A support vector machine formulation to PCA analysis and its kernel version
In this paper, we present a simple and straightforward primal-dual support vector machine formulation to the problem of principal component analysis (PCA) in dual variables. By considering a mapping to a high-dimensional feature space and application of the kernel trick (Mercer theorem), kernel PCA...
Saved in:
Published in: | IEEE transactions on neural networks Vol. 14; no. 2; pp. 447 - 450 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-03-2003
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present a simple and straightforward primal-dual support vector machine formulation to the problem of principal component analysis (PCA) in dual variables. By considering a mapping to a high-dimensional feature space and application of the kernel trick (Mercer theorem), kernel PCA is obtained as introduced by Scholkopf et al. (2002). While least squares support vector machine classifiers have a natural link with the kernel Fisher discriminant analysis (minimizing the within class scatter around targets +1 and -1), for PCA analysis one can take the interpretation of a one-class modeling problem with zero target value around which one maximizes the variance. The score variables are interpreted as error variables within the problem formulation. In this way primal-dual constrained optimization problem interpretations to the linear and kernel PCA analysis are obtained in a similar style as for least square-support vector machine classifiers. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1045-9227 1941-0093 |
DOI: | 10.1109/TNN.2003.809414 |