A Scalogram-Based CNN Approach for Audio Classification in Construction Sites

The automatic monitoring of activities in construction sites through the proper use of acoustic signals is a recent field of research that is currently in continuous evolution. In particular, the use of techniques based on Convolutional Neural Networks (CNNs) working on the spectrogram of the signal...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 14; no. 1; p. 90
Main Authors: Scarpiniti, Michele, Parisi, Raffaele, Lee, Yong-Cheol
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The automatic monitoring of activities in construction sites through the proper use of acoustic signals is a recent field of research that is currently in continuous evolution. In particular, the use of techniques based on Convolutional Neural Networks (CNNs) working on the spectrogram of the signal or its mel-scale variants was demonstrated to be quite successful. Nevertheless, the spectrogram has some limitations, which are due to the intrinsic trade-off between temporal and spectral resolutions. In order to overcome these limitations, in this paper, we propose employing the scalogramas a proper time–frequency representation of the audio signal. The scalogram is defined as the square modulus of the Continuous Wavelet Transform (CWT) and is known as a powerful tool for analyzing real-world signals. Experimental results, obtained on real-world sounds recorded in construction sites, have demonstrated the effectiveness of the proposed approach, which is able to clearly outperform most state-of-the-art solutions.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14010090