Thermal conductivity of a clay-based aerogel

Aerogel materials exhibit superior thermal insulation characteristics due largely to their highly porous internal structure. A recently developed class of montmorillonite clay-based aerogels provides the attractive thermal properties of traditional aerogel materials using constituents that are chemi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 52; no. 3; pp. 665 - 669
Main Authors: Hostler, S.R., Abramson, A.R., Gawryla, M.D., Bandi, S.A., Schiraldi, D.A.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 31-01-2009
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aerogel materials exhibit superior thermal insulation characteristics due largely to their highly porous internal structure. A recently developed class of montmorillonite clay-based aerogels provides the attractive thermal properties of traditional aerogel materials using constituents that are chemically benign and abundantly available. Results are compared for aerogels made from clay alone and those with polyvinyl alcohol introduced during processing. Results demonstrate that as well as strength advantages, the addition of the polymer also leads to a reduction in thermal conductivity. Experimental thermal conductivity data as well as a model to describe the mechanisms involved in impeding thermal transport are presented.
AbstractList Aerogel materials exhibit superior thermal insulation characteristics due largely to their highly porous internal structure. A recently developed class of montmorillonite clay-based aerogels provides the attractive thermal properties of traditional aerogel materials using constituents that are chemically benign and abundantly available. Results are compared for aerogels made from clay alone and those with polyvinyl alcohol introduced during processing. Results demonstrate that as well as strength advantages, the addition of the polymer also leads to a reduction in thermal conductivity. Experimental thermal conductivity data as well as a model to describe the mechanisms involved in impeding thermal transport are presented.
Author Gawryla, M.D.
Schiraldi, D.A.
Hostler, S.R.
Bandi, S.A.
Abramson, A.R.
Author_xml – sequence: 1
  givenname: S.R.
  surname: Hostler
  fullname: Hostler, S.R.
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
– sequence: 2
  givenname: A.R.
  surname: Abramson
  fullname: Abramson, A.R.
  email: alexis.abramson@case.edu
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
– sequence: 3
  givenname: M.D.
  surname: Gawryla
  fullname: Gawryla, M.D.
  organization: Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
– sequence: 4
  givenname: S.A.
  surname: Bandi
  fullname: Bandi, S.A.
  organization: Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
– sequence: 5
  givenname: D.A.
  surname: Schiraldi
  fullname: Schiraldi, D.A.
  organization: Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21029765$$DView record in Pascal Francis
BookMark eNqNkE1Lw0AQhhepYFv9D7koHkycTTab5KYUPyl4sPdlspnYDfmou2mh_94tLV68eBpmeHhe5p2xST_0xNgth4gDl_dNZJo14dihc6PF3tVkoxggjyCLAOIzNuV5VoQxz4sJmwLwLCwSDhds5lxzWEHIKbtbrcl22AZ66KutHs3OjPtgqAMMdIv7sERHVYBkhy9qL9l5ja2jq9Ocs8_np9XiNVx-vLwtHpehFpCMocASiGIJRZxrWWImBVVUiUwi-qso0jyXWSpKUUFCtcjTXGBSIaUgUkzm7OZo3djhe0tuVJ1xmtoWexq2TiWpLLxaevDhCGo7OGepVhtrOrR7xUEdSlKN-luSOpSkIFO-JK-4PmWh09jWntHG_XpiDnGRydRz70eO_Ns74y1OG-o1VcaSHlU1mP-H_gAMroqh
CODEN IJHMAK
CitedBy_id crossref_primary_10_1002_masy_201450312
crossref_primary_10_1016_j_polymer_2018_01_008
crossref_primary_10_5714_CL_2016_17_1_074
crossref_primary_10_1051_matecconf_201714901078
crossref_primary_10_1016_j_matlet_2013_03_028
crossref_primary_10_1155_2013_406065
crossref_primary_10_1039_C1CC15718C
crossref_primary_10_1680_gmat_14_00019
crossref_primary_10_1039_C6RA21689G
crossref_primary_10_1007_s42823_019_00054_8
crossref_primary_10_1021_am400171y
crossref_primary_10_1021_acssuschemeng_5b01323
crossref_primary_10_1039_C6MH00495D
crossref_primary_10_1557_jmr_2013_105
crossref_primary_10_1016_j_ceramint_2016_06_016
crossref_primary_10_1016_j_enbuild_2010_01_020
crossref_primary_10_1016_j_ijheatmasstransfer_2010_05_063
crossref_primary_10_1080_15583724_2018_1450756
crossref_primary_10_1002_pc_24411
crossref_primary_10_1021_cm401623h
crossref_primary_10_1002_pi_5104
crossref_primary_10_1016_j_polymer_2019_05_007
crossref_primary_10_1007_s10971_021_05534_w
crossref_primary_10_1016_j_conbuildmat_2014_12_064
crossref_primary_10_1002_pen_24265
crossref_primary_10_1680_gmat_12_00005
crossref_primary_10_3390_gels9030220
crossref_primary_10_1016_j_porgcoat_2014_10_001
crossref_primary_10_1021_am507409d
crossref_primary_10_3390_polym12040807
crossref_primary_10_4028_www_scientific_net_AMM_699_277
crossref_primary_10_1007_s42860_023_00228_6
crossref_primary_10_1051_matecconf_201814901078
crossref_primary_10_1016_j_jaap_2010_08_003
crossref_primary_10_1016_j_compositesb_2016_06_057
crossref_primary_10_1016_j_jclepro_2017_06_102
crossref_primary_10_2139_ssrn_4072307
crossref_primary_10_1016_j_compositesb_2012_05_017
crossref_primary_10_1016_j_compositesb_2016_04_059
crossref_primary_10_1002_app_39546
crossref_primary_10_2514_1_T5420
crossref_primary_10_1016_j_seppur_2014_06_059
crossref_primary_10_1007_s10934_022_01296_0
crossref_primary_10_1038_s41598_022_27324_2
crossref_primary_10_1002_app_39143
crossref_primary_10_1016_j_ceramint_2017_04_112
crossref_primary_10_1016_j_clay_2024_107316
crossref_primary_10_1177_1744259110372782
crossref_primary_10_1002_pat_4613
crossref_primary_10_1007_s42823_019_00087_z
crossref_primary_10_1016_j_jnoncrysol_2011_03_042
crossref_primary_10_1038_srep39910
crossref_primary_10_1021_am500583x
crossref_primary_10_1039_D0RA02126A
crossref_primary_10_1002_app_35333
crossref_primary_10_1016_j_dibe_2024_100429
crossref_primary_10_1016_j_carbon_2018_04_070
crossref_primary_10_1016_j_actaastro_2013_06_001
crossref_primary_10_1088_1755_1315_963_1_012027
crossref_primary_10_1002_fam_2415
crossref_primary_10_1021_am504418w
crossref_primary_10_3390_en12102001
crossref_primary_10_12791_KSBEC_2019_28_3_273
crossref_primary_10_1039_C6RA12947A
crossref_primary_10_1016_j_renene_2022_05_051
crossref_primary_10_1016_j_rser_2017_06_057
crossref_primary_10_1002_mame_201800198
crossref_primary_10_1016_j_clay_2017_01_013
crossref_primary_10_1007_s10973_019_09043_5
crossref_primary_10_1016_j_enbuild_2011_05_015
crossref_primary_10_1016_j_tsep_2023_101808
crossref_primary_10_1016_j_conbuildmat_2022_128844
crossref_primary_10_1016_j_carbpol_2018_11_041
crossref_primary_10_1016_j_enbuild_2018_10_045
crossref_primary_10_1016_j_supflu_2019_05_005
crossref_primary_10_3390_ma11020233
crossref_primary_10_1051_mattech_2024006
crossref_primary_10_1039_C5RA16188F
crossref_primary_10_1016_j_enbuild_2018_12_029
crossref_primary_10_1002_er_3101
crossref_primary_10_1039_c1sm05388d
crossref_primary_10_1016_j_jeurceramsoc_2014_07_007
crossref_primary_10_1007_s10570_021_03750_9
crossref_primary_10_1016_j_csite_2024_104010
crossref_primary_10_1016_j_jiec_2010_09_014
crossref_primary_10_1021_acsami_5b05776
crossref_primary_10_1016_j_matpr_2021_12_492
crossref_primary_10_1021_acsnano_0c09678
crossref_primary_10_1016_j_clay_2019_105403
crossref_primary_10_1016_j_jclepro_2020_124546
crossref_primary_10_1021_acssuschemeng_6b00089
crossref_primary_10_1002_app_36632
crossref_primary_10_1016_j_matdes_2018_08_031
crossref_primary_10_3390_gels4010008
crossref_primary_10_1016_j_clay_2023_106887
crossref_primary_10_1617_s11527_016_0876_7
crossref_primary_10_3390_ma8085258
crossref_primary_10_1002_marc_200900229
Cites_doi 10.1346/CCMN.1967.0150142
10.1038/171681a0
10.1016/j.jnoncrysol.2004.06.047
10.1007/s10971-006-7762-7
10.1180/claymin.1962.5.27.02
10.1139/t75-033
10.1002/aic.10710
10.1016/j.cryogenics.2005.11.007
10.1115/1.2836281
10.1557/JMR.1994.0731
10.1007/978-3-642-93313-4
10.1038/172126a0
10.1021/j150331a003
10.1016/j.solener.2004.08.032
ContentType Journal Article
Copyright 2008 Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2008.07.002
DatabaseName Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Applied Sciences
EISSN 1879-2189
EndPage 669
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2008_07_002
21029765
S001793100800389X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
08R
8W4
AALMO
AAPBV
ABFLS
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c403t-4ab0ee260928c6ba764eded476aa260495886754b4d03ef48584a3dae5045a3
ISSN 0017-9310
IngestDate Fri Oct 25 04:04:32 EDT 2024
Thu Nov 21 20:45:19 EST 2024
Fri Nov 25 01:05:12 EST 2022
Fri Feb 23 02:31:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Clay
Thermal conductivity
Aerogel
Effective medium
Polyvinylalcohol
Montmorillonite
Thermal insulation
Comparative study
Strength
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-4ab0ee260928c6ba764eded476aa260495886754b4d03ef48584a3dae5045a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35690926
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_35690926
crossref_primary_10_1016_j_ijheatmasstransfer_2008_07_002
pascalfrancis_primary_21029765
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2008_07_002
PublicationCentury 2000
PublicationDate 2009-01-31
PublicationDateYYYYMMDD 2009-01-31
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-31
  day: 31
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of heat and mass transfer
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mackenzie (bib6) 1953; 171
Bandi, Bell, Schiraldi (bib12) 2004; 38
Jensen, Schultz, Kristiansen (bib2) 2004; 350
Reim, Korner, Manara, Korder, Arduini-Schuster, Ebert, Fricke (bib3) 2005; 79
Fesmire (bib4) 2006; 46
Siegel, Howell (bib17) 1981
Somlai, Bandi, Schiraldi, Mathias (bib11) 2006; 52
Pennner, Johnston, Goodrich (bib13) 1975; 12
Call (bib7) 1953; 172
ASTM C 518-04, Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus, ASTM International.
R. Caps, J. Fricke, Aerogels. In: J. Fricke (Ed.), Proceedings of the First International Symposium, Springer-Verlag, New York, 1986.
Hrubesh, Pekala (bib15) 1994; 9
van Olphen (bib8) 1967; 15
Jones (bib5) 2006; 40
Norrish, Rausell-Colom (bib9) 1962; 5
Kistler (bib1) 1932; 36
Nakazawa, Yamada, Fujita, Ito (bib10) 1987; 6
Zeng, Hunt, Greif (bib16) 1995; 117
Fesmire (10.1016/j.ijheatmasstransfer.2008.07.002_bib4) 2006; 46
Mackenzie (10.1016/j.ijheatmasstransfer.2008.07.002_bib6) 1953; 171
van Olphen (10.1016/j.ijheatmasstransfer.2008.07.002_bib8) 1967; 15
Jensen (10.1016/j.ijheatmasstransfer.2008.07.002_bib2) 2004; 350
Reim (10.1016/j.ijheatmasstransfer.2008.07.002_bib3) 2005; 79
Call (10.1016/j.ijheatmasstransfer.2008.07.002_bib7) 1953; 172
Norrish (10.1016/j.ijheatmasstransfer.2008.07.002_bib9) 1962; 5
Siegel (10.1016/j.ijheatmasstransfer.2008.07.002_bib17) 1981
Jones (10.1016/j.ijheatmasstransfer.2008.07.002_bib5) 2006; 40
Bandi (10.1016/j.ijheatmasstransfer.2008.07.002_bib12) 2004; 38
Zeng (10.1016/j.ijheatmasstransfer.2008.07.002_bib16) 1995; 117
10.1016/j.ijheatmasstransfer.2008.07.002_bib14
Hrubesh (10.1016/j.ijheatmasstransfer.2008.07.002_bib15) 1994; 9
Kistler (10.1016/j.ijheatmasstransfer.2008.07.002_bib1) 1932; 36
10.1016/j.ijheatmasstransfer.2008.07.002_bib18
Somlai (10.1016/j.ijheatmasstransfer.2008.07.002_bib11) 2006; 52
Nakazawa (10.1016/j.ijheatmasstransfer.2008.07.002_bib10) 1987; 6
Pennner (10.1016/j.ijheatmasstransfer.2008.07.002_bib13) 1975; 12
References_xml – volume: 52
  start-page: 1162
  year: 2006
  end-page: 1168
  ident: bib11
  article-title: Facile processing of clays into organically-modifed aerogels
  publication-title: AIChE J.
  contributor:
    fullname: Mathias
– volume: 9
  start-page: 731
  year: 1994
  end-page: 738
  ident: bib15
  article-title: Thermal properties of organic and inorganic aerogels
  publication-title: J. Mater. Res.
  contributor:
    fullname: Pekala
– volume: 36
  start-page: 52
  year: 1932
  end-page: 64
  ident: bib1
  article-title: Coherent expanded aerogels
  publication-title: J. Phys. Chem.
  contributor:
    fullname: Kistler
– volume: 12
  start-page: 271
  year: 1975
  end-page: 288
  ident: bib13
  article-title: Thermal conductivity laboratory studies of some Mackenzie highway soils
  publication-title: Can. Geotech. J.
  contributor:
    fullname: Goodrich
– volume: 171
  start-page: 681
  year: 1953
  end-page: 683
  ident: bib6
  article-title: Clay–water relationships
  publication-title: Nature
  contributor:
    fullname: Mackenzie
– volume: 38
  start-page: 6001
  year: 2004
  end-page: 6003
  ident: bib12
  article-title: Temperature-responsive clay aerogel–polymer composites
  publication-title: Macromolecules
  contributor:
    fullname: Schiraldi
– volume: 40
  start-page: 351
  year: 2006
  end-page: 357
  ident: bib5
  article-title: Aerogel: space exploration applications
  publication-title: J. Sol-Gel Sci. Technol.
  contributor:
    fullname: Jones
– volume: 350
  start-page: 351
  year: 2004
  end-page: 357
  ident: bib2
  article-title: Development of windows based on highly insulating aerogel glazings
  publication-title: J. Non-Cryst. Solids
  contributor:
    fullname: Kristiansen
– year: 1981
  ident: bib17
  article-title: Thermal Radiation Heat Transfer
  contributor:
    fullname: Howell
– volume: 15
  start-page: 423
  year: 1967
  end-page: 435
  ident: bib8
  article-title: Polyelectrolyte reinforced aerogels of clays-application as chromatographic adsorbents
  publication-title: Clay Miner.
  contributor:
    fullname: van Olphen
– volume: 6
  start-page: 269
  year: 1987
  end-page: 276
  ident: bib10
  article-title: Texture control of clay-aerogel through the crystallization process of ice
  publication-title: Clay Sci.
  contributor:
    fullname: Ito
– volume: 172
  start-page: 126
  year: 1953
  ident: bib7
  article-title: Preparation of dry clay-gels by freeze-drying
  publication-title: Nature
  contributor:
    fullname: Call
– volume: 79
  start-page: 131
  year: 2005
  end-page: 139
  ident: bib3
  article-title: Silica aerogel granulate material for thermal insulation and daylighting
  publication-title: Sol. Energy
  contributor:
    fullname: Fricke
– volume: 46
  start-page: 111
  year: 2006
  end-page: 117
  ident: bib4
  article-title: Aerogel insulation systems for space launch applications
  publication-title: Cryogenics
  contributor:
    fullname: Fesmire
– volume: 5
  start-page: 9
  year: 1962
  end-page: 16
  ident: bib9
  article-title: Effect of freezing on the swelling of clay minerals
  publication-title: Clay Miner. Bull.
  contributor:
    fullname: Rausell-Colom
– volume: 117
  start-page: 1055
  year: 1995
  end-page: 1058
  ident: bib16
  article-title: Geometric structure and thermal conductivity of porous medium silica aerogel
  publication-title: J. Heat Transfer
  contributor:
    fullname: Greif
– volume: 15
  start-page: 423
  year: 1967
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib8
  article-title: Polyelectrolyte reinforced aerogels of clays-application as chromatographic adsorbents
  publication-title: Clay Miner.
  doi: 10.1346/CCMN.1967.0150142
  contributor:
    fullname: van Olphen
– volume: 171
  start-page: 681
  year: 1953
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib6
  article-title: Clay–water relationships
  publication-title: Nature
  doi: 10.1038/171681a0
  contributor:
    fullname: Mackenzie
– volume: 38
  start-page: 6001
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib12
  article-title: Temperature-responsive clay aerogel–polymer composites
  publication-title: Macromolecules
  contributor:
    fullname: Bandi
– volume: 350
  start-page: 351
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib2
  article-title: Development of windows based on highly insulating aerogel glazings
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.06.047
  contributor:
    fullname: Jensen
– volume: 40
  start-page: 351
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib5
  article-title: Aerogel: space exploration applications
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-006-7762-7
  contributor:
    fullname: Jones
– volume: 5
  start-page: 9
  year: 1962
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib9
  article-title: Effect of freezing on the swelling of clay minerals
  publication-title: Clay Miner. Bull.
  doi: 10.1180/claymin.1962.5.27.02
  contributor:
    fullname: Norrish
– volume: 12
  start-page: 271
  year: 1975
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib13
  article-title: Thermal conductivity laboratory studies of some Mackenzie highway soils
  publication-title: Can. Geotech. J.
  doi: 10.1139/t75-033
  contributor:
    fullname: Pennner
– volume: 6
  start-page: 269
  year: 1987
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib10
  article-title: Texture control of clay-aerogel through the crystallization process of ice
  publication-title: Clay Sci.
  contributor:
    fullname: Nakazawa
– volume: 52
  start-page: 1162
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib11
  article-title: Facile processing of clays into organically-modifed aerogels
  publication-title: AIChE J.
  doi: 10.1002/aic.10710
  contributor:
    fullname: Somlai
– volume: 46
  start-page: 111
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib4
  article-title: Aerogel insulation systems for space launch applications
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2005.11.007
  contributor:
    fullname: Fesmire
– ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib14
– year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib17
  contributor:
    fullname: Siegel
– volume: 117
  start-page: 1055
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib16
  article-title: Geometric structure and thermal conductivity of porous medium silica aerogel
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2836281
  contributor:
    fullname: Zeng
– volume: 9
  start-page: 731
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib15
  article-title: Thermal properties of organic and inorganic aerogels
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1994.0731
  contributor:
    fullname: Hrubesh
– ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib18
  doi: 10.1007/978-3-642-93313-4
– volume: 172
  start-page: 126
  year: 1953
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib7
  article-title: Preparation of dry clay-gels by freeze-drying
  publication-title: Nature
  doi: 10.1038/172126a0
  contributor:
    fullname: Call
– volume: 36
  start-page: 52
  year: 1932
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib1
  article-title: Coherent expanded aerogels
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150331a003
  contributor:
    fullname: Kistler
– volume: 79
  start-page: 131
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2008.07.002_bib3
  article-title: Silica aerogel granulate material for thermal insulation and daylighting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2004.08.032
  contributor:
    fullname: Reim
SSID ssj0017046
Score 2.3362448
Snippet Aerogel materials exhibit superior thermal insulation characteristics due largely to their highly porous internal structure. A recently developed class of...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 665
SubjectTerms Aerogel
Applied sciences
Clay
Effective medium
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heating, air conditioning and ventilation
Technical data: comfort, insulation, loads, etc
Thermal conductivity
Title Thermal conductivity of a clay-based aerogel
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.07.002
https://search.proquest.com/docview/35690926
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpy0ahjH2ytFvrhz0MNhvHli3pMWuzZoPtYelD3owsybCw2iVpKP3ve_qyHcLGCu2LMUeQnbvz6XfS73QIfaiwojkts5CLFBIUATlriRkOZcKIqDAW3JBopjPyc07PJngyGHiycCd7VEuDDGytK2fvYe12UBDAPdgcrmB1uP6v3SHW6kM_an2Uq-0N4Yog-W2oZy35iatl48isHpluLg32DpTQ0dpsMVwCztYtJQDodpTeaaP3iW3zruhX1O0mLfmlK-Ya9-Tn_GZ5-8cA1h_RWSv-ootr7BjjaGMhQtOsfAQ3q2O-QqajI5mIC7MgSx11VdkgSwkLAVqwfhTOkp63pb2QmtteEm52zm1jl63Ab9cgFtHvhdaKVojXh-PL6pMqk27Sa6mIs9jEqJGBzoDe5jtoLwEBxMy98bfJ_Hu7J0ViW_bl_9FT9LFjC_77uX8DPQdXfAWfYmV7qGzBAYNxLp6jZy45CcbWq16ggapfoieGJCxWr9Bn51tB37eCpgp40PlW4HzrNZp9nVycTkPXbSMUOE6vQ8zLWClIb1lCRV5ykmMllcQk5xykkEhTCtklLrGMU1VhCtCVp5KrDLICnr5Bu3VTq7coKImAeSQjlQKwTuFno4rKbCQJFzBQxYaIeWUUV_ZIlcJzDRfFtiJdp1TNk0iG6NRrr3AQ0UK_AhzhHqMcbyi-fQ29_gH4PBuiE2-JAsKt3kPjtWrWqyLNcgYayg8f5EWO0H73Jb1Du9fLtXqPdlZyfey87w5-Darc
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+conductivity+of+a+clay-based+aerogel&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Hostler%2C+S.R.&rft.au=Abramson%2C+A.R.&rft.au=Gawryla%2C+M.D.&rft.au=Bandi%2C+S.A.&rft.date=2009-01-31&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=52&rft.issue=3&rft.spage=665&rft.epage=669&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2008.07.002&rft.externalDocID=S001793100800389X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon