The origin of spin in galaxies: clues from simulations of atomic cooling haloes
In order to elucidate the origin of spin in both dark matter and baryons in galaxies, we have performed hydrodynamical simulations from cosmological initial conditions. We study atomic cooling haloes in the redshift range 100 > z > 9 with masses of the order of 109 M⊙ at redshift z = 10. We as...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society Vol. 452; no. 1; pp. 784 - 802 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Oxford University Press
01-09-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to elucidate the origin of spin in both dark matter and baryons in galaxies, we have performed hydrodynamical simulations from cosmological initial conditions. We study atomic cooling haloes in the redshift range 100 > z > 9 with masses of the order of 109 M⊙ at redshift z = 10. We assume that the gas has primordial composition and that H2-cooling and prior star formation in the haloes have been suppressed. We present a comprehensive analysis of the gas and dark matter properties of four haloes with very low (λ ≈ 0.01), low (λ ≈ 0.04), high (λ ≈ 0.06) and very high (λ ≈ 0.1) spin parameter. Our main conclusion is that the spin orientation and magnitude is initially well described by tidal torque linear theory, but later on is determined by the merging and accretion history of each halo. We provide evidence that the topology of the merging region, i.e. the number of colliding filaments, gives an accurate prediction for the spin of dark matter and gas: haloes at the centre of knots will have low spin while those in the centre of filaments will have high spin. The spin of a halo is given by
$\lambda \approx 0.05 \times \left(\frac{7.6}{\rm number\,\,\, of \,\,\, filaments}\right)^{5.1}$
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stv1234 |