Theoretical model for fast bubble growth in small channels with reference to startup of capillary pumped loops used in spacecraft thermal management systems
A capillary pumped loop (CPL) is a closed two-phase loop in which capillary forces developed in a wicked evaporator passively pump the working fluid over long distances to dissipate heat from electronic and power sources. Because it has no moving parts and requires minimal power to sustain operation...
Saved in:
Published in: | International journal of heat and mass transfer Vol. 52; no. 3; pp. 716 - 723 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
31-01-2009
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A capillary pumped loop (CPL) is a closed two-phase loop in which capillary forces developed in a wicked evaporator passively pump the working fluid over long distances to dissipate heat from electronic and power sources. Because it has no moving parts and requires minimal power to sustain operation, the CPL is considered an enabling technology for thermal management of spacecraft. While the steady-state operation of a CPL is fairly well understood, its thermal response during startup remains very illusive. During the startup, initial vapor bubble growth in the evaporator is responsible for liquid acceleration that results in a differential pressure spike. A large pressure spike can deprime the evaporator by forcing vapor into the evaporator’s liquid-saturated wick, which is the only failure mode of a CPL other than fluid loss or physical damage to the loop. In this study, a numerical transient 3D model is constructed to predict the initial bubble growth. This model is used to examine the influence of initial system superheat, evaporator groove shape and size, and wick material. A simplified model is also presented which facilitates the assessment of parametric influences by analytic means. It is shown how these design parameters may be optimized to greatly reduce the bubble growth rate and therefore help prevent a deprime. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2008.07.010 |