On the Cauchy Problem for the Homogeneous Boltzmann–Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments
The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Bolt...
Saved in:
Published in: | Journal of statistical physics Vol. 163; no. 5; pp. 1108 - 1156 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-06-2016
Springer Springer Verlag |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann–Nordheim equation for bosons, in dimension
d
⩾
3
. We show existence and uniqueness locally in time for any initial data in
L
∞
(
1
+
v
s
)
with finite mass and energy, for a suitable
s
, as well as the instantaneous creation of moments of all order. |
---|---|
AbstractList | The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann–Nordheim equation for bosons, in dimension
d
⩾
3
. We show existence and uniqueness locally in time for any initial data in
L
∞
(
1
+
v
s
)
with finite mass and energy, for a suitable
s
, as well as the instantaneous creation of moments of all order. The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann-Nordheim equation for bosons, in dimension d 3. We show existence and uniqueness locally in time for any initial data in L ∞ (1 + |v| s) with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order. The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann-Nordheim equation for bosons, in dimension . We show existence and uniqueness locally in time for any initial data in with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order. |
Audience | Academic |
Author | Briant, Marc Einav, Amit |
Author_xml | – sequence: 1 givenname: Marc surname: Briant fullname: Briant, Marc email: briant.maths@gmail.com organization: Division of Applied Mathematics, Brown University – sequence: 2 givenname: Amit surname: Einav fullname: Einav, Amit organization: Centre for Mathematical Sciences, University of Cambridge DPMMS |
BackLink | https://hal.science/hal-01492026$$DView record in HAL |
BookMark | eNp9kc1O3DAUhS0EEgP0Adh5i0Sof2InYTeMpp1K09JFWVu2x5kxSnzBTlBhxa4P0Dfsk9RDUJeVpWvp6Hz3SuecoMMAwSF0TskVJaT6mChphCgIlQUVtCqaAzSjomJFIyk_RDNCGCvKiopjdJLSPSGkqRsxQ79uAx52Di_0aHfP-HsE07ketxDf5BX0sHXBwZjwDXTDS69D-PP6-xvEzc75Hi8fRz14CG_EDSQI6RqvweoOL3_6NLhg3SW-C_5xzGtSwjps8CK6CYIWf4XehSGdoaNWd8l9eP9P0d2n5Y_Fqljffv6ymK8LW5JyKGphqNXMGG2k5KyiUpbMVIITXhstiRSC29q0XPDKSpNnTkfyDTekMnX2naKLae9Od-oh-l7HZwXaq9V8rfYaoWXDCJNPNHuvJu9Wd0750MIQtc1v43pvc_6tz_q8FJSJmtV7gE6AjZBSdO2_C5SofU1qqikfkWpfk2oywyYmZW_YuqjuYYwhZ_Af6C_q-Jdh |
CitedBy_id | crossref_primary_10_1007_s00220_021_04029_7 crossref_primary_10_1016_j_jcp_2023_112197 crossref_primary_10_1016_j_aim_2023_109234 crossref_primary_10_1016_j_jfa_2019_108315 crossref_primary_10_1016_j_jfa_2023_110197 crossref_primary_10_1007_s00205_021_01643_6 crossref_primary_10_1007_s40324_021_00281_y crossref_primary_10_1016_j_jmaa_2017_12_052 crossref_primary_10_1016_j_jde_2022_01_056 crossref_primary_10_1016_j_jfa_2022_109737 crossref_primary_10_1137_19M1270021 crossref_primary_10_1016_j_aim_2017_12_007 crossref_primary_10_3934_krm_2022025 crossref_primary_10_1007_s10955_019_02258_8 crossref_primary_10_5802_jep_113 crossref_primary_10_1016_j_jfa_2018_09_010 crossref_primary_10_1007_s10955_019_02466_2 crossref_primary_10_1007_s10955_023_03082_x crossref_primary_10_1016_j_jfa_2020_108570 |
Cites_doi | 10.1007/978-1-4419-8524-8 10.1023/B:JOSS.0000041750.11320.9c 10.1007/BF02398270 10.1016/S0167-2789(01)00211-1 10.1007/s00205-009-0250-9 10.1007/s10909-006-9232-6 10.1103/PhysRevLett.74.3093 10.1103/PhysRevD.55.489 10.1007/s10955-014-1026-7 10.1007/s00220-014-2034-9 10.1098/rspa.1928.0126 10.1016/S0294-1449(99)80025-0 10.1007/s00222-014-0539-7 10.1016/S1874-5792(02)80004-0 10.1007/s10955-005-3767-9 10.1007/978-1-4612-1039-9 10.1016/j.physd.2010.01.018 10.1007/BF01011586 10.1023/A:1018628031233 10.1023/A:1004606525200 10.1007/BF00253392 10.1142/S0129055X14500019 10.1007/BF00253393 10.1007/978-3-642-45892-7_3 10.1007/3-540-07171-7_1 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 COPYRIGHT 2016 Springer Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: COPYRIGHT 2016 Springer – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1007/s10955-016-1517-9 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Physics Mathematics |
EISSN | 1572-9613 |
EndPage | 1156 |
ExternalDocumentID | oai_HAL_hal_01492026v1 A451258281 10_1007_s10955_016_1517_9 |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBEA ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFFNX AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 XFK XOL YLTOR YQT YYP Z45 Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU AMMEW CITATION H13 1XC VOOES |
ID | FETCH-LOGICAL-c404t-85b1ca2bbab6632716642b753038ba606553c8bf3537c6b53710063d3b07b8753 |
IEDL.DBID | AEJHL |
ISSN | 0022-4715 |
IngestDate | Tue Oct 15 15:52:20 EDT 2024 Tue Nov 12 22:43:42 EST 2024 Thu Nov 21 23:41:10 EST 2024 Sat Dec 16 12:04:33 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Subcritical solutions Boltzmann–Nordheim equation Bose–Einstein condensation Kinetic model for bosons Local Cauchy problem Boltzmann-Nordheim equation Bose- Einstein condensattion Local Cauchy Problem |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-85b1ca2bbab6632716642b753038ba606553c8bf3537c6b53710063d3b07b8753 |
ORCID | 0000-0003-3745-9061 |
OpenAccessLink | https://hal.science/hal-01492026 |
PageCount | 49 |
ParticipantIDs | hal_primary_oai_HAL_hal_01492026v1 gale_infotracacademiconefile_A451258281 crossref_primary_10_1007_s10955_016_1517_9 springer_journals_10_1007_s10955_016_1517_9 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | 1 |
PublicationTitle | Journal of statistical physics |
PublicationTitleAbbrev | J Stat Phys |
PublicationYear | 2016 |
Publisher | Springer US Springer Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Verlag |
References | Cercignani (CR6) 1988 Spohn (CR29) 2010; 239 Lu (CR19) 2000; 98 Josserand, Pomeau, Rica (CR15) 2006; 45 Carleman (CR4) 1933; 60 CR17 CR13 Mischler, Wennberg (CR23) 1999; 16 Arkeryd (CR1) 1972; 45 Semikov, Tkachev (CR27) 1995; 74 Semikov, Tkachev (CR28) 1997; 55 Gallagher, Saint-Raymond, Texier (CR11) 2013 Lu (CR20) 2004; 116 Lu (CR22) 2014; 156 Arkeryd (CR3) 1983; 31 Cercignani, Illner, Pulvirenti (CR7) 1994 Escobedo, Velázquez (CR10) 2015; 200 CR5 CR8 CR26 Gamba, Panferov, Villani (CR12) 2009; 194 Escobedo, Velázquez (CR9) 2014; 330 Villani, Friedlander, Serre (CR30) 2002 Arkeryd (CR2) 1972; 45 Huang (CR14) 1963 Lu (CR18) 1999; 96 Povzner (CR25) 1962; 58 Lu (CR21) 2005; 119 Nordheim (CR24) 1928; 119 Lacaze, Lallemand, Pomeau, Rica (CR16) 2001; 152 I Gallagher (1517_CR11) 2013 T Carleman (1517_CR4) 1933; 60 C Villani (1517_CR30) 2002 L Arkeryd (1517_CR1) 1972; 45 X Lu (1517_CR18) 1999; 96 D Semikov (1517_CR28) 1997; 55 C Cercignani (1517_CR6) 1988 H Spohn (1517_CR29) 2010; 239 AJ Povzner (1517_CR25) 1962; 58 1517_CR17 X Lu (1517_CR21) 2005; 119 D Semikov (1517_CR27) 1995; 74 C Cercignani (1517_CR7) 1994 1517_CR13 R Lacaze (1517_CR16) 2001; 152 M Escobedo (1517_CR9) 2014; 330 1517_CR8 X Lu (1517_CR22) 2014; 156 K Huang (1517_CR14) 1963 1517_CR5 L Arkeryd (1517_CR2) 1972; 45 M Escobedo (1517_CR10) 2015; 200 L Nordheim (1517_CR24) 1928; 119 X Lu (1517_CR20) 2004; 116 C Josserand (1517_CR15) 2006; 45 1517_CR26 L Arkeryd (1517_CR3) 1983; 31 IM Gamba (1517_CR12) 2009; 194 X Lu (1517_CR19) 2000; 98 S Mischler (1517_CR23) 1999; 16 |
References_xml | – year: 1994 ident: CR7 publication-title: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences doi: 10.1007/978-1-4419-8524-8 contributor: fullname: Pulvirenti – volume: 116 start-page: 1597 issue: 5–6 year: 2004 end-page: 1649 ident: CR20 article-title: On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles publication-title: J. Stat. Phys. doi: 10.1023/B:JOSS.0000041750.11320.9c contributor: fullname: Lu – volume: 60 start-page: 91 issue: 1 year: 1933 end-page: 146 ident: CR4 article-title: Sur la théorie de l’équation intégrodifférentielle de Boltzmann publication-title: Acta Math. doi: 10.1007/BF02398270 contributor: fullname: Carleman – volume: 152 start-page: 779 issue: 1 year: 2001 end-page: 786 ident: CR16 article-title: Dynamical formation of a boseeinstein condensate publication-title: Physica D doi: 10.1016/S0167-2789(01)00211-1 contributor: fullname: Rica – volume: 194 start-page: 253 issue: 1 year: 2009 end-page: 282 ident: CR12 article-title: Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-009-0250-9 contributor: fullname: Villani – volume: 45 start-page: 231 year: 2006 end-page: 265 ident: CR15 article-title: Self-similar singularities in the kinetics of condensation publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-006-9232-6 contributor: fullname: Rica – volume: 74 start-page: 3093 year: 1995 end-page: 3097 ident: CR27 article-title: Kinetics Bose condensation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3093 contributor: fullname: Tkachev – year: 1963 ident: CR14 publication-title: Statistical Mechanics contributor: fullname: Huang – volume: 55 start-page: 489 issue: 2 year: 1997 end-page: 502 ident: CR28 article-title: Condensation of Bosons in the kinetic regime publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.55.489 contributor: fullname: Tkachev – volume: 156 start-page: 493 issue: 3 year: 2014 end-page: 545 ident: CR22 article-title: The Boltzmann equation for Bose-Einstein particles: regularity and condensation publication-title: J. Stat. Phys. doi: 10.1007/s10955-014-1026-7 contributor: fullname: Lu – ident: CR8 – volume: 330 start-page: 331 issue: 1 year: 2014 end-page: 365 ident: CR9 article-title: On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-2034-9 contributor: fullname: Velázquez – volume: 119 start-page: 689 year: 1928 ident: CR24 article-title: On the kinetic method in the new statistics and its application in the electron theory of conductivity publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1928.0126 contributor: fullname: Nordheim – volume: 58 start-page: 65 issue: 100 year: 1962 end-page: 86 ident: CR25 article-title: On the Boltzmann equation in the kinetic theory of gases publication-title: Mat. Sb. (N.S.) contributor: fullname: Povzner – volume: 45 start-page: 17 year: 1972 end-page: 34 ident: CR2 article-title: On the Boltzmann equation. II. The full initial value problem publication-title: Arch. Ration. Mech. Anal. contributor: fullname: Arkeryd – volume: 45 start-page: 1 year: 1972 end-page: 16 ident: CR1 article-title: On the Boltzmann equation. I. Existence publication-title: Arch. Ration. Mech. Anal. contributor: fullname: Arkeryd – volume: 16 start-page: 467 issue: 4 year: 1999 end-page: 501 ident: CR23 article-title: On the spatially homogeneous Boltzmann equation publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/S0294-1449(99)80025-0 contributor: fullname: Wennberg – year: 2013 ident: CR11 publication-title: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. Zurich Lectures in Advanced Mathematics contributor: fullname: Texier – volume: 200 start-page: 761 issue: 3 year: 2015 end-page: 847 ident: CR10 article-title: Finite time blow-up for the bosonic Nordheim equation publication-title: Invent. Math. doi: 10.1007/s00222-014-0539-7 contributor: fullname: Velázquez – start-page: 71 year: 2002 end-page: 305 ident: CR30 article-title: A review of mathematical topics in collisional kinetic theory publication-title: Handbook of Mathematical Fluid Dynamics doi: 10.1016/S1874-5792(02)80004-0 contributor: fullname: Serre – volume: 119 start-page: 1027 issue: 5–6 year: 2005 end-page: 1067 ident: CR21 article-title: The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium publication-title: J. Stat. Phys. doi: 10.1007/s10955-005-3767-9 contributor: fullname: Lu – year: 1988 ident: CR6 publication-title: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences doi: 10.1007/978-1-4612-1039-9 contributor: fullname: Cercignani – ident: CR17 – volume: 239 start-page: 627 issue: 10 year: 2010 end-page: 634 ident: CR29 article-title: Kinetics of the Bose-Einstein condensation publication-title: Physica D doi: 10.1016/j.physd.2010.01.018 contributor: fullname: Spohn – ident: CR13 – volume: 31 start-page: 2 year: 1983 ident: CR3 article-title: L estimates for the space-homogeneous boltzmann equation publication-title: J. Stat. Phys. doi: 10.1007/BF01011586 contributor: fullname: Arkeryd – ident: CR5 – volume: 98 start-page: 1335 issue: 5–6 year: 2000 end-page: 1394 ident: CR19 article-title: A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior publication-title: J. Stat. Phys. doi: 10.1023/A:1018628031233 contributor: fullname: Lu – volume: 96 start-page: 765 issue: 3–4 year: 1999 end-page: 796 ident: CR18 article-title: Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation publication-title: J. Stat. Phys. doi: 10.1023/A:1004606525200 contributor: fullname: Lu – ident: CR26 – volume: 119 start-page: 689 year: 1928 ident: 1517_CR24 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1928.0126 contributor: fullname: L Nordheim – ident: 1517_CR5 – volume: 330 start-page: 331 issue: 1 year: 2014 ident: 1517_CR9 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-2034-9 contributor: fullname: M Escobedo – volume: 45 start-page: 1 year: 1972 ident: 1517_CR1 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253392 contributor: fullname: L Arkeryd – volume-title: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences year: 1988 ident: 1517_CR6 doi: 10.1007/978-1-4612-1039-9 contributor: fullname: C Cercignani – ident: 1517_CR26 doi: 10.1142/S0129055X14500019 – volume-title: Statistical Mechanics year: 1963 ident: 1517_CR14 contributor: fullname: K Huang – volume: 156 start-page: 493 issue: 3 year: 2014 ident: 1517_CR22 publication-title: J. Stat. Phys. doi: 10.1007/s10955-014-1026-7 contributor: fullname: X Lu – volume-title: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. Zurich Lectures in Advanced Mathematics year: 2013 ident: 1517_CR11 contributor: fullname: I Gallagher – volume: 119 start-page: 1027 issue: 5–6 year: 2005 ident: 1517_CR21 publication-title: J. Stat. Phys. doi: 10.1007/s10955-005-3767-9 contributor: fullname: X Lu – volume: 152 start-page: 779 issue: 1 year: 2001 ident: 1517_CR16 publication-title: Physica D doi: 10.1016/S0167-2789(01)00211-1 contributor: fullname: R Lacaze – volume: 200 start-page: 761 issue: 3 year: 2015 ident: 1517_CR10 publication-title: Invent. Math. doi: 10.1007/s00222-014-0539-7 contributor: fullname: M Escobedo – volume: 194 start-page: 253 issue: 1 year: 2009 ident: 1517_CR12 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-009-0250-9 contributor: fullname: IM Gamba – volume: 45 start-page: 17 year: 1972 ident: 1517_CR2 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253393 contributor: fullname: L Arkeryd – volume-title: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences year: 1994 ident: 1517_CR7 doi: 10.1007/978-1-4419-8524-8 contributor: fullname: C Cercignani – ident: 1517_CR8 – volume: 58 start-page: 65 issue: 100 year: 1962 ident: 1517_CR25 publication-title: Mat. Sb. (N.S.) contributor: fullname: AJ Povzner – volume: 116 start-page: 1597 issue: 5–6 year: 2004 ident: 1517_CR20 publication-title: J. Stat. Phys. doi: 10.1023/B:JOSS.0000041750.11320.9c contributor: fullname: X Lu – volume: 239 start-page: 627 issue: 10 year: 2010 ident: 1517_CR29 publication-title: Physica D doi: 10.1016/j.physd.2010.01.018 contributor: fullname: H Spohn – volume: 16 start-page: 467 issue: 4 year: 1999 ident: 1517_CR23 publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/S0294-1449(99)80025-0 contributor: fullname: S Mischler – volume: 55 start-page: 489 issue: 2 year: 1997 ident: 1517_CR28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.55.489 contributor: fullname: D Semikov – volume: 45 start-page: 231 year: 2006 ident: 1517_CR15 publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-006-9232-6 contributor: fullname: C Josserand – volume: 98 start-page: 1335 issue: 5–6 year: 2000 ident: 1517_CR19 publication-title: J. Stat. Phys. doi: 10.1023/A:1018628031233 contributor: fullname: X Lu – volume: 74 start-page: 3093 year: 1995 ident: 1517_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3093 contributor: fullname: D Semikov – volume: 31 start-page: 2 year: 1983 ident: 1517_CR3 publication-title: J. Stat. Phys. doi: 10.1007/BF01011586 contributor: fullname: L Arkeryd – ident: 1517_CR13 doi: 10.1007/978-3-642-45892-7_3 – volume: 60 start-page: 91 issue: 1 year: 1933 ident: 1517_CR4 publication-title: Acta Math. doi: 10.1007/BF02398270 contributor: fullname: T Carleman – start-page: 71 volume-title: Handbook of Mathematical Fluid Dynamics year: 2002 ident: 1517_CR30 doi: 10.1016/S1874-5792(02)80004-0 contributor: fullname: C Villani – ident: 1517_CR17 doi: 10.1007/3-540-07171-7_1 – volume: 96 start-page: 765 issue: 3–4 year: 1999 ident: 1517_CR18 publication-title: J. Stat. Phys. doi: 10.1023/A:1004606525200 contributor: fullname: X Lu |
SSID | ssj0009895 |
Score | 2.3824897 |
Snippet | The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution... The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution... |
SourceID | hal gale crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 1108 |
SubjectTerms | Analysis of PDEs Mathematical and Computational Physics Mathematical Physics Mathematics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
Title | On the Cauchy Problem for the Homogeneous Boltzmann–Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments |
URI | https://link.springer.com/article/10.1007/s10955-016-1517-9 https://hal.science/hal-01492026 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7ihIIvebWlzoulBAJtVazH2uveHFtGFMcttIb4JHZXEi6tpSSyQ9JTb_0B-Yf5JZlZSXZb2kN6kUCsVmJndub79vEtwDEi7JYQnFtebCNBkRgHO5g3LN32lK1FpFwzpht8ao_ORd8nmRxnOXSRfn1bzUiaQP3LXrcOp3VmLQuTFNZYgw1MPRx9e6Prvw-GK6ld0eGVRjiGXl7NZf6tkt-yURmTa1NaEvnHvKhJN4Ot__nRbdgswSXrFt6wA2txugtPzCJPne9CnZBlIcz8FH5-SBmCP9aTCz29ZR-Lg2UYYljzOMhmGfpWnC1ydpp9m3-fyTS9_3E3QrI6jb_MmH9ZiISbN04zhO35OzakzMj8G_Id9KY3bGz0YSmcMplGrFdCVJYl7Cwzu-uewXjgf-4FVnkqg6W9pje3BEcjSkcpqRCtOMi3kMIoZD1NVyiJfIhzVwuVuNxt65bCq004KHJVs62IHT2H9TRL4xfAlEi0nSAC00nitRCqmfEo2VRYZ6RU1IBXlXXCi0J8I1zJLFMzh7RAjZo57DTghOwXUsecX0kty_0F-CmSuAq7HmIbmiS0G_ASTbyskQS2g-4wpGdEGB2kpddY6HVl3rDs1vm_P773qNL7UHfIP8xgzgGsz68W8SHU8mhxVDoz3c8nk_4DAy_t6g |
link.rule.ids | 230,315,782,786,887,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6RIFQuPFsRXl1VSJXaWoofm2y4hRBk1BCQChKcVrtrW6lE7BYnVeHEjR_AP-SXMLO2oa3oob34sLLX1s545vt2Z78F2EGE3RKCcyeIXSQoCuNgB_OGY9qBdo2ItG_ndMMv7eG52O-TTI5f7YWx1e7VkqSN1L9sdutwKjRrOZilsMsazJLYuVeH2e75xcX-s9au6PBKJBxjL68WM1_q5Ld0VAbl2ohqIv9YGLX55mDxv750CRZKeMm6hT8sw0ycrsCcLfM0-QrME7YspJlX4e44ZQj_WE9NzeianRRHyzBEsbY5zMYZelecTXO2l11ObsYqTR9u74dIV0fx1zHrfy9kwu0TexkC93yXDSg3sv5P8h70p0_szCrEUkBlKo1YrwSpLEvYUWb3172Gs4P-aS90ynMZHBM0g4kjOJpReVorjXjFQ8aFJEYj72n6QitkRJz7RujE537btDReXUJCka-bbU386A3U0yyN14BpkRg3QQxmkiRoIVizM1KqqbHPSOuoAR8q88hvhfyGfBZapmGWVKJGwyw7DXhPBpT0a06ulFHlDgN8FYlcyW6A6IaWCd0GvEMbP_VIEtthdyCpjSijh8T0B970sTKvLH_s_O8vX_-nu9_Cq_D0aCAHh8PPGzDvka_YqZ1NqE-upvEW1PJoul169iMpt_Bq |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH5aQUNc2AabVhibNU2axIhomrh1d5lKSZVtXUECJG6W7SQqEk2ApAg4ceMH7B_ul_Cek4xt2g4TlxyixI78nv2-z37vC8A7RNgdITh3_NhFgqJwHexh3HBM19euEZH27J5uuN8dH4mdgGRyPtW1MDbbvT6SLGsaSKUpLbZOo2Trl8K3Hqeks46DEQubb8C8j0QGHX2-H3wJR_e6u6LHa8FwXId5fbD5t0Z-C03VAt2YUH7kH4ekNvYMnzz4q5_CUgU7Wb_0k2fwKE6X4bFN_zT5MiwS5iwlm1fgdjdlCAvZQM3M5Irtlb-cYYhu7e0wm2bodXE2y9l2dlJcT1Wa_rj5PkYaO4mPpyw4K-XD7RvbGQL6_CMbUcxkwSV5FfrZJju0yrG00DKVRmxQgVeWJexbZuvunsPhMDgYhE71vwbH-C2_cARH86q21kojjmkjE0Nyo5EPtTyhFTIlzj0jdOJxr2s6Gq8uIaTI062uJt70AubSLI1fAtMiMW6C2Mwkid9BEGd3qlRLY5uR1lETNmpTydNSlkPeCzDTMEtKXaNhlr0mvCdjSpqyxbkyqqo8wK5I_Er2fUQ9dHzoNuEt2vtniyS9HfZHku4RlWwjYb3Ahz7UppbVhM__3fnqfz39Bhb2doZy9Hn8dQ0W2-QqdsfnFcwV57N4HRp5NHtdOfkdl5z46w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Cauchy+Problem+for+the+Homogeneous+Boltzmann%E2%80%93Nordheim+Equation+for+Bosons%3A+Local+Existence%2C+Uniqueness+and+Creation+of+Moments&rft.jtitle=Journal+of+statistical+physics&rft.au=Briant%2C+Marc&rft.au=Einav%2C+Amit&rft.date=2016-06-01&rft.pub=Springer+US&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=163&rft.issue=5&rft.spage=1108&rft.epage=1156&rft_id=info:doi/10.1007%2Fs10955-016-1517-9&rft.externalDocID=10_1007_s10955_016_1517_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon |