Novel, oxygenated clinoptilolite material efficiently removes aluminium from aluminium chloride-intoxicated rats in vivo
Alumosilicate materials zeolites are widely exploited due to porous structure and ion-exchange properties in several industrial, agriculture and veterinary applications. The mainly used zeolite for medical purposes in animals and humans is the natural zeolite clinoptilolite. Clinoptilolite may be pr...
Saved in:
Published in: | Microporous and mesoporous materials Vol. 249; pp. 146 - 156 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
01-09-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alumosilicate materials zeolites are widely exploited due to porous structure and ion-exchange properties in several industrial, agriculture and veterinary applications. The mainly used zeolite for medical purposes in animals and humans is the natural zeolite clinoptilolite. Clinoptilolite may be prepared for medical applications by different methods that are usually based on mechanical or tribomechanical processing that increase specific surface area. Different processing procedures are known to cause substantial changes in the physical-chemical properties of the material that may affect biological properties as well. In this paper we therefore, (1) systematically analysed physical-chemical characteristics of three clinoptilolite materials obtained by different production methods and one synthetic zeolite to provide novel evidence on structural differences caused by production methods and (2) evaluated clinoptilolite materials detoxification properties in vitro and in AlCl3 - intoxicated rats in vivo. We analysed a new clinoptilolite material as well, that was prepared by tribomechanical double micronization and oxygenation. Our results clearly show that each tested clinoptilolite material differs in physical-chemical properties and that these are linked to the production method. Our results add knowledge on toxicology and safety properties of clinoptilolite materials as no aluminium leakage was observed from clinoptilolite materials into the blood or organs of tested animals. Presented results therefore, prove for the first time the efficiency of clinoptilolite in detoxification of aluminium in vivo, provide scientific data on clinoptilolite safety issues and usage for detoxification purposes.
[Display omitted]
•Oxygenated micronized clinoptilolite.•Clinoptilolite detoxifies AlCl3-intoxicated rats.•Clinoptilolite is stable in in vivo. |
---|---|
ISSN: | 1387-1811 1873-3093 |
DOI: | 10.1016/j.micromeso.2017.04.062 |