref_33) 2021; 384 Kouznetsova (ref_6) 2004; 193 ref_64 Bayesteh (ref_9) 2017; 118–119 Liu (ref_25) 2019; 345 Kirchdoerfer (ref_34) 2016; 304 Yang (ref_22) 2020; 189 Rao (ref_23) 2020; 184 Robert (ref_44) 2022; 124 Lu (ref_18) 2019; 64 Xu (ref_16) 2020; 363 Liu (ref_28) 2019; 64 Terada (ref_53) 2000; 37 Lv (ref_63) 2018; 14 Hughes (ref_4) 1998; 166 Liu (ref_27) 2019; 127 Serafini (ref_40) 2019; 88 Doweidar (ref_36) 2020; 368 Feyel (ref_5) 2003; 192 Le (ref_17) 2015; 104 Pingaro (ref_55) 2019; 64 Gorji (ref_19) 2020; 143 Liu (ref_31) 2021; 384 Zhou (ref_2) 2022; 284 Doweidar (ref_35) 2021; 49 Liu (ref_32) 2020; 363 Khan (ref_48) 2019; 161 Mucha (ref_59) 2023; 2512 ref_46 Hoh (ref_61) 2010; 210 Han (ref_12) 2020; 125 ref_43 ref_42 (ref_54) 2006; 21 ref_3 Schroeder (ref_45) 2006; 17 Gajek (ref_26) 2020; 142 Mucha (ref_60) 2022; 33 Budarapu (ref_11) 2014; 69 Brodacka (ref_38) 2010; 48 ref_49 Terada (ref_50) 2001; 190 Gajek (ref_14) 2022; 69 ref_7 |
References_xml | – volume: 161 start-page: 586 year: 2019 ident: ref_48 article-title: Structural Vibration-Based Classification and Prediction of Delamination in Smart Composite Laminates Using Deep Learning Neural Network publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.12.118 contributor: fullname: Khan – volume: 190 start-page: 5427 year: 2001 ident: ref_50 article-title: A Class of General Algorithms for Multi-Scale Analyses of Heterogeneous Media publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00179-7 contributor: fullname: Terada – volume: 357 start-page: 112594 year: 2019 ident: ref_20 article-title: Accelerating Multiscale Finite Element Simulations of History-Dependent Materials Using a Recurrent Neural Network publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112594 contributor: fullname: Ghavamian – volume: 64 start-page: 451 year: 2019 ident: ref_28 article-title: Transfer Learning of Deep Material Network for Seamless Structure–Property Predictions publication-title: Comput. Mech. doi: 10.1007/s00466-019-01704-4 contributor: fullname: Liu – ident: ref_49 – volume: 17 start-page: 1167 year: 2006 ident: ref_45 article-title: A Fibre Bragg Grating Sensor System Monitors Operational Load in a Wind Turbine Rotor Blade publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/5/S39 contributor: fullname: Schroeder – ident: ref_51 – volume: 127 start-page: 20 year: 2019 ident: ref_27 article-title: Exploring the 3D Architectures of Deep Material Network in Data-Driven Multiscale Mechanics publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.03.004 contributor: fullname: Liu – volume: 2512 start-page: 012015 year: 2023 ident: ref_59 article-title: New Operational Load Monitoring Approach Using Digital Image Correlation and Image Classification Networks publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2512/1/012015 contributor: fullname: Mucha – ident: ref_3 doi: 10.3390/ma16124287 – ident: ref_58 – volume: 9 start-page: 515 year: 2013 ident: ref_62 article-title: Structural Safety Evaluation Using Modified Latin Hypercube Sampling Technique publication-title: Int. J. Perform. Eng. contributor: fullname: Bhattacharjee – volume: 270 start-page: 114058 year: 2021 ident: ref_29 article-title: Micro-Mechanics and Data-Driven Based Reduced Order Models for Multi-Scale Analyses of Woven Composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114058 contributor: fullname: Wu – volume: 345 start-page: 1138 year: 2019 ident: ref_25 article-title: A Deep Material Network for Multiscale Topology Learning and Accelerated Nonlinear Modeling of Heterogeneous Materials publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.09.020 contributor: fullname: Liu – volume: 33 start-page: 26368 year: 2022 ident: ref_60 article-title: Chemiresistor Gas Sensors Based on Conductive Copolymer and ZnO Blend—Prototype Fabrication, Experimental Testing, and Response Prediction by Artificial Neural Networks publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-022-09318-y contributor: fullname: Mucha – volume: 384 start-page: 113952 year: 2021 ident: ref_33 article-title: An FE–DMN Method for the Multiscale Analysis of Short Fiber Reinforced Plastic Components publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113952 contributor: fullname: Gajek – volume: 384 start-page: 113914 year: 2021 ident: ref_31 article-title: Cell Division in Deep Material Networks Applied to Multiscale Strain Localization Modeling publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113914 contributor: fullname: Liu – volume: 21 start-page: 112 year: 2006 ident: ref_54 article-title: Material Spatial Randomness: From Statistical to Representative Volume Element publication-title: Probabilistic Eng. Mech. doi: 10.1016/j.probengmech.2005.07.007 – volume: 166 start-page: 3 year: 1998 ident: ref_4 article-title: The Variational Multiscale Method—A Paradigm for Computational Mechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00079-6 contributor: fullname: Hughes – ident: ref_7 doi: 10.3390/ma11091746 – ident: ref_13 – ident: ref_46 doi: 10.3390/s19224933 – volume: 198 start-page: 2099 year: 2009 ident: ref_10 article-title: A Multilevel Computational Strategy for Handling Microscopic and Macroscopic Instabilities publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2009.02.026 contributor: fullname: Nezamabadi – volume: 184 start-page: 109850 year: 2020 ident: ref_23 article-title: Three-Dimensional Convolutional Neural Network (3D-CNN) for Heterogeneous Material Homogenization publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109850 contributor: fullname: Rao – volume: 37 start-page: 2285 year: 2000 ident: ref_53 article-title: Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(98)00341-2 contributor: fullname: Terada – volume: 91 start-page: 104384 year: 2022 ident: ref_15 article-title: Micromechanics-Based Material Networks Revisited from the Interaction Viewpoint; Robust and Efficient Implementation for Multi-Phase Composites publication-title: Eur. J. Mech. ASolids doi: 10.1016/j.euromechsol.2021.104384 contributor: fullname: Nguyen – volume: 104 start-page: 1061 year: 2015 ident: ref_17 article-title: Computational Homogenization of Nonlinear Elastic Materials Using Neural Networks publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4953 contributor: fullname: Le – volume: 116 start-page: 26414 year: 2019 ident: ref_21 article-title: Deep Learning Predicts Path-Dependent Plasticity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1911815116 contributor: fullname: Mozaffar – volume: 58 start-page: 1409 year: 2023 ident: ref_57 article-title: Application of Dynamic Condensation for Model Order Reduction in Real-Time Hybrid Simulations publication-title: Meccanica doi: 10.1007/s11012-023-01675-0 contributor: fullname: Mucha – volume: 64 start-page: 307 year: 2019 ident: ref_18 article-title: A Data-Driven Computational Homogenization Method Based on Neural Networks for the Nonlinear Anisotropic Electrical Response of Graphene/Polymer Nanocomposites publication-title: Comput. Mech. doi: 10.1007/s00466-018-1643-0 contributor: fullname: Lu – volume: 207 start-page: 108713 year: 2021 ident: ref_47 article-title: Advanced Deep Learning Model-Based Impact Characterization Method for Composite Laminates publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108713 contributor: fullname: Jung – volume: 193 start-page: 5525 year: 2004 ident: ref_6 article-title: Multi-Scale Second-Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2003.12.073 contributor: fullname: Kouznetsova – volume: 210 start-page: 305 year: 2010 ident: ref_61 article-title: On the Plastic Zone Size and Crack Tip Opening Displacement of a Dugdale Crack Interacting with a Circular Inclusion publication-title: Acta Mech. doi: 10.1007/s00707-009-0211-2 contributor: fullname: Hoh – volume: 69 start-page: 126 year: 2014 ident: ref_11 article-title: Efficient Coarse Graining in Multiscale Modeling of Fracture publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2013.12.004 contributor: fullname: Budarapu – volume: 304 start-page: 81 year: 2016 ident: ref_34 article-title: Data-Driven Computational Mechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.02.001 contributor: fullname: Kirchdoerfer – volume: 147 start-page: 104239 year: 2021 ident: ref_37 article-title: Data-Driven Multiscale Modeling in Mechanics publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.104239 contributor: fullname: Karapiperis – volume: 69 start-page: 1087 year: 2022 ident: ref_14 article-title: An FE-DMN Method for the Multiscale Analysis of Thermomechanical Composites publication-title: Comput. Mech. doi: 10.1007/s00466-021-02131-0 contributor: fullname: Gajek – volume: 143 start-page: 103972 year: 2020 ident: ref_19 article-title: On the Potential of Recurrent Neural Networks for Modeling Path Dependent Plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.103972 contributor: fullname: Gorji – ident: ref_52 doi: 10.1002/9781118536445 – ident: ref_42 doi: 10.3390/ma14216564 – volume: 192 start-page: 3233 year: 2003 ident: ref_5 article-title: A Multilevel Finite Element Method (FE2) to Describe the Response of Highly Non-Linear Structures Using Generalized Continua publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(03)00348-7 contributor: fullname: Feyel – volume: 14 start-page: 3436 year: 2018 ident: ref_63 article-title: Levenberg–Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2777460 contributor: fullname: Lv – volume: 64 start-page: 197 year: 2019 ident: ref_55 article-title: Fast Statistical Homogenization Procedure (FSHP) for Particle Random Composites Using Virtual Element Method publication-title: Comput. Mech. doi: 10.1007/s00466-018-1665-7 contributor: fullname: Pingaro – volume: 48 start-page: 855 year: 2010 ident: ref_38 article-title: Multiscale Modeling of Osseous Tissues publication-title: J. Theor. Appl. Mech. contributor: fullname: Brodacka – volume: 88 start-page: 436 year: 2019 ident: ref_40 article-title: In-Flight Health Monitoring of Helicopter Blades via Differential Analysis publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.03.039 contributor: fullname: Serafini – volume: 118–119 start-page: 24 year: 2017 ident: ref_9 article-title: 3D Hierarchical Multiscale Analysis of Heterogeneous SMA Based Materials publication-title: Int. J. Solids Struct. contributor: fullname: Bayesteh – volume: 148 start-page: 53 year: 1997 ident: ref_8 article-title: Computational Plasticity for Composite Structures Based on Mathematical Homogenization: Theory and Practice publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(97)00030-3 contributor: fullname: Fish – ident: ref_64 doi: 10.1109/IJCNN.1990.137819 – volume: 389 start-page: 114300 year: 2022 ident: ref_30 article-title: Interaction-Based Material Network: A General Framework for (Porous) Microstructured Materials publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114300 contributor: fullname: Nguyen – volume: 86 start-page: 613 year: 2019 ident: ref_41 article-title: Damage Development and Lifetime Prediction of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at 1300 °C in Vacuum, Inert and Oxidative Atmospheres publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.01.060 contributor: fullname: Li – volume: 20 start-page: 774 year: 2021 ident: ref_1 article-title: Mesoscopic and Multiscale Modelling in Materials publication-title: Nat. Mater. doi: 10.1038/s41563-020-00913-0 contributor: fullname: Fish – volume: 284 start-page: 115132 year: 2022 ident: ref_2 article-title: A Review on Stochastic Multiscale Analysis for FRP Composite Structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.115132 contributor: fullname: Zhou – volume: 363 start-page: 112913 year: 2020 ident: ref_32 article-title: Deep Material Network with Cohesive Layers: Multi-Stage Training and Interfacial Failure Analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.112913 contributor: fullname: Liu – volume: 125 start-page: 97 year: 2020 ident: ref_12 article-title: Microstructure-Based Multiscale Modeling of Large Strain Plastic Deformation by Coupling a Full-Field Crystal Plasticity-Spectral Solver with an Implicit Finite Element Solver publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.09.004 contributor: fullname: Han – volume: 371 start-page: 113299 year: 2020 ident: ref_24 article-title: Geometric Deep Learning for Computational Mechanics Part I: Anisotropic Hyperelasticity publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113299 contributor: fullname: Vlassis – volume: 124 start-page: 104463 year: 2022 ident: ref_44 article-title: Effects of Operational Loads on Buried Water Pipes Using Field Tests publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104463 contributor: fullname: Robert – ident: ref_56 doi: 10.3390/ma16186209 – volume: 189 start-page: 108509 year: 2020 ident: ref_22 article-title: Prediction of Composite Microstructure Stress-Strain Curves Using Convolutional Neural Networks publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108509 contributor: fullname: Yang – volume: 49 start-page: 407 year: 2021 ident: ref_35 article-title: Data-Driven Computational Simulation in Bone Mechanics publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02550-9 contributor: fullname: Doweidar – volume: 363 start-page: 112893 year: 2020 ident: ref_16 article-title: Data-Driven Multiscale Finite Element Method: From Concurrence to Separation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.112893 contributor: fullname: Xu – volume: 368 start-page: 113136 year: 2020 ident: ref_36 article-title: A Multiscale Data-Driven Approach for Bone Tissue Biomechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113136 contributor: fullname: Doweidar – volume: 142 start-page: 103984 year: 2020 ident: ref_26 article-title: On the Micromechanics of Deep Material Networks publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.103984 contributor: fullname: Gajek – volume: 18 start-page: 635 year: 2019 ident: ref_39 article-title: Structural Health and Usage Monitoring of an Unmanned Turbojet Target Drone publication-title: Struct. Health Monit. doi: 10.1177/1475921718764082 contributor: fullname: Terroba – ident: ref_43 doi: 10.3390/s20247087 |
SSID | ssj0000331829 |
Score | 2.4259887 |
Snippet | Structures made of heterogeneous materials, such as composites, often require a multiscale approach when their behavior is simulated using the finite element... |
SourceID | pubmedcentral proquest gale crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 154 |
SubjectTerms | Artificial neural networks Boundary conditions Boundary value problems Composite materials Composite structures Efficiency Epoxy resins Finite element analysis Finite element method Fourier transforms Glass fiber reinforced plastics Glass-epoxy composites Homogenization Load Localization Machine learning Material properties Methods Microstructure Multiscale analysis Neural networks Numerical analysis Simulation |
Title | Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38204008 https://www.proquest.com/docview/2912681558 https://search.proquest.com/docview/2913445582 https://pubmed.ncbi.nlm.nih.gov/PMC10780044 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1RDggOiJ2wyQgkTqGtnc1HxCIuICRA4hY59lgg0bRSKd_PjNOUliMnH-Iklt94luT5GeCcUmhtVdKLXeZknDiUsVF9F2NmK1Pl3mofjk54zh_fiptblsnJ2r0wgbRvq4_L-nNwWX-8B27laGC7LU-s-_RwTSVLwX8iux3oUHI4V6MH_6vITqVutEgV1fTdgWHVcc4WVmFFUcwjwy0WAtFfdzwXjxa5knPB524D1qdZo7hqRrcJS1hvwdqcluA2fIettGOachSt0ogYesELnolZKJ6DVOyE6mvBX1_D0xr9CMESHaEJnHDBR31SWi4ooRUPDWPP4Sc_gPyiuGkZNIzpDrze3b5c38fTQxViS7nZF7ld6dBJwzow6Ak_ykkqnVGU1y7xhFrqEZV0PV1J1JlJsxzzgm5IlawwtWoXluthjfsgvE8KowxS0SQTqy01fW2x57UjmHMfwVk7w-Wo0c4oqeZgSMpfSCK44MkveUHRDFsz3RdA72BpqvIqJxeSpFQXRnDU4lNOV9q4lLovs4KyoiKC09llWiP848PUOJyEPipJqIuMYK-Bczag1hwiKBaAnnVg_e3FK2SWQYe7NcOD_996CKt8fj3zY2R-BMtkCHgMnbGbnASj_gE2zwDo |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VKhV6KBRom_JRI5A4hc3a-fIR8SFQWYQESNwixx6rSGwWabv8fmaczXa3R0452MlGmjfjN5vnZ4BDotDaqjSJXe5knDqUsVF9F2Nua1MX3mofjk64K24ey7NztsnJu70wQbRv66fj5nl43Dz9CdrKl6HtdTqx3u3glFqWkr9E9pbgIyVsksx16aECK0Kq1K0bqaKuvjc07DvOfGEVPila9Qi65cJS9H9BnluRFtWSc8vPxdp7X3wdvkwJpzhpx7_CB2w24POcDeEmvIZduGOKForOpESMvOBawZouFHfBZXZCrbngP27D01rrCcHuHuES5OSCTwklRi-IC4tBK_Zz-MwPoJIqzjrxDcNhCx4uzu9PL-PpeQyxJVr3lyq2dOikYQsZ9BR6ojO1zokgaJd6CnjmEZV0ia4l6txkeYFFSTdkStaYWfUNlptRgz9AeJ-WRhmkfkumVlu69LXFxGtHCCl8BAddaKqX1najonaFY1n9i2UERxy1inORQmPNdEsB_Qa7WlUnBVWfNKOWMoKdLrDVNEnHldR9mZdEqMoI9mfDlF78zcQ0OJqEOSpNaYqM4HuLg9kLdTiKoFxAyGwCW3cvjhAwgoV3B4Sf77_1F6xc3g-uq-urm9_bsCqJfLHMRhY7sEygwF1YGrvJXsiMNwRGFpk |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKiF6aMurTUuLEUicQnbtvNwbYlm14iEkQOIWOfZYILHZlbbb398ZZ7Pd7bE95RDnIc0342-Sz58BjolCa6vSXuxyJ-PUoYyN6rsYc1ubuvBW-7B1wl1x81gOLtgm51u3FiaI9m39fNq8jE6b56egrZyMbNLpxJLb63NqWUr-E5lMnE_W4DUlbU8udeqhCitCq9StI6mizj4ZGfYeZ86wCRuKZj6Cb7kyHf1dlJdmpVXF5NIUNHz3Py__Ht7Oiac4a8dswStstuHNkh3hDvwKq3GnFDUUnVmJGHvBNYO1XSjugtvsjFp0wR9ww91aCwrBLh_hEGTlgncLJWYviBOL61b05_CFb0ClVQw6EQ7DYhcehhf359_j-b4MsSV695Mqt3TopGErGfQEAaI1tc6JKGiXegp85hGVdD1dS9S5yfICi5IuyJSsMbNqD9abcYMfQXiflkYZpL5LplZbOvS1xZ7XjpBS-AiOuvBUk9Z-o6K2heNZ_YlnBCccuYpzksJjzXxpAT2D3a2qs4KqUJpRaxnBfhfcap6s00rqvsxLIlZlBIeL05Rm_O_ENDiehTEqTWmIjOBDi4XFC3VYiqBcQcliAFt4r54hcAQr7w4Mn_790gPYuB0Mq6sfN5efYVMSB2O1jSz2YZ0wgV9gbepmX0Ny_AaqPxkZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Analysis+of+Composite+Structures+with+Artificial+Neural+Network+Support+for+Micromodel+Stress+Determination&rft.jtitle=Materials&rft.au=Ku%C5%9B%2C+Wac%C5%82aw&rft.au=Mucha%2C+Waldemar&rft.au=Jiregna%2C+Iyasu+Tafese&rft.date=2023-12-27&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=17&rft.issue=1&rft.spage=154&rft_id=info:doi/10.3390%2Fma17010154&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |