Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization

Invadopodia are actin‐rich protrusions arising through the orchestrated regulation of precursor assembly, stabilization, and maturation, endowing cancer cells with invasive properties. Using nanobodies (antigen‐binding domains of Camelid heavy‐chain antibodies) as perturbators of intracellular funct...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal Vol. 28; no. 4; pp. 1805 - 1818
Main Authors: Van Audenhove, Isabel, Boucherie, Ciska, Pieters, Leen, Zwaenepoel, Olivier, Vanloo, Berlinda, Martens, Evelien, Verbrugge, Charlotte, Hassanzadeh‐Ghassabeh, Gholamreza, Vandekerckhove, Joël, Cornelissen, Maria, De Ganck, Ariane, Gettemans, Jan
Format: Journal Article
Language:English
Published: United States The Federation of American Societies for Experimental Biology 01-04-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Invadopodia are actin‐rich protrusions arising through the orchestrated regulation of precursor assembly, stabilization, and maturation, endowing cancer cells with invasive properties. Using nanobodies (antigen‐binding domains of Camelid heavy‐chain antibodies) as perturbators of intracellular functions and/or protein domains at the level of the endogenous protein, we examined the specific contribution of fascin and cortactin during invadopodium formation in MDA‐MB‐231 breast and PC‐3 prostate cancer cells. A nanobody (Kd~35 nM, 1:1 stoichiometry) that disrupts fascin F‐actin bundling emphasizes the importance of stable actin bundles in invadopodium array organization and turnover, matrix degradation, and cancer cell invasion. Cortactin‐SH3 dependent WIP recruitment toward the plasma membrane was specifically inhibited by a cortactin nanobody (Kd~75 nM, 1:1 stoichiometry). This functional domain is shown to be important for formation of properly organized invadopodia, MMP‐9 secretion, matrix degradation, and cancer cell invasion. Notably, using a subcellular delocalization strategy to trigger protein loss of function, we uncovered a fascin‐bundling‐independent role in MMP‐9 secretion. Hence, we demonstrate that nanobodies enable high resolution protein function mapping in cells.—Van Audenhove, I., Boucherie, C., Pieters, L., Zwaenepoel, O., Vanloo, B., Martens, E., Verbrugge, C., Hassanzadeh‐Ghassabeh, G., Vandekerckhove, J., Cornelissen, M., De Ganck, A., Gettemans, J. Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization. FASEB J. 28, 1805–1818 (2014). www.fasebj.org
AbstractList Invadopodia are actin-rich protrusions arising through the orchestrated regulation of precursor assembly, stabilization, and maturation, endowing cancer cells with invasive properties. Using nanobodies (antigen-binding domains of Camelid heavy-chain antibodies) as perturbators of intracellular functions and/or protein domains at the level of the endogenous protein, we examined the specific contribution of fascin and cortactin during invadopodium formation in MDA-MB-231 breast and PC-3 prostate cancer cells. A nanobody (K(d)~35 nM, 1:1 stoichiometry) that disrupts fascin F-actin bundling emphasizes the importance of stable actin bundles in invadopodium array organization and turnover, matrix degradation, and cancer cell invasion. Cortactin-SH3 dependent WIP recruitment toward the plasma membrane was specifically inhibited by a cortactin nanobody (K(d)~75 nM, 1:1 stoichiometry). This functional domain is shown to be important for formation of properly organized invadopodia, MMP-9 secretion, matrix degradation, and cancer cell invasion. Notably, using a subcellular delocalization strategy to trigger protein loss of function, we uncovered a fascin-bundling-independent role in MMP-9 secretion. Hence, we demonstrate that nanobodies enable high resolution protein function mapping in cells.
Invadopodia are actin‐rich protrusions arising through the orchestrated regulation of precursor assembly, stabilization, and maturation, endowing cancer cells with invasive properties. Using nanobodies (antigen‐binding domains of Camelid heavy‐chain antibodies) as perturbators of intracellular functions and/or protein domains at the level of the endogenous protein, we examined the specific contribution of fascin and cortactin during invadopodium formation in MDA‐MB‐231 breast and PC‐3 prostate cancer cells. A nanobody (Kd~35 nM, 1:1 stoichiometry) that disrupts fascin F‐actin bundling emphasizes the importance of stable actin bundles in invadopodium array organization and turnover, matrix degradation, and cancer cell invasion. Cortactin‐SH3 dependent WIP recruitment toward the plasma membrane was specifically inhibited by a cortactin nanobody (Kd~75 nM, 1:1 stoichiometry). This functional domain is shown to be important for formation of properly organized invadopodia, MMP‐9 secretion, matrix degradation, and cancer cell invasion. Notably, using a subcellular delocalization strategy to trigger protein loss of function, we uncovered a fascin‐bundling‐independent role in MMP‐9 secretion. Hence, we demonstrate that nanobodies enable high resolution protein function mapping in cells.—Van Audenhove, I., Boucherie, C., Pieters, L., Zwaenepoel, O., Vanloo, B., Martens, E., Verbrugge, C., Hassanzadeh‐Ghassabeh, G., Vandekerckhove, J., Cornelissen, M., De Ganck, A., Gettemans, J. Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization. FASEB J. 28, 1805–1818 (2014). www.fasebj.org
Author Verbrugge, Charlotte
Boucherie, Ciska
Martens, Evelien
Hassanzadeh‐Ghassabeh, Gholamreza
De Ganck, Ariane
Vandekerckhove, Joël
Cornelissen, Maria
Gettemans, Jan
Van Audenhove, Isabel
Pieters, Leen
Zwaenepoel, Olivier
Vanloo, Berlinda
Author_xml – sequence: 1
  givenname: Isabel
  surname: Van Audenhove
  fullname: Van Audenhove, Isabel
  organization: Ghent University
– sequence: 2
  givenname: Ciska
  surname: Boucherie
  fullname: Boucherie, Ciska
  organization: Ghent University
– sequence: 3
  givenname: Leen
  surname: Pieters
  fullname: Pieters, Leen
  organization: Ghent University
– sequence: 4
  givenname: Olivier
  surname: Zwaenepoel
  fullname: Zwaenepoel, Olivier
  organization: Ghent University
– sequence: 5
  givenname: Berlinda
  surname: Vanloo
  fullname: Vanloo, Berlinda
  organization: Ghent University
– sequence: 6
  givenname: Evelien
  surname: Martens
  fullname: Martens, Evelien
  organization: Ghent University
– sequence: 7
  givenname: Charlotte
  surname: Verbrugge
  fullname: Verbrugge, Charlotte
  organization: Ghent University
– sequence: 8
  givenname: Gholamreza
  surname: Hassanzadeh‐Ghassabeh
  fullname: Hassanzadeh‐Ghassabeh, Gholamreza
  organization: Vlaams Instituut voor Biotechnologie (VIB)
– sequence: 9
  givenname: Joël
  surname: Vandekerckhove
  fullname: Vandekerckhove, Joël
  organization: Ghent University
– sequence: 10
  givenname: Maria
  surname: Cornelissen
  fullname: Cornelissen, Maria
  organization: Ghent University
– sequence: 11
  givenname: Ariane
  surname: De Ganck
  fullname: De Ganck, Ariane
  organization: Ghent University
– sequence: 12
  givenname: Jan
  surname: Gettemans
  fullname: Gettemans, Jan
  email: jan.gettemans@ugent.be
  organization: Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24414419$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1P3DAQhq2Kqiy0t55RjhwaOv7M5ggI2kpIPdCeLcceU68Se7ET0PYP9G832aUcK400GvmZR573hBzFFJGQjxQuKLTqs99cUF4zwSRv3pAVlRxqtVZwRFawblmtFF8fk5NSNgBAgap35JgJQedqV-TP_ZjNGPwuxIfKm2JDrEx0lU15NHacJz_FuadYhaWejEvb5MI0VD7lwexfprJsh_grdGFMeVdFE1M3U1j2stHkBxzRVWXqLPb91JtcOeyTNX34vXe8J2-96Qt-eOmn5OftzY_rr_Xd9y_fri_vaitAqtpL0TVAubRWWiHQKmEbrySaRjoDyBvboLd8Pk6x-diudYq33hnHJXZdy0_J-cG7zelxwjLqIZTlTyZimoqmkjLGGpAL-umA2pxKyej1NofB5J2moJfotd9oyvUh-hk_ezFP3YDuFf6X9Qw0B-A59Lj7r0zf3l8xYGsAAUzxvxmQlTI
CitedBy_id crossref_primary_10_18632_oncotarget_7327
crossref_primary_10_1016_j_yexcr_2015_11_003
crossref_primary_10_1080_19420862_2018_1502025
crossref_primary_10_1074_jbc_M115_706937
crossref_primary_10_1007_s12274_020_2633_z
crossref_primary_10_1002_ijc_29260
crossref_primary_10_1093_nar_gku962
crossref_primary_10_7554_eLife_79283
crossref_primary_10_3390_biom10121701
crossref_primary_10_3390_biom10121663
crossref_primary_10_1016_j_ejcb_2014_07_008
crossref_primary_10_1007_s00018_019_03112_6
crossref_primary_10_3389_fncel_2020_573278
crossref_primary_10_1007_s40259_020_00419_w
crossref_primary_10_1038_mt_2014_132
crossref_primary_10_1177_1179299X17710944
crossref_primary_10_1371_journal_pone_0185076
crossref_primary_10_1002_pro_3154
crossref_primary_10_18632_oncotarget_5137
crossref_primary_10_1016_j_ebiom_2016_04_028
crossref_primary_10_1016_j_freeradbiomed_2021_09_005
crossref_primary_10_1586_14737159_2015_976557
crossref_primary_10_1002_cbic_202200321
crossref_primary_10_1152_ajpcell_00435_2020
crossref_primary_10_1016_j_nbt_2020_05_004
crossref_primary_10_1038_s41598_018_28637_x
crossref_primary_10_1016_j_biopha_2018_03_064
crossref_primary_10_1038_srep31177
crossref_primary_10_3390_biom10071084
crossref_primary_10_1016_j_jbc_2021_101290
crossref_primary_10_1016_j_ajpath_2019_12_011
crossref_primary_10_1039_C8CC06684A
crossref_primary_10_1371_journal_ppat_1005916
crossref_primary_10_1093_synbio_ysab002
crossref_primary_10_3389_fonc_2022_948110
crossref_primary_10_1002_cm_21309
crossref_primary_10_1002_pmic_201400220
crossref_primary_10_1016_j_ijbiomac_2021_11_160
crossref_primary_10_1016_j_omto_2020_12_014
crossref_primary_10_1096_fj_201600810RR
crossref_primary_10_1098_rsob_230376
crossref_primary_10_1038_s41598_018_33868_z
crossref_primary_10_1016_j_bbcan_2014_09_007
crossref_primary_10_1016_j_bbamcr_2015_01_003
crossref_primary_10_3390_cancers13225760
crossref_primary_10_1080_21645515_2017_1302046
crossref_primary_10_3389_fimmu_2017_00771
Cites_doi 10.1593/neo.07909
10.1083/jcb.200812176
10.1242/jcs.114.7.1253
10.1038/35017080
10.1006/jmbi.2001.4716
10.1002/path.2462
10.1083/jcb.201002041
10.1016/j.cell.2009.11.025
10.1096/fj.09-134304
10.1186/1471-2164-6-15
10.1083/jcb.201110135
10.1091/mbc.E07-04-0346
10.1038/nrm2406
10.1002/cm.21122
10.1016/j.ejcb.2008.01.008
10.1016/S0960-9822(01)00098-7
10.1016/S0960-9822(02)01035-7
10.1016/S0002-9440(10)63799-6
10.1002/jez.1402510206
10.1074/jbc.271.21.12632
10.1007/s10555-008-9176-1
10.1083/jcb.200603013
10.1074/jbc.M112.427971
10.1038/363446a0
10.1016/j.cub.2005.06.043
10.1016/j.ejcb.2007.01.003
10.1016/j.cub.2009.12.035
10.1083/jcb.200909113
10.1371/journal.pone.0027339
10.1007/s00018-010-0266-1
10.1074/jbc.M111.251439
10.2353/ajpath.2010.090118
10.1158/0008-5472.CAN-10-1432
10.1016/j.biocel.2005.05.004
10.1371/journal.pone.0078108
10.1038/sj.bjc.6604246
10.1007/s00018-012-1169-0
10.1186/1471-2407-12-32
10.1038/35060051
10.1038/nmeth.1220
10.1016/j.febslet.2004.12.055
10.1016/j.canlet.2007.03.023
10.1038/labinvest.2009.89
10.1242/jcs.008037
10.1016/S0960-9822(03)00107-6
10.1146/annurev-cellbio-092910-154216
10.4161/cam.5.2.14773
10.1038/sj.onc.1204783
10.1016/j.bbrc.2005.09.055
10.1091/mbc.8.11.2345
10.1083/jcb.200407076
10.1158/0008-5472.CAN-06-3928
10.1186/1746-1596-5-41
10.1016/j.ejcb.2010.09.001
10.1083/jcb.119.6.1451
10.1016/j.ejcb.2010.05.010
10.1158/0008-5472.CAN-05-2177
10.1091/mbc.E08-12-1180
ContentType Journal Article
Copyright FASEB
Copyright_xml – notice: FASEB
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1096/fj.13-242537
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1530-6860
EndPage 1818
ExternalDocumentID 10_1096_fj_13_242537
24414419
FSB2028004026
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Interuniversity Attraction Poles Programme of the Belgian State
– fundername: Research Foundation Flanders
– fundername: Federal Office for Scientific, Technical and Cultural Affairs
  funderid: IUAP P7/13
– fundername: Ghent University
– fundername: League against Cancer
– fundername: FWO‐Flanders
GroupedDBID ---
-DZ
-~X
.55
0R~
0VX
123
18M
1OB
1OC
29H
2WC
33P
34G
39C
3O-
4.4
53G
5GY
5RE
85S
AAHHS
AANLZ
ABCUV
ABDNZ
ABEFU
ABJNI
ABOCM
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACXQS
ACYGS
ADKYN
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFFNX
AFFPM
AFRAH
AGCDD
AHBTC
AI.
AITYG
AIURR
AIWBW
AIZAD
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
BFHJK
BIYOS
C1A
CS3
DCZOG
DU5
D~5
E3Z
EBS
EJD
F20
F5P
F9R
FRP
H13
HGLYW
HZ~
H~9
J5H
L7B
LATKE
LEEKS
MEWTI
MVM
NEJ
O9-
OHT
OVD
Q-A
RHF
RHI
RJQFR
ROL
SAMSI
SJN
SUPJJ
TEORI
TFA
TR2
TWZ
VH1
W8F
WH7
WHG
WOQ
WXSBR
X7M
XJT
XOL
XSW
Y6R
YBU
YCJ
YHG
YKV
YNH
YSK
Z0Y
ZCA
ZE2
ZGI
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4056-f54b70135cc5c44ec64c7f65ea75da0e37c7efc344162101b9d639fdad35ebb93
IEDL.DBID 33P
ISSN 0892-6638
IngestDate Sat Oct 05 04:29:11 EDT 2024
Fri Nov 22 00:49:50 EST 2024
Sat Sep 28 07:57:37 EDT 2024
Sat Aug 24 01:10:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cytoskeletal protein modulation
invasive protrusions
heavy-chain only antibodies
oncotargets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4056-f54b70135cc5c44ec64c7f65ea75da0e37c7efc344162101b9d639fdad35ebb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24414419
PQID 1512227059
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1512227059
crossref_primary_10_1096_fj_13_242537
pubmed_primary_24414419
wiley_primary_10_1096_fj_13_242537_FSB2028004026
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The FASEB journal
PublicationTitleAlternate FASEB J
PublicationYear 2014
Publisher The Federation of American Societies for Experimental Biology
Publisher_xml – name: The Federation of American Societies for Experimental Biology
References 2009; 89
2000; 6
2002; 12
2010; 189
2005; 579
2005; 337
2006; 174
2013; 288
2003; 13
2008; 9
2013; 70
2000; 2
2008; 5
2013; 8
2012; 12
1993; 363
1997; 8
2010; 67
2007; 255
2010; 20
2010; 24
2006; 66
2011; 71
2003; 162
1992; 119
2005; 37
2001; 11
2010; 191
2011; 27
2010; 5
2007; 67
2011; 286
2007; 18
2009; 20
1989; 251
2008; 98
2008; 10
2009; 217
2011; 6
2008; 121
2011; 5
2001; 20
2009; 28
2009; 139
2001; 310
2012; 197
2005; 168
2011; 90
2010; 176
1996; 271
2005; 6
2008; 87
2001; 3
2009; 186
2005; 15
2007; 86
2001; 114
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Mayer B. J. (e_1_2_7_32_1) 2001; 114
e_1_2_7_50_1
Rodrigo J. P. (e_1_2_7_23_1) 2000; 6
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 24
  start-page: 105
  year: 2010
  end-page: 118
  article-title: An alpaca single‐domain antibody blocks filopodia formation by obstructing L‐plastinmediated F‐actin bundling
  publication-title: FASEB J.
– volume: 8
  year: 2013
  article-title: L‐plastin nanobodies perturb matrix degradation, podosome formation, stability and lifetime in THP‐1 macrophages
  publication-title: PloS One
– volume: 197
  start-page: 477
  year: 2012
  end-page: 486
  article-title: Fascin promotes filopodia formation independent of its role in actin bundling
  publication-title: J. Cell Biol.
– volume: 6
  year: 2011
  article-title: Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis‐associated molecules
  publication-title: PloS One
– volume: 337
  start-page: 355
  year: 2005
  end-page: 362
  article-title: Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 288
  start-page: 274
  year: 2013
  end-page: 284
  article-title: Molecular mechanism of fascin function in filopodial formation
  publication-title: J. Biol. Chem.
– volume: 90
  start-page: 93
  year: 2011
  end-page: 99
  article-title: Cytoskeleton networks in basement membrane transmigration
  publication-title: Eur. J. Cell Biol.
– volume: 139
  start-page: 1315
  year: 2009
  end-page: 1326
  article-title: Tumor self‐seeding by circulating cancer cells
  publication-title: Cell
– volume: 27
  start-page: 185
  year: 2011
  end-page: 211
  article-title: Degrading devices: invadosomes in proteolytic cell invasion
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 176
  start-page: 939
  year: 2010
  end-page: 951
  article-title: Involvement of CYR61 and CTGF in the fascin‐mediated proliferation and invasiveness of esophageal squamous cell carcinomas cells
  publication-title: Am. J. Pathol.
– volume: 251
  start-page: 167
  year: 1989
  end-page: 185
  article-title: Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells
  publication-title: J. Exp. Zool.
– volume: 162
  start-page: 69
  year: 2003
  end-page: 80
  article-title: Fascin, an actin‐bundling protein, modulates colonic epithelial cell invasiveness and differentiation in vitro
  publication-title: Am. J. Pathol.
– volume: 13
  start-page: 384
  year: 2003
  end-page: 393
  article-title: Cortactin interacts with WIP in regulating Arp2/3 activation and membrane protrusion
  publication-title: Curr. Biol.
– volume: 114
  start-page: 1253
  year: 2001
  end-page: 1263
  article-title: SH3 domains: complexity in moderation
  publication-title: J. Cell Sci.
– volume: 11
  start-page: 370
  year: 2001
  end-page: 374
  article-title: Cortactin promotes and stabilizes Arp2/3‐induced actin filament network formation
  publication-title: Curr. Biol.
– volume: 70
  start-page: 909
  year: 2013
  end-page: 922
  article-title: Nanobody‐induced perturbation of LFA‐1/L‐plastin phosphorylation impairs MTOC docking, immune synapse formation and T cell activation
  publication-title: Cell. Mol. Life Sci.
– volume: 86
  start-page: 189
  year: 2007
  end-page: 206
  article-title: Dissecting the functional domain requirements of cortactin in invadopodia formation
  publication-title: Eur. J. Cell Biol.
– volume: 66
  start-page: 3034
  year: 2006
  end-page: 3043
  article-title: Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function
  publication-title: Cancer Res.
– volume: 168
  start-page: 441
  year: 2005
  end-page: 452
  article-title: Molecular mechanisms of invadopodium formation: the role of the N‐WASP‐Arp2/3 complex pathway and cofilin
  publication-title: J. Cell Biol.
– volume: 98
  start-page: 950
  year: 2008
  end-page: 955
  article-title: Cortactin expression predicts poor survival in laryngeal carcinoma
  publication-title: Br. J. Cancer
– volume: 186
  start-page: 571
  year: 2009
  end-page: 587
  article-title: Cortactin regulates cofilin and N‐WASp activities to control the stages of invadopodium assembly and maturation
  publication-title: J. Cell Biol.
– volume: 191
  start-page: 169
  year: 2010
  end-page: 185
  article-title: LIM kinases are required for invasive path generation by tumor and tumorassociated stromal cells
  publication-title: J. Cell Biol.
– volume: 5
  start-page: 187
  year: 2011
  end-page: 198
  article-title: Cortactin: a multifunctional regulator of cellular invasiveness
  publication-title: Cell Adh. Migr.
– volume: 286
  start-page: 30087
  year: 2011
  end-page: 30096
  article-title: Mechanism of actin filament bundling by fascin
  publication-title: J. Biol. Chem.
– volume: 87
  start-page: 581
  year: 2008
  end-page: 590
  article-title: A new role for cortactin in invadopodia: regulation of protease secretion
  publication-title: Eur. J. Cell Biol.
– volume: 20
  start-page: 6418
  year: 2001
  end-page: 6434
  article-title: Cortactin: coupling membrane dynamics to cortical actin assembly
  publication-title: Oncogene
– volume: 71
  start-page: 1730
  year: 2011
  end-page: 1741
  article-title: An EGFR‐Src‐Arg‐cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion
  publication-title: Cancer Res.
– volume: 12
  start-page: 32
  year: 2012
  article-title: Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma
  publication-title: BMC Cancer
– volume: 20
  start-page: 3209
  year: 2009
  end-page: 3223
  article-title: Cortactin promotes migration and platelet‐derived growth factor‐induced actin reorganization by signaling to Rho‐GTPases
  publication-title: Mol. Biol. Cell
– volume: 18
  start-page: 3928
  year: 2007
  end-page: 3940
  article-title: Intrinsic dynamic behavior of fascin in filopodia
  publication-title: Mol. Biol. Cell
– volume: 3
  start-page: 259
  year: 2001
  end-page: 266
  article-title: Activation of Arp2/3 complex‐mediated actin polymerization by cortactin
  publication-title: Nat. Cell Biol.
– volume: 15
  start-page: 1276
  year: 2005
  end-page: 1285
  article-title: Cortactin promotes cell motility by enhancing lamellipodial persistence
  publication-title: Curr. Biol.
– volume: 121
  start-page: 369
  year: 2008
  end-page: 378
  article-title: Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation
  publication-title: J. Cell Sci.
– volume: 6
  start-page: 3177
  year: 2000
  end-page: 3182
  article-title: EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck
  publication-title: Clin. Cancer Res.
– volume: 271
  start-page: 12632
  year: 1996
  end-page: 12638
  article-title: Phosphorylation of human fascin inhibits its actin binding and bundling activities
  publication-title: J. Biol. Chem.
– volume: 217
  start-page: 516
  year: 2009
  end-page: 523
  article-title: Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas
  publication-title: J. Pathol.
– volume: 67
  start-page: 1519
  year: 2010
  end-page: 1535
  article-title: A llama‐derived gelsolin single‐domain antibody blocks gelsolin‐G‐actin interaction
  publication-title: Cell. Mol. Life Sci.
– volume: 363
  start-page: 446
  year: 1993
  end-page: 448
  article-title: Naturally occurring antibodies devoid of light chains
  publication-title: Nature
– volume: 67
  start-page: 4227
  year: 2007
  end-page: 4235
  article-title: Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia
  publication-title: Cancer Res.
– volume: 5
  start-page: 605
  year: 2008
  end-page: 607
  article-title: Lifeact: a versatile marker to visualize F‐actin
  publication-title: Nat. Methods
– volume: 10
  start-page: 149
  year: 2008
  end-page: 159
  article-title: The role of fascin in the migration and invasiveness of malignant glioma cells
  publication-title: Neoplasia
– volume: 70
  start-page: 604
  year: 2013
  end-page: 622
  article-title: Mapping cytoskeletal protein function in cells by means of nanobodies
  publication-title: Cytoskeleton
– volume: 9
  start-page: 446
  year: 2008
  end-page: 454
  article-title: Filopodia: molecular architecture and cellular functions
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 579
  start-page: 577
  year: 2005
  end-page: 585
  article-title: Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control
  publication-title: FEBS Lett.
– volume: 20
  start-page: 339
  year: 2010
  end-page: 345
  article-title: The actin‐bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion
  publication-title: Curr. Biol.
– volume: 90
  start-page: 213
  year: 2011
  end-page: 223
  article-title: The cortactinbinding domain of WIP is essential for podosome formation and extracellular matrix degradation by murine dendritic cells
  publication-title: Eur. J. Cell Biol.
– volume: 189
  start-page: 541
  year: 2010
  end-page: 556
  article-title: Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia
  publication-title: J Cell Biol.
– volume: 5
  start-page: 41
  year: 2010
  article-title: Effects of small interfering RNAs targeting fascin on human esophageal squamous cell carcinoma cell lines
  publication-title: Diagn. Pathol.
– volume: 37
  start-page: 1787
  year: 2005
  end-page: 1804
  article-title: Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker?
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 28
  start-page: 137
  year: 2009
  end-page: 149
  article-title: Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix
  publication-title: Cancer Metastasis Rev.
– volume: 6
  start-page: 15
  year: 2005
  article-title: Comparative genome analysis of cortactin and HS1: the significance of the F‐actin binding repeat domain
  publication-title: BMC Genomics
– volume: 89
  start-page: 1261
  year: 2009
  end-page: 1274
  article-title: Fascin is involved in tumor necrosis factor‐alpha‐dependent production of MMP9 in cholangiocarcinoma
  publication-title: Lab. Invest.
– volume: 174
  start-page: 863
  year: 2006
  end-page: 875
  article-title: Role of fascin in filopodial protrusion
  publication-title: J. Cell Biol.
– volume: 12
  start-page: 1270
  year: 2002
  end-page: 1278
  article-title: Interaction of cortactin and N‐WASp with Arp2/3 complex
  publication-title: Curr. Biol.
– volume: 2
  start-page: 441
  year: 2000
  end-page: 448
  article-title: A complex of N‐WASP and WIP integrates signalling cascades that lead to actin polymerization
  publication-title: Nat. Cell Biol.
– volume: 8
  start-page: 2345
  year: 1997
  end-page: 2363
  article-title: Characterization of cell‐matrix adhesion requirements for the formation of fascin microspikes
  publication-title: Mol. Biol. Cell
– volume: 119
  start-page: 1451
  year: 1992
  end-page: 1457
  article-title: A signal‐anchor sequence selective for the mitochondrial outer membrane
  publication-title: J. Cell Biol.
– volume: 255
  start-page: 57
  year: 2007
  end-page: 70
  article-title: Downregulation of gelsolin family proteins counteracts cancer cell invasion in vitro
  publication-title: Cancer Lett.
– volume: 310
  start-page: 351
  year: 2001
  end-page: 366
  article-title: Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with alpha‐actinin
  publication-title: J. Mol. Biol.
– ident: e_1_2_7_44_1
  doi: 10.1593/neo.07909
– ident: e_1_2_7_4_1
  doi: 10.1083/jcb.200812176
– volume: 114
  start-page: 1253
  year: 2001
  ident: e_1_2_7_32_1
  article-title: SH3 domains: complexity in moderation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.114.7.1253
  contributor:
    fullname: Mayer B. J.
– ident: e_1_2_7_18_1
  doi: 10.1038/35017080
– ident: e_1_2_7_7_1
  doi: 10.1006/jmbi.2001.4716
– ident: e_1_2_7_24_1
  doi: 10.1002/path.2462
– ident: e_1_2_7_50_1
  doi: 10.1083/jcb.201002041
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cell.2009.11.025
– ident: e_1_2_7_29_1
  doi: 10.1096/fj.09-134304
– ident: e_1_2_7_33_1
  doi: 10.1186/1471-2164-6-15
– ident: e_1_2_7_38_1
  doi: 10.1083/jcb.201110135
– ident: e_1_2_7_39_1
  doi: 10.1091/mbc.E07-04-0346
– ident: e_1_2_7_36_1
  doi: 10.1038/nrm2406
– ident: e_1_2_7_27_1
  doi: 10.1002/cm.21122
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ejcb.2008.01.008
– ident: e_1_2_7_54_1
  doi: 10.1016/S0960-9822(01)00098-7
– ident: e_1_2_7_17_1
  doi: 10.1016/S0960-9822(02)01035-7
– ident: e_1_2_7_40_1
  doi: 10.1016/S0002-9440(10)63799-6
– ident: e_1_2_7_2_1
  doi: 10.1002/jez.1402510206
– ident: e_1_2_7_11_1
  doi: 10.1074/jbc.271.21.12632
– ident: e_1_2_7_3_1
  doi: 10.1007/s10555-008-9176-1
– ident: e_1_2_7_8_1
  doi: 10.1083/jcb.200603013
– ident: e_1_2_7_9_1
  doi: 10.1074/jbc.M112.427971
– ident: e_1_2_7_25_1
  doi: 10.1038/363446a0
– ident: e_1_2_7_55_1
  doi: 10.1016/j.cub.2005.06.043
– ident: e_1_2_7_60_1
  doi: 10.1016/j.ejcb.2007.01.003
– ident: e_1_2_7_6_1
  doi: 10.1016/j.cub.2009.12.035
– ident: e_1_2_7_46_1
  doi: 10.1083/jcb.200909113
– ident: e_1_2_7_47_1
  doi: 10.1371/journal.pone.0027339
– ident: e_1_2_7_26_1
  doi: 10.1007/s00018-010-0266-1
– ident: e_1_2_7_10_1
  doi: 10.1074/jbc.M111.251439
– ident: e_1_2_7_42_1
  doi: 10.2353/ajpath.2010.090118
– ident: e_1_2_7_45_1
  doi: 10.1158/0008-5472.CAN-10-1432
– ident: e_1_2_7_12_1
  doi: 10.1016/j.biocel.2005.05.004
– ident: e_1_2_7_30_1
  doi: 10.1371/journal.pone.0078108
– ident: e_1_2_7_22_1
  doi: 10.1038/sj.bjc.6604246
– ident: e_1_2_7_28_1
  doi: 10.1007/s00018-012-1169-0
– ident: e_1_2_7_48_1
  doi: 10.1186/1471-2407-12-32
– ident: e_1_2_7_53_1
  doi: 10.1038/35060051
– ident: e_1_2_7_37_1
  doi: 10.1038/nmeth.1220
– ident: e_1_2_7_15_1
  doi: 10.1016/j.febslet.2004.12.055
– ident: e_1_2_7_31_1
  doi: 10.1016/j.canlet.2007.03.023
– ident: e_1_2_7_49_1
  doi: 10.1038/labinvest.2009.89
– ident: e_1_2_7_59_1
  doi: 10.1242/jcs.008037
– ident: e_1_2_7_16_1
  doi: 10.1016/S0960-9822(03)00107-6
– ident: e_1_2_7_58_1
  doi: 10.1146/annurev-cellbio-092910-154216
– ident: e_1_2_7_14_1
  doi: 10.4161/cam.5.2.14773
– volume: 6
  start-page: 3177
  year: 2000
  ident: e_1_2_7_23_1
  article-title: EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck
  publication-title: Clin. Cancer Res.
  contributor:
    fullname: Rodrigo J. P.
– ident: e_1_2_7_34_1
  doi: 10.1038/sj.onc.1204783
– ident: e_1_2_7_51_1
  doi: 10.1016/j.bbrc.2005.09.055
– ident: e_1_2_7_41_1
  doi: 10.1091/mbc.8.11.2345
– ident: e_1_2_7_5_1
  doi: 10.1083/jcb.200407076
– ident: e_1_2_7_21_1
  doi: 10.1158/0008-5472.CAN-06-3928
– ident: e_1_2_7_43_1
  doi: 10.1186/1746-1596-5-41
– ident: e_1_2_7_52_1
  doi: 10.1016/j.ejcb.2010.09.001
– ident: e_1_2_7_35_1
  doi: 10.1083/jcb.119.6.1451
– ident: e_1_2_7_57_1
  doi: 10.1016/j.ejcb.2010.05.010
– ident: e_1_2_7_19_1
  doi: 10.1158/0008-5472.CAN-05-2177
– ident: e_1_2_7_56_1
  doi: 10.1091/mbc.E08-12-1180
SSID ssj0001016
Score 2.3986027
Snippet Invadopodia are actin‐rich protrusions arising through the orchestrated regulation of precursor assembly, stabilization, and maturation, endowing cancer cells...
Invadopodia are actin-rich protrusions arising through the orchestrated regulation of precursor assembly, stabilization, and maturation, endowing cancer cells...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1805
SubjectTerms Actins - metabolism
Blotting, Western
Carrier Proteins - genetics
Carrier Proteins - immunology
Carrier Proteins - metabolism
Cell Line, Tumor
Cell Membrane - metabolism
Cell Membrane - ultrastructure
Cell Movement
Cell Surface Extensions - metabolism
Cell Surface Extensions - ultrastructure
Cortactin - genetics
Cortactin - immunology
Cortactin - metabolism
cytoskeletal protein modulation
Cytoskeletal Proteins - metabolism
Epitopes - genetics
Epitopes - immunology
Epitopes - metabolism
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
heavy‐chain only antibodies
HEK293 Cells
Humans
Intracellular Signaling Peptides and Proteins - metabolism
invasive protrusions
Matrix Metalloproteinase 9 - metabolism
Matrix Metalloproteinase 9 - secretion
Microfilament Proteins - genetics
Microfilament Proteins - immunology
Microfilament Proteins - metabolism
Microscopy, Electron, Transmission
Microscopy, Fluorescence
Neoplasms - metabolism
Neoplasms - pathology
oncotargets
Protein Binding
Pseudopodia - metabolism
Pseudopodia - ultrastructure
Single-Domain Antibodies - genetics
Single-Domain Antibodies - immunology
Single-Domain Antibodies - metabolism
src Homology Domains
Thermodynamics
Title Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1096%2Ffj.13-242537
https://www.ncbi.nlm.nih.gov/pubmed/24414419
https://search.proquest.com/docview/1512227059
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA46IHhxX8aNCHosdpomnV4ElxnmJMIoeCtZtQfTwbGCv8C_7XtpZ1AEQYTeQl6Xl7zve31LCDkRiivLcxHl1hlwUASLJOBw5JzQSWKtSHpYKDwaZzcP_esBtsk5n9XCNP0h5j_ccGcEe40bXKpp2wAJ_U2HKVoY0eQMi8nBUQgVHOx2bojRMQ0kMk8iANZ-m_cO08--Tv6OSD9o5nfWGmBnuPrfB14jKy3hpBfNClknC9ZvkKXmCMr3TfIR2tOWodqJOgmA6Kn0hmqk5WALPUXkQ-3REq83aapJZcr6mc7rHikmzz_C4FOpSgzaUy99pSpMUAzCmnRza-i0VhgpwNRXamzA0bYOdIvcDwd3V6OoPZwh0sDxROR4qjLgj1xrrtPUapHqzAluZcaNjC3LdGadZkC3QN9xT-UGyJAz0jBulcrZNun4yttdQvHoD8bSPBaxTI1BCtUHcaaf92TudNwlpzMFFZOmB0fRxM5F4cB5YUXzUbvkeKa9AjYJvo_0tqqnBdKaJMmASnbJTqPWuSTgN-hUwkgctPfrLYrh-DLBaDTYvkTs_X3KPlkGytXm_hyQzutLbQ_J4tTUR2HxfgIdHPA5
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-qpdgXra2tp7ZdoT4Gc9ns5vIktnpcqYqghb6F_ax5cHN4TcG_wH_bmU3uqAgFEfK27CbZ2Z3fb3Y-FuCL1EI7UcqkdN6igSJ5ohCHE--lyTLnZDakROHJRXH2a3R0TGVyDua5MF19iMWBG-2MqK9pg9OBdF8BiQxOTzFa5NIUvFiCl7nEtUg5HPx8oYrJNI00sswShNZRH_mO_ff_7f0Qkx4RzYe8NQLPeO3Zn_wGVnvOyQ67RbIOL1x4C6-6Wyhv38FdrFBbx4Qn5hViYmAqWGaImaM6DIzAjwTIanr-KttMG1u312yR-sgofv43Nl7Vuia_PQsqNLqhGMU4WBdx7iybtZqcBRT9yqyLUNqngm7Az_Hx5bdJ0t_PkBikeTLxItcFUkhhjDB57ozMTeGlcKoQVqWOF6Zw3nBkXCjydKhLi3zIW2W5cFqX_D0shya4TWB0-wfneZnKVOXWEosa4XB2VA5V6U06gL25hKppV4aj6tznsvJov_Cqm9QB7M7FV-E-of9RwTXtrCJmk2UFsskBfOjkuhgJKQ7ZldiSRvH99xXV-OJrRg5pVH-Z3Hp6l8-wMrk8PalOvp_92IbXyMD6UKAdWP5z07qPsDSz7ae4ku8BTnr0YQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS9xAEMCHamnxpba11lNbt1Afg7lsdnN5EWz1uGI5BFvoW9hPzUM3h2cE_4L-285sckdFEETI27Kbj9nd-U3mYwG-Si20E6VMSuctGiiSJwr1cOK9NFnmnMyGlCg8OS-mf0bHJ1Qm53CRC9PVh1j-cKOVEfdrWuAz6_sCSGRvegrRIo-m4MUKvMyRxKl2Pudny52YLNNIkWWWoGYd9YHv2P_g_973VdIDzryPrVHvjNef-8Rv4U1PnOyomyLv4IUL7-FVdwbl7Qb8i_Vp65juxLxCjRiYCpYZ4nLcDAMj1UfiYzVdN8o2s8bW7V-2THxkFD1_gY2Xta7Ja8-CCo1uKEIxDtbFmzvL5q0mVwHFvjLroiLtE0E_wO_xya_vk6Q_nSExCHky8SLXBQKkMEaYPHdG5qbwUjhVCKtSxwtTOG848hYKPB3q0iINeassF07rkm_CamiC2wJGZ39wnpepTFVuLTHUCIezo3KoSm_SAewvBFTNuiIcVec8l5VH64VX3UcdwJeF9CpcJfQ-KrimnVfENVlWIEsO4GMn1uVICDhkVWJLGqX36C2q8fm3jNzRuPllcvvpXfbg9dnxuPr5Y3q6A2uIX30c0C6sXl-17hOszG37Oc7jO14h8wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stratifying+fascin+and+cortactin+function+in+invadopodium+formation+using+inhibitory+nanobodies+and+targeted+subcellular+delocalization&rft.jtitle=The+FASEB+journal&rft.au=Van+Audenhove%2C+Isabel&rft.au=Boucherie%2C+Ciska&rft.au=Pieters%2C+Leen&rft.au=Zwaenepoel%2C+Olivier&rft.date=2014-04-01&rft.pub=The+Federation+of+American+Societies+for+Experimental+Biology&rft.issn=0892-6638&rft.eissn=1530-6860&rft.volume=28&rft.issue=4&rft.spage=1805&rft.epage=1818&rft_id=info:doi/10.1096%2Ffj.13-242537&rft.externalDBID=10.1096%252Ffj.13-242537&rft.externalDocID=FSB2028004026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6638&client=summon