On the Cauchy Problem for the Homogeneous Boltzmann–Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments

The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Bolt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics Vol. 163; no. 5; pp. 1108 - 1156
Main Authors: Briant, Marc, Einav, Amit
Format: Journal Article
Language:English
Published: New York Springer US 01-06-2016
Springer
Springer Verlag
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann–Nordheim equation for bosons, in dimension d ⩾ 3 . We show existence and uniqueness locally in time for any initial data in L ∞ ( 1 + v s ) with finite mass and energy, for a suitable s , as well as the instantaneous creation of moments of all order.
AbstractList The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann–Nordheim equation for bosons, in dimension d ⩾ 3 . We show existence and uniqueness locally in time for any initial data in L ∞ ( 1 + v s ) with finite mass and energy, for a suitable s , as well as the instantaneous creation of moments of all order.
The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann-Nordheim equation for bosons, in dimension d 3. We show existence and uniqueness locally in time for any initial data in L ∞ (1 + |v| s) with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order.
The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann-Nordheim equation for bosons, in dimension . We show existence and uniqueness locally in time for any initial data in with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order.
Audience Academic
Author Briant, Marc
Einav, Amit
Author_xml – sequence: 1
  givenname: Marc
  surname: Briant
  fullname: Briant, Marc
  email: briant.maths@gmail.com
  organization: Division of Applied Mathematics, Brown University
– sequence: 2
  givenname: Amit
  surname: Einav
  fullname: Einav, Amit
  organization: Centre for Mathematical Sciences, University of Cambridge DPMMS
BackLink https://hal.science/hal-01492026$$DView record in HAL
BookMark eNp9kc1O3DAUhS0EEgP0Adh5i0Sof2InYTeMpp1K09JFWVu2x5kxSnzBTlBhxa4P0Dfsk9RDUJeVpWvp6Hz3SuecoMMAwSF0TskVJaT6mChphCgIlQUVtCqaAzSjomJFIyk_RDNCGCvKiopjdJLSPSGkqRsxQ79uAx52Di_0aHfP-HsE07ketxDf5BX0sHXBwZjwDXTDS69D-PP6-xvEzc75Hi8fRz14CG_EDSQI6RqvweoOL3_6NLhg3SW-C_5xzGtSwjps8CK6CYIWf4XehSGdoaNWd8l9eP9P0d2n5Y_Fqljffv6ymK8LW5JyKGphqNXMGG2k5KyiUpbMVIITXhstiRSC29q0XPDKSpNnTkfyDTekMnX2naKLae9Od-oh-l7HZwXaq9V8rfYaoWXDCJNPNHuvJu9Wd0750MIQtc1v43pvc_6tz_q8FJSJmtV7gE6AjZBSdO2_C5SofU1qqikfkWpfk2oywyYmZW_YuqjuYYwhZ_Af6C_q-Jdh
CitedBy_id crossref_primary_10_1007_s00220_021_04029_7
crossref_primary_10_1016_j_jcp_2023_112197
crossref_primary_10_1016_j_aim_2023_109234
crossref_primary_10_1016_j_jfa_2019_108315
crossref_primary_10_1016_j_jfa_2023_110197
crossref_primary_10_1007_s00205_021_01643_6
crossref_primary_10_1007_s40324_021_00281_y
crossref_primary_10_1016_j_jmaa_2017_12_052
crossref_primary_10_1016_j_jde_2022_01_056
crossref_primary_10_1016_j_jfa_2022_109737
crossref_primary_10_1137_19M1270021
crossref_primary_10_1016_j_aim_2017_12_007
crossref_primary_10_3934_krm_2022025
crossref_primary_10_1007_s10955_019_02258_8
crossref_primary_10_5802_jep_113
crossref_primary_10_1016_j_jfa_2018_09_010
crossref_primary_10_1007_s10955_019_02466_2
crossref_primary_10_1007_s10955_023_03082_x
crossref_primary_10_1016_j_jfa_2020_108570
Cites_doi 10.1007/978-1-4419-8524-8
10.1023/B:JOSS.0000041750.11320.9c
10.1007/BF02398270
10.1016/S0167-2789(01)00211-1
10.1007/s00205-009-0250-9
10.1007/s10909-006-9232-6
10.1103/PhysRevLett.74.3093
10.1103/PhysRevD.55.489
10.1007/s10955-014-1026-7
10.1007/s00220-014-2034-9
10.1098/rspa.1928.0126
10.1016/S0294-1449(99)80025-0
10.1007/s00222-014-0539-7
10.1016/S1874-5792(02)80004-0
10.1007/s10955-005-3767-9
10.1007/978-1-4612-1039-9
10.1016/j.physd.2010.01.018
10.1007/BF01011586
10.1023/A:1018628031233
10.1023/A:1004606525200
10.1007/BF00253392
10.1142/S0129055X14500019
10.1007/BF00253393
10.1007/978-3-642-45892-7_3
10.1007/3-540-07171-7_1
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
COPYRIGHT 2016 Springer
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: COPYRIGHT 2016 Springer
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s10955-016-1517-9
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Physics
Mathematics
EISSN 1572-9613
EndPage 1156
ExternalDocumentID oai_HAL_hal_01492026v1
A451258281
10_1007_s10955_016_1517_9
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBEA
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFFNX
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
XFK
XOL
YLTOR
YQT
YYP
Z45
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
AMMEW
CITATION
H13
1XC
VOOES
ID FETCH-LOGICAL-c404t-85b1ca2bbab6632716642b753038ba606553c8bf3537c6b53710063d3b07b8753
IEDL.DBID AEJHL
ISSN 0022-4715
IngestDate Tue Oct 15 15:52:20 EDT 2024
Tue Nov 12 22:43:42 EST 2024
Thu Nov 21 23:41:10 EST 2024
Sat Dec 16 12:04:33 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Subcritical solutions
Boltzmann–Nordheim equation
Bose–Einstein condensation
Kinetic model for bosons
Local Cauchy problem
Boltzmann-Nordheim equation
Bose- Einstein condensattion
Local Cauchy Problem
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-85b1ca2bbab6632716642b753038ba606553c8bf3537c6b53710063d3b07b8753
ORCID 0000-0003-3745-9061
OpenAccessLink https://hal.science/hal-01492026
PageCount 49
ParticipantIDs hal_primary_oai_HAL_hal_01492026v1
gale_infotracacademiconefile_A451258281
crossref_primary_10_1007_s10955_016_1517_9
springer_journals_10_1007_s10955_016_1517_9
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle 1
PublicationTitle Journal of statistical physics
PublicationTitleAbbrev J Stat Phys
PublicationYear 2016
Publisher Springer US
Springer
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Verlag
References Cercignani (CR6) 1988
Spohn (CR29) 2010; 239
Lu (CR19) 2000; 98
Josserand, Pomeau, Rica (CR15) 2006; 45
Carleman (CR4) 1933; 60
CR17
CR13
Mischler, Wennberg (CR23) 1999; 16
Arkeryd (CR1) 1972; 45
Semikov, Tkachev (CR27) 1995; 74
Semikov, Tkachev (CR28) 1997; 55
Gallagher, Saint-Raymond, Texier (CR11) 2013
Lu (CR20) 2004; 116
Lu (CR22) 2014; 156
Arkeryd (CR3) 1983; 31
Cercignani, Illner, Pulvirenti (CR7) 1994
Escobedo, Velázquez (CR10) 2015; 200
CR5
CR8
CR26
Gamba, Panferov, Villani (CR12) 2009; 194
Escobedo, Velázquez (CR9) 2014; 330
Villani, Friedlander, Serre (CR30) 2002
Arkeryd (CR2) 1972; 45
Huang (CR14) 1963
Lu (CR18) 1999; 96
Povzner (CR25) 1962; 58
Lu (CR21) 2005; 119
Nordheim (CR24) 1928; 119
Lacaze, Lallemand, Pomeau, Rica (CR16) 2001; 152
I Gallagher (1517_CR11) 2013
T Carleman (1517_CR4) 1933; 60
C Villani (1517_CR30) 2002
L Arkeryd (1517_CR1) 1972; 45
X Lu (1517_CR18) 1999; 96
D Semikov (1517_CR28) 1997; 55
C Cercignani (1517_CR6) 1988
H Spohn (1517_CR29) 2010; 239
AJ Povzner (1517_CR25) 1962; 58
1517_CR17
X Lu (1517_CR21) 2005; 119
D Semikov (1517_CR27) 1995; 74
C Cercignani (1517_CR7) 1994
1517_CR13
R Lacaze (1517_CR16) 2001; 152
M Escobedo (1517_CR9) 2014; 330
1517_CR8
X Lu (1517_CR22) 2014; 156
K Huang (1517_CR14) 1963
1517_CR5
L Arkeryd (1517_CR2) 1972; 45
M Escobedo (1517_CR10) 2015; 200
L Nordheim (1517_CR24) 1928; 119
X Lu (1517_CR20) 2004; 116
C Josserand (1517_CR15) 2006; 45
1517_CR26
L Arkeryd (1517_CR3) 1983; 31
IM Gamba (1517_CR12) 2009; 194
X Lu (1517_CR19) 2000; 98
S Mischler (1517_CR23) 1999; 16
References_xml – year: 1994
  ident: CR7
  publication-title: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences
  doi: 10.1007/978-1-4419-8524-8
  contributor:
    fullname: Pulvirenti
– volume: 116
  start-page: 1597
  issue: 5–6
  year: 2004
  end-page: 1649
  ident: CR20
  article-title: On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles
  publication-title: J. Stat. Phys.
  doi: 10.1023/B:JOSS.0000041750.11320.9c
  contributor:
    fullname: Lu
– volume: 60
  start-page: 91
  issue: 1
  year: 1933
  end-page: 146
  ident: CR4
  article-title: Sur la théorie de l’équation intégrodifférentielle de Boltzmann
  publication-title: Acta Math.
  doi: 10.1007/BF02398270
  contributor:
    fullname: Carleman
– volume: 152
  start-page: 779
  issue: 1
  year: 2001
  end-page: 786
  ident: CR16
  article-title: Dynamical formation of a boseeinstein condensate
  publication-title: Physica D
  doi: 10.1016/S0167-2789(01)00211-1
  contributor:
    fullname: Rica
– volume: 194
  start-page: 253
  issue: 1
  year: 2009
  end-page: 282
  ident: CR12
  article-title: Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-009-0250-9
  contributor:
    fullname: Villani
– volume: 45
  start-page: 231
  year: 2006
  end-page: 265
  ident: CR15
  article-title: Self-similar singularities in the kinetics of condensation
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-006-9232-6
  contributor:
    fullname: Rica
– volume: 74
  start-page: 3093
  year: 1995
  end-page: 3097
  ident: CR27
  article-title: Kinetics Bose condensation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3093
  contributor:
    fullname: Tkachev
– year: 1963
  ident: CR14
  publication-title: Statistical Mechanics
  contributor:
    fullname: Huang
– volume: 55
  start-page: 489
  issue: 2
  year: 1997
  end-page: 502
  ident: CR28
  article-title: Condensation of Bosons in the kinetic regime
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.489
  contributor:
    fullname: Tkachev
– volume: 156
  start-page: 493
  issue: 3
  year: 2014
  end-page: 545
  ident: CR22
  article-title: The Boltzmann equation for Bose-Einstein particles: regularity and condensation
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-014-1026-7
  contributor:
    fullname: Lu
– ident: CR8
– volume: 330
  start-page: 331
  issue: 1
  year: 2014
  end-page: 365
  ident: CR9
  article-title: On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2034-9
  contributor:
    fullname: Velázquez
– volume: 119
  start-page: 689
  year: 1928
  ident: CR24
  article-title: On the kinetic method in the new statistics and its application in the electron theory of conductivity
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1928.0126
  contributor:
    fullname: Nordheim
– volume: 58
  start-page: 65
  issue: 100
  year: 1962
  end-page: 86
  ident: CR25
  article-title: On the Boltzmann equation in the kinetic theory of gases
  publication-title: Mat. Sb. (N.S.)
  contributor:
    fullname: Povzner
– volume: 45
  start-page: 17
  year: 1972
  end-page: 34
  ident: CR2
  article-title: On the Boltzmann equation. II. The full initial value problem
  publication-title: Arch. Ration. Mech. Anal.
  contributor:
    fullname: Arkeryd
– volume: 45
  start-page: 1
  year: 1972
  end-page: 16
  ident: CR1
  article-title: On the Boltzmann equation. I. Existence
  publication-title: Arch. Ration. Mech. Anal.
  contributor:
    fullname: Arkeryd
– volume: 16
  start-page: 467
  issue: 4
  year: 1999
  end-page: 501
  ident: CR23
  article-title: On the spatially homogeneous Boltzmann equation
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/S0294-1449(99)80025-0
  contributor:
    fullname: Wennberg
– year: 2013
  ident: CR11
  publication-title: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. Zurich Lectures in Advanced Mathematics
  contributor:
    fullname: Texier
– volume: 200
  start-page: 761
  issue: 3
  year: 2015
  end-page: 847
  ident: CR10
  article-title: Finite time blow-up for the bosonic Nordheim equation
  publication-title: Invent. Math.
  doi: 10.1007/s00222-014-0539-7
  contributor:
    fullname: Velázquez
– start-page: 71
  year: 2002
  end-page: 305
  ident: CR30
  article-title: A review of mathematical topics in collisional kinetic theory
  publication-title: Handbook of Mathematical Fluid Dynamics
  doi: 10.1016/S1874-5792(02)80004-0
  contributor:
    fullname: Serre
– volume: 119
  start-page: 1027
  issue: 5–6
  year: 2005
  end-page: 1067
  ident: CR21
  article-title: The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-005-3767-9
  contributor:
    fullname: Lu
– year: 1988
  ident: CR6
  publication-title: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences
  doi: 10.1007/978-1-4612-1039-9
  contributor:
    fullname: Cercignani
– ident: CR17
– volume: 239
  start-page: 627
  issue: 10
  year: 2010
  end-page: 634
  ident: CR29
  article-title: Kinetics of the Bose-Einstein condensation
  publication-title: Physica D
  doi: 10.1016/j.physd.2010.01.018
  contributor:
    fullname: Spohn
– ident: CR13
– volume: 31
  start-page: 2
  year: 1983
  ident: CR3
  article-title: L estimates for the space-homogeneous boltzmann equation
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01011586
  contributor:
    fullname: Arkeryd
– ident: CR5
– volume: 98
  start-page: 1335
  issue: 5–6
  year: 2000
  end-page: 1394
  ident: CR19
  article-title: A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1018628031233
  contributor:
    fullname: Lu
– volume: 96
  start-page: 765
  issue: 3–4
  year: 1999
  end-page: 796
  ident: CR18
  article-title: Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1004606525200
  contributor:
    fullname: Lu
– ident: CR26
– volume: 119
  start-page: 689
  year: 1928
  ident: 1517_CR24
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1928.0126
  contributor:
    fullname: L Nordheim
– ident: 1517_CR5
– volume: 330
  start-page: 331
  issue: 1
  year: 2014
  ident: 1517_CR9
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2034-9
  contributor:
    fullname: M Escobedo
– volume: 45
  start-page: 1
  year: 1972
  ident: 1517_CR1
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253392
  contributor:
    fullname: L Arkeryd
– volume-title: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences
  year: 1988
  ident: 1517_CR6
  doi: 10.1007/978-1-4612-1039-9
  contributor:
    fullname: C Cercignani
– ident: 1517_CR26
  doi: 10.1142/S0129055X14500019
– volume-title: Statistical Mechanics
  year: 1963
  ident: 1517_CR14
  contributor:
    fullname: K Huang
– volume: 156
  start-page: 493
  issue: 3
  year: 2014
  ident: 1517_CR22
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-014-1026-7
  contributor:
    fullname: X Lu
– volume-title: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. Zurich Lectures in Advanced Mathematics
  year: 2013
  ident: 1517_CR11
  contributor:
    fullname: I Gallagher
– volume: 119
  start-page: 1027
  issue: 5–6
  year: 2005
  ident: 1517_CR21
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-005-3767-9
  contributor:
    fullname: X Lu
– volume: 152
  start-page: 779
  issue: 1
  year: 2001
  ident: 1517_CR16
  publication-title: Physica D
  doi: 10.1016/S0167-2789(01)00211-1
  contributor:
    fullname: R Lacaze
– volume: 200
  start-page: 761
  issue: 3
  year: 2015
  ident: 1517_CR10
  publication-title: Invent. Math.
  doi: 10.1007/s00222-014-0539-7
  contributor:
    fullname: M Escobedo
– volume: 194
  start-page: 253
  issue: 1
  year: 2009
  ident: 1517_CR12
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-009-0250-9
  contributor:
    fullname: IM Gamba
– volume: 45
  start-page: 17
  year: 1972
  ident: 1517_CR2
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253393
  contributor:
    fullname: L Arkeryd
– volume-title: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences
  year: 1994
  ident: 1517_CR7
  doi: 10.1007/978-1-4419-8524-8
  contributor:
    fullname: C Cercignani
– ident: 1517_CR8
– volume: 58
  start-page: 65
  issue: 100
  year: 1962
  ident: 1517_CR25
  publication-title: Mat. Sb. (N.S.)
  contributor:
    fullname: AJ Povzner
– volume: 116
  start-page: 1597
  issue: 5–6
  year: 2004
  ident: 1517_CR20
  publication-title: J. Stat. Phys.
  doi: 10.1023/B:JOSS.0000041750.11320.9c
  contributor:
    fullname: X Lu
– volume: 239
  start-page: 627
  issue: 10
  year: 2010
  ident: 1517_CR29
  publication-title: Physica D
  doi: 10.1016/j.physd.2010.01.018
  contributor:
    fullname: H Spohn
– volume: 16
  start-page: 467
  issue: 4
  year: 1999
  ident: 1517_CR23
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/S0294-1449(99)80025-0
  contributor:
    fullname: S Mischler
– volume: 55
  start-page: 489
  issue: 2
  year: 1997
  ident: 1517_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.489
  contributor:
    fullname: D Semikov
– volume: 45
  start-page: 231
  year: 2006
  ident: 1517_CR15
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-006-9232-6
  contributor:
    fullname: C Josserand
– volume: 98
  start-page: 1335
  issue: 5–6
  year: 2000
  ident: 1517_CR19
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1018628031233
  contributor:
    fullname: X Lu
– volume: 74
  start-page: 3093
  year: 1995
  ident: 1517_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3093
  contributor:
    fullname: D Semikov
– volume: 31
  start-page: 2
  year: 1983
  ident: 1517_CR3
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01011586
  contributor:
    fullname: L Arkeryd
– ident: 1517_CR13
  doi: 10.1007/978-3-642-45892-7_3
– volume: 60
  start-page: 91
  issue: 1
  year: 1933
  ident: 1517_CR4
  publication-title: Acta Math.
  doi: 10.1007/BF02398270
  contributor:
    fullname: T Carleman
– start-page: 71
  volume-title: Handbook of Mathematical Fluid Dynamics
  year: 2002
  ident: 1517_CR30
  doi: 10.1016/S1874-5792(02)80004-0
  contributor:
    fullname: C Villani
– ident: 1517_CR17
  doi: 10.1007/3-540-07171-7_1
– volume: 96
  start-page: 765
  issue: 3–4
  year: 1999
  ident: 1517_CR18
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1004606525200
  contributor:
    fullname: X Lu
SSID ssj0009895
Score 2.3824897
Snippet The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution...
The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution...
SourceID hal
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1108
SubjectTerms Analysis of PDEs
Mathematical and Computational Physics
Mathematical Physics
Mathematics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
Title On the Cauchy Problem for the Homogeneous Boltzmann–Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments
URI https://link.springer.com/article/10.1007/s10955-016-1517-9
https://hal.science/hal-01492026
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7ihIIvebWlzoulBAJtVazH2uveHFtGFMcttIb4JHZXEi6tpSSyQ9JTb_0B-Yf5JZlZSXZb2kN6kUCsVmJndub79vEtwDEi7JYQnFtebCNBkRgHO5g3LN32lK1FpFwzpht8ao_ORd8nmRxnOXSRfn1bzUiaQP3LXrcOp3VmLQuTFNZYgw1MPRx9e6Prvw-GK6ld0eGVRjiGXl7NZf6tkt-yURmTa1NaEvnHvKhJN4Ot__nRbdgswSXrFt6wA2txugtPzCJPne9CnZBlIcz8FH5-SBmCP9aTCz29ZR-Lg2UYYljzOMhmGfpWnC1ydpp9m3-fyTS9_3E3QrI6jb_MmH9ZiISbN04zhO35OzakzMj8G_Id9KY3bGz0YSmcMplGrFdCVJYl7Cwzu-uewXjgf-4FVnkqg6W9pje3BEcjSkcpqRCtOMi3kMIoZD1NVyiJfIhzVwuVuNxt65bCq004KHJVs62IHT2H9TRL4xfAlEi0nSAC00nitRCqmfEo2VRYZ6RU1IBXlXXCi0J8I1zJLFMzh7RAjZo57DTghOwXUsecX0kty_0F-CmSuAq7HmIbmiS0G_ASTbyskQS2g-4wpGdEGB2kpddY6HVl3rDs1vm_P773qNL7UHfIP8xgzgGsz68W8SHU8mhxVDoz3c8nk_4DAy_t6g
link.rule.ids 230,315,782,786,887,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6RIFQuPFsRXl1VSJXaWoofm2y4hRBk1BCQChKcVrtrW6lE7BYnVeHEjR_AP-SXMLO2oa3oob34sLLX1s545vt2Z78F2EGE3RKCcyeIXSQoCuNgB_OGY9qBdo2ItG_ndMMv7eG52O-TTI5f7YWx1e7VkqSN1L9sdutwKjRrOZilsMsazJLYuVeH2e75xcX-s9au6PBKJBxjL68WM1_q5Ld0VAbl2ohqIv9YGLX55mDxv750CRZKeMm6hT8sw0ycrsCcLfM0-QrME7YspJlX4e44ZQj_WE9NzeianRRHyzBEsbY5zMYZelecTXO2l11ObsYqTR9u74dIV0fx1zHrfy9kwu0TexkC93yXDSg3sv5P8h70p0_szCrEUkBlKo1YrwSpLEvYUWb3172Gs4P-aS90ynMZHBM0g4kjOJpReVorjXjFQ8aFJEYj72n6QitkRJz7RujE537btDReXUJCka-bbU386A3U0yyN14BpkRg3QQxmkiRoIVizM1KqqbHPSOuoAR8q88hvhfyGfBZapmGWVKJGwyw7DXhPBpT0a06ulFHlDgN8FYlcyW6A6IaWCd0GvEMbP_VIEtthdyCpjSijh8T0B970sTKvLH_s_O8vX_-nu9_Cq_D0aCAHh8PPGzDvka_YqZ1NqE-upvEW1PJoul169iMpt_Bq
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH5aQUNc2AabVhibNU2axIhomrh1d5lKSZVtXUECJG6W7SQqEk2ApAg4ceMH7B_ul_Cek4xt2g4TlxyixI78nv2-z37vC8A7RNgdITh3_NhFgqJwHexh3HBM19euEZH27J5uuN8dH4mdgGRyPtW1MDbbvT6SLGsaSKUpLbZOo2Trl8K3Hqeks46DEQubb8C8j0QGHX2-H3wJR_e6u6LHa8FwXId5fbD5t0Z-C03VAt2YUH7kH4ekNvYMnzz4q5_CUgU7Wb_0k2fwKE6X4bFN_zT5MiwS5iwlm1fgdjdlCAvZQM3M5Irtlb-cYYhu7e0wm2bodXE2y9l2dlJcT1Wa_rj5PkYaO4mPpyw4K-XD7RvbGQL6_CMbUcxkwSV5FfrZJju0yrG00DKVRmxQgVeWJexbZuvunsPhMDgYhE71vwbH-C2_cARH86q21kojjmkjE0Nyo5EPtTyhFTIlzj0jdOJxr2s6Gq8uIaTI062uJt70AubSLI1fAtMiMW6C2Mwkid9BEGd3qlRLY5uR1lETNmpTydNSlkPeCzDTMEtKXaNhlr0mvCdjSpqyxbkyqqo8wK5I_Er2fUQ9dHzoNuEt2vtniyS9HfZHku4RlWwjYb3Ahz7UppbVhM__3fnqfz39Bhb2doZy9Hn8dQ0W2-QqdsfnFcwV57N4HRp5NHtdOfkdl5z46w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Cauchy+Problem+for+the+Homogeneous+Boltzmann%E2%80%93Nordheim+Equation+for+Bosons%3A+Local+Existence%2C+Uniqueness+and+Creation+of+Moments&rft.jtitle=Journal+of+statistical+physics&rft.au=Briant%2C+Marc&rft.au=Einav%2C+Amit&rft.date=2016-06-01&rft.pub=Springer+US&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=163&rft.issue=5&rft.spage=1108&rft.epage=1156&rft_id=info:doi/10.1007%2Fs10955-016-1517-9&rft.externalDocID=10_1007_s10955_016_1517_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon