The origin of spin in galaxies: clues from simulations of atomic cooling haloes

In order to elucidate the origin of spin in both dark matter and baryons in galaxies, we have performed hydrodynamical simulations from cosmological initial conditions. We study atomic cooling haloes in the redshift range 100 > z > 9 with masses of the order of 109 M⊙ at redshift z = 10. We as...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society Vol. 452; no. 1; pp. 784 - 802
Main Authors: Prieto, Joaquin, Jimenez, Raul, Haiman, Zoltán, González, Roberto E.
Format: Journal Article
Language:English
Published: London Oxford University Press 01-09-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to elucidate the origin of spin in both dark matter and baryons in galaxies, we have performed hydrodynamical simulations from cosmological initial conditions. We study atomic cooling haloes in the redshift range 100 > z > 9 with masses of the order of 109 M⊙ at redshift z = 10. We assume that the gas has primordial composition and that H2-cooling and prior star formation in the haloes have been suppressed. We present a comprehensive analysis of the gas and dark matter properties of four haloes with very low (λ ≈ 0.01), low (λ ≈ 0.04), high (λ ≈ 0.06) and very high (λ ≈ 0.1) spin parameter. Our main conclusion is that the spin orientation and magnitude is initially well described by tidal torque linear theory, but later on is determined by the merging and accretion history of each halo. We provide evidence that the topology of the merging region, i.e. the number of colliding filaments, gives an accurate prediction for the spin of dark matter and gas: haloes at the centre of knots will have low spin while those in the centre of filaments will have high spin. The spin of a halo is given by $\lambda \approx 0.05 \times \left(\frac{7.6}{\rm number\,\,\, of \,\,\, filaments}\right)^{5.1}$ .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stv1234