Planetesimal formation in self-gravitating discs – dust trapping by vortices

The mechanism through which metre-sized boulders grow to km-sized planetesimals in protoplanetary discs is a subject of active research, since it is critical for planet formation. To avoid spiralling into the protostar due to aerodynamic drag, objects must rapidly grow from cm-sized pebbles, which a...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society Vol. 453; no. 4; pp. 4232 - 4243
Main Authors: Gibbons, P. G., Mamatsashvili, G. R., Rice, W. K. M.
Format: Journal Article
Language:English
Published: London Oxford University Press 11-11-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanism through which metre-sized boulders grow to km-sized planetesimals in protoplanetary discs is a subject of active research, since it is critical for planet formation. To avoid spiralling into the protostar due to aerodynamic drag, objects must rapidly grow from cm-sized pebbles, which are tightly coupled to the gas, to large boulders of 1–100 m in diameter. It is already well known that overdensities in the gaseous component of the disc provide potential sites for the collection of solids, and that significant density structures in the gaseous component of the disc (e.g. spiral density waves) can trap solids efficiently enough for the solid component of the disc to undergo further gravitational collapse due to their own self-gravity. In this work, we employ the pencil code to conduct local shearing sheet simulations of massive self-gravitating protoplanetary discs, to study the effect of anticyclonic transient vortices, or eddies, on the evolution of solids in these discs. We find that these types of structures are extremely efficient at concentrating small and intermediate-sized dust particles with friction times comparable to, or less than, the local orbital period of the disc. This can lead to significant over-densities in the solid component of the disc, with density enhancements comparable to, and even higher, than those within spiral density waves; increasing the rate of gravitational collapse of solids into bound structures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stv1766