Tuning parameter estimation in SCAD-support vector machine using firefly algorithm with application in gene selection and cancer classification
In cancer classification, gene selection is one of the most important bioinformatics related topics. The selection of genes can be considered to be a variable selection problem, which aims to find a small subset of genes that has the most discriminative information for the classification target. The...
Saved in:
Published in: | Computers in biology and medicine Vol. 103; pp. 262 - 268 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Ltd
01-12-2018
Elsevier Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In cancer classification, gene selection is one of the most important bioinformatics related topics. The selection of genes can be considered to be a variable selection problem, which aims to find a small subset of genes that has the most discriminative information for the classification target. The penalized support vector machine (PSVM) has proved its effectiveness at creating a strong classifier that combines the advantages of the support vector machine and penalization. PSVM with a smoothly clipped absolute deviation (SCAD) penalty is the most widely used method. However, the efficiency of PSVM with SCAD depends on choosing the appropriate tuning parameter involved in the SCAD penalty. In this paper, a firefly algorithm, which is a metaheuristic continuous algorithm, is proposed to determine the tuning parameter in PSVM with SCAD penalty. Our proposed algorithm can efficiently help to find the most relevant genes with high classification performance. The experimental results from four benchmark gene expression datasets show the superior performance of the proposed algorithm in terms of classification accuracy and the number of selected genes compared with competing methods.
•The proposed method has better performance than the CV.•The classification ability for the proposed method is quite high.•The proposed method performed remarkably well in gene selection stability test. |
---|---|
AbstractList | In cancer classification, gene selection is one of the most important bioinformatics related topics. The selection of genes can be considered to be a variable selection problem, which aims to find a small subset of genes that has the most discriminative information for the classification target. The penalized support vector machine (PSVM) has proved its effectiveness at creating a strong classifier that combines the advantages of the support vector machine and penalization. PSVM with a smoothly clipped absolute deviation (SCAD) penalty is the most widely used method. However, the efficiency of PSVM with SCAD depends on choosing the appropriate tuning parameter involved in the SCAD penalty. In this paper, a firefly algorithm, which is a metaheuristic continuous algorithm, is proposed to determine the tuning parameter in PSVM with SCAD penalty. Our proposed algorithm can efficiently help to find the most relevant genes with high classification performance. The experimental results from four benchmark gene expression datasets show the superior performance of the proposed algorithm in terms of classification accuracy and the number of selected genes compared with competing methods.
•The proposed method has better performance than the CV.•The classification ability for the proposed method is quite high.•The proposed method performed remarkably well in gene selection stability test. In cancer classification, gene selection is one of the most important bioinformatics related topics. The selection of genes can be considered to be a variable selection problem, which aims to find a small subset of genes that has the most discriminative information for the classification target. The penalized support vector machine (PSVM) has proved its effectiveness at creating a strong classifier that combines the advantages of the support vector machine and penalization. PSVM with a smoothly clipped absolute deviation (SCAD) penalty is the most widely used method. However, the efficiency of PSVM with SCAD depends on choosing the appropriate tuning parameter involved in the SCAD penalty. In this paper, a firefly algorithm, which is a metaheuristic continuous algorithm, is proposed to determine the tuning parameter in PSVM with SCAD penalty. Our proposed algorithm can efficiently help to find the most relevant genes with high classification performance. The experimental results from four benchmark gene expression datasets show the superior performance of the proposed algorithm in terms of classification accuracy and the number of selected genes compared with competing methods. |
Author | Al-Thanoon, Niam Abdulmunim Qasim, Omar Saber Algamal, Zakariya Yahya |
Author_xml | – sequence: 1 givenname: Niam Abdulmunim surname: Al-Thanoon fullname: Al-Thanoon, Niam Abdulmunim email: niam.munim@uomosul.edu.iq organization: Department of Operations Research and Artificial Intelligence, University of Mosul, Mosul, Iraq – sequence: 2 givenname: Omar Saber surname: Qasim fullname: Qasim, Omar Saber email: omar.saber@uomosul.edu.iq organization: Department of Mathematics, University of Mosul, Mosul, Iraq – sequence: 3 givenname: Zakariya Yahya orcidid: 0000-0002-0229-7958 surname: Algamal fullname: Algamal, Zakariya Yahya email: zakariya.algamal@uomosul.edu.iq organization: Department of Statistics and Informatics, University of Mosul, Mosul, Iraq |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30399534$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi1URLeFV0CWuHDJMrbz91gWWpAqcaCcLceZbL1K7GAnrfoUvDIT7RYkLlxsaeY389nfd8HOfPDIGBewFSDKD4etDePUujBit5UgaipvQeUv2EbUVZNBofIztgEQkOW1LM7ZRUoHAMhBwSt2rkA1DTEb9utu8c7v-WSiGXHGyDHNbjSzC547z7_vrj5laZmmEGf-gHYOkY_G3juPfEnrZO8i9sMTN8M-RDffj_yRTm6maXD2z5490kDCgTasFeM7bo23pGcHk5LrT-xr9rI3Q8I3p_uS_bj-fLf7kt1-u_m6u7rNbA5yzlqDCrumKLuqF6orW2OgRyjKoq2lhcaANEWr6k600tSNMrWCvOoqBYWVshTqkr0_7p1i-LnQn_XoksVhMB7DkrQUCmoQopKEvvsHPYQlenodUTl5qkiWqPpI2RhSIkv0FMnH-KQF6DU0fdB_Q9NraGuHQqPRtyeBpV17z4PPKRHw8QggOfLgMOpkHZJ7HXlvZ90F93-V33jPsZE |
CitedBy_id | crossref_primary_10_1016_j_compbiolchem_2022_107638 crossref_primary_10_1088_1742_6596_1897_1_012004 crossref_primary_10_1109_ACCESS_2020_3020742 crossref_primary_10_1016_j_imu_2021_100622 crossref_primary_10_29328_journal_apb_1001010 crossref_primary_10_35784_iapgos_5729 crossref_primary_10_1007_s42979_020_00320_x crossref_primary_10_1142_S1793557121501722 crossref_primary_10_1016_j_compbiomed_2022_105766 crossref_primary_10_33889_IJMEMS_2020_5_6_105 crossref_primary_10_1002_cem_3311 crossref_primary_10_1016_j_chemolab_2020_104104 crossref_primary_10_1142_S1793557121501448 crossref_primary_10_1016_j_amc_2022_127766 crossref_primary_10_46300_9106_2021_15_35 crossref_primary_10_1016_j_aej_2022_08_013 crossref_primary_10_29328_journal_apb_1001009 crossref_primary_10_1108_IJPCC_09_2020_0130 crossref_primary_10_1088_1742_6596_1897_1_012057 crossref_primary_10_33889_IJMEMS_2020_5_4_056 crossref_primary_10_1016_j_chemolab_2023_104786 crossref_primary_10_1016_j_neucom_2022_05_100 crossref_primary_10_1186_s13036_019_0185_0 crossref_primary_10_2298_TSCI2205107S crossref_primary_10_1080_03610918_2020_1850790 crossref_primary_10_1088_1742_6596_1897_1_012010 crossref_primary_10_3390_math11051081 crossref_primary_10_3934_naco_2021001 crossref_primary_10_3390_biomedicines10082052 crossref_primary_10_1111_jocd_14120 crossref_primary_10_1142_S021848852340007X crossref_primary_10_1016_j_knosys_2022_110250 crossref_primary_10_1016_j_chemolab_2020_104196 |
Cites_doi | 10.1016/j.eswa.2011.04.165 10.1186/1471-2105-12-138 10.1093/biomet/asn034 10.1198/016214501753382273 10.1080/10485252.2015.1010532 10.1016/j.csda.2007.02.006 10.1007/s00521-016-2204-0 10.1016/j.csda.2013.09.008 10.1016/j.eswa.2014.08.043 10.1007/s00607-015-0456-7 10.1162/0899766054796897 10.1007/s00366-012-0254-1 10.1016/j.compbiomed.2015.10.008 10.1016/j.swevo.2013.06.001 10.1111/biom.12359 10.1093/bioinformatics/bti736 10.1016/j.eswa.2017.10.001 10.1111/1467-9868.00354 10.1016/j.imu.2017.10.004 10.1016/j.chemolab.2013.05.012 10.1080/00949655.2012.755532 10.1016/j.asoc.2017.10.032 10.1111/anzs.12168 10.1371/journal.pone.0187371 10.1093/bioinformatics/btm579 10.1016/j.chemolab.2018.08.016 10.1186/1471-2105-14-198 10.1016/j.eswa.2015.08.016 10.1016/j.talanta.2006.07.047 10.1007/s11634-018-0334-1 10.1007/s00170-014-5753-3 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Dec 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Dec 1, 2018 |
DBID | NPM AAYXX CITATION 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PQEST PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2018.10.034 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) ProQuest Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Biochemistry Abstracts 1 ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Research Library Prep |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 268 |
ExternalDocumentID | 10_1016_j_compbiomed_2018_10_034 30399534 S0010482518303366 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABLVK ABMAC ABMZM ABOCM ABUWG ABYKQ ACDAQ ACGFS ACIUM ACIWK ACPRK ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AEVXI AFKRA AFKWA AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LCYCR LK8 LX9 M0N M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PQQKQ PROAC PSQYO Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- AAXKI AFCTW AKRWK ALIPV NPM .55 .GJ 29F 53G AAQXK AAYXX ABFNM ABXDB ACNNM ADJOM ADMUD AFJKZ ASPBG AVWKF AZFZN CITATION EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ R2- SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c402t-bae3ed956d7f13d6baa0fe0565b82c09a02a5b38d1b2a893a83047d7305c22613 |
ISSN | 0010-4825 |
IngestDate | Fri Oct 25 08:39:35 EDT 2024 Thu Oct 10 22:52:13 EDT 2024 Thu Sep 26 18:28:57 EDT 2024 Sat Sep 28 08:39:48 EDT 2024 Fri Feb 23 02:24:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gene selection SCAD Cancer classification Firefly algorithm Penalized support vector machine |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c402t-bae3ed956d7f13d6baa0fe0565b82c09a02a5b38d1b2a893a83047d7305c22613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0229-7958 |
PMID | 30399534 |
PQID | 2140043565 |
PQPubID | 1226355 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2130801172 proquest_journals_2140043565 crossref_primary_10_1016_j_compbiomed_2018_10_034 pubmed_primary_30399534 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2018_10_034 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Liu, Helen Zhang, Park, Ahn (bib18) 2007; 51 Latkowski, Osowski (bib2) 2015; 42 Jung, Hu (bib30) 2015; 27 (bib33) 2017 Zhang, Shan, Wang (bib37) 2016; 28 Shen, Shi, Kong, Ye (bib9) 2007; 71 Karthikeyan, Asokan, Nickolas (bib24) 2014; 72 Fan, Li (bib13) 2001; 96 Roberts, Nowak (bib28) 2014; 70 Cong, Li, Yang, Xue, Chen, Zeng (bib10) 2013; 127 Pang, Lin, Jiang (bib32) 2016; 58 Bradley, Mangasarian (bib15) 1998 Wang, Zhu, Zou (bib12) 2008; 24 Liu, Lin, Tan (bib17) 2010; 7 Becker, Toedt, Lichter, Benner (bib20) 2011; 12 Fister, Fister, Yang, Brest (bib22) 2013; 13 Algamal, Lee (bib4) 2018 Yelghi, Köse (bib23) 2018; 62 Yu, Zhu, Ma, Mao (bib34) 2015; 97 Zhu, Rosset, Hastie, Tibshirani (bib11) 2004; 16 Broman, Speed (bib25) 2002; 64 Chen, Chen (bib26) 2008; 95 Hameed, Hassan, Muhammad (bib3) 2017; 12 Liang, Liu, Luan, Leung, Chan, Xu, Zhang (bib8) 2013; 14 Motieghader, Najafi, Sadeghi, Masoudi-Nejad (bib5) 2017; 9 Zhang, Ahn, Lin, Park (bib19) 2006; 22 Algamal, Lee (bib6) 2015; 42 Chuang, Yang, Wu, Yang (bib7) 2011; 38 Yang (bib21) 2013; 29 Meijer, Goeman (bib31) 2013; 55 Algamal, Lee (bib1) 2015; 67 Dong, Jian (bib14) 2015; 15 Sabourin, Valdar, Nobel (bib29) 2015; 71 Zhang, Srisukkham, Neoh, Lim, Pandit (bib35) 2018; 93 Park, Sakaori, Konishi (bib27) 2013; 84 Ikeda, Murata (bib16) 2005; 17 Qasim, Algamal (bib36) 2018; 182 Tilahun, Ngnotchouye, Hamadneh (bib38) 2017 Zhang (10.1016/j.compbiomed.2018.10.034_bib19) 2006; 22 Liu (10.1016/j.compbiomed.2018.10.034_bib17) 2010; 7 Jung (10.1016/j.compbiomed.2018.10.034_bib30) 2015; 27 Ikeda (10.1016/j.compbiomed.2018.10.034_bib16) 2005; 17 Hameed (10.1016/j.compbiomed.2018.10.034_bib3) 2017; 12 Motieghader (10.1016/j.compbiomed.2018.10.034_bib5) 2017; 9 Yang (10.1016/j.compbiomed.2018.10.034_bib21) 2013; 29 Latkowski (10.1016/j.compbiomed.2018.10.034_bib2) 2015; 42 Yu (10.1016/j.compbiomed.2018.10.034_bib34) 2015; 97 Liang (10.1016/j.compbiomed.2018.10.034_bib8) 2013; 14 Algamal (10.1016/j.compbiomed.2018.10.034_bib6) 2015; 42 Roberts (10.1016/j.compbiomed.2018.10.034_bib28) 2014; 70 Zhang (10.1016/j.compbiomed.2018.10.034_bib35) 2018; 93 Yelghi (10.1016/j.compbiomed.2018.10.034_bib23) 2018; 62 Pang (10.1016/j.compbiomed.2018.10.034_bib32) 2016; 58 Algamal (10.1016/j.compbiomed.2018.10.034_bib4) 2018 Becker (10.1016/j.compbiomed.2018.10.034_bib20) 2011; 12 Zhu (10.1016/j.compbiomed.2018.10.034_bib11) 2004; 16 Chuang (10.1016/j.compbiomed.2018.10.034_bib7) 2011; 38 Tilahun (10.1016/j.compbiomed.2018.10.034_bib38) 2017 Liu (10.1016/j.compbiomed.2018.10.034_bib18) 2007; 51 Meijer (10.1016/j.compbiomed.2018.10.034_bib31) 2013; 55 Karthikeyan (10.1016/j.compbiomed.2018.10.034_bib24) 2014; 72 Broman (10.1016/j.compbiomed.2018.10.034_bib25) 2002; 64 Park (10.1016/j.compbiomed.2018.10.034_bib27) 2013; 84 Algamal (10.1016/j.compbiomed.2018.10.034_bib1) 2015; 67 Chen (10.1016/j.compbiomed.2018.10.034_bib26) 2008; 95 Shen (10.1016/j.compbiomed.2018.10.034_bib9) 2007; 71 Qasim (10.1016/j.compbiomed.2018.10.034_bib36) 2018; 182 Fan (10.1016/j.compbiomed.2018.10.034_bib13) 2001; 96 Cong (10.1016/j.compbiomed.2018.10.034_bib10) 2013; 127 Fister (10.1016/j.compbiomed.2018.10.034_bib22) 2013; 13 Wang (10.1016/j.compbiomed.2018.10.034_bib12) 2008; 24 Dong (10.1016/j.compbiomed.2018.10.034_bib14) 2015; 15 Bradley (10.1016/j.compbiomed.2018.10.034_bib15) 1998 Sabourin (10.1016/j.compbiomed.2018.10.034_bib29) 2015; 71 Zhang (10.1016/j.compbiomed.2018.10.034_bib37) 2016; 28 |
References_xml | – volume: 127 start-page: 35 year: 2013 end-page: 42 ident: bib10 article-title: Quantitative structure–activity relationship study of influenza virus neuraminidase A/PR/8/34 (H1N1) inhibitors by genetic algorithm feature selection and support vector regression publication-title: Chemometr. Intell. Lab. Syst. contributor: fullname: Zeng – volume: 9 start-page: 246 year: 2017 end-page: 254 ident: bib5 article-title: A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata publication-title: Informatics in Medicine Unlocked contributor: fullname: Masoudi-Nejad – volume: 55 start-page: 141 year: 2013 end-page: 155 ident: bib31 article-title: Efficient approximate k-fold and leave-one-out cross-validation for ridge regression publication-title: J. Biomech. contributor: fullname: Goeman – volume: 22 start-page: 88 year: 2006 end-page: 95 ident: bib19 article-title: Gene selection using support vector machines with non-convex penalty publication-title: Bioinformatics contributor: fullname: Park – volume: 38 start-page: 13367 year: 2011 end-page: 13377 ident: bib7 article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization publication-title: Expert Syst. Appl. contributor: fullname: Yang – volume: 17 start-page: 2508 year: 2005 end-page: 2529 ident: bib16 article-title: Geometrical properties of Nu support vector machines with different norms publication-title: Neur. comput. contributor: fullname: Murata – volume: 70 start-page: 198 year: 2014 end-page: 211 ident: bib28 article-title: Stabilizing the lasso against cross-validation variability publication-title: Comput. Stat. Data Anal. contributor: fullname: Nowak – volume: 97 start-page: 741 year: 2015 end-page: 754 ident: bib34 article-title: Enhancing firefly algorithm using generalized opposition-based learning publication-title: Computing contributor: fullname: Mao – volume: 15 year: 2015 ident: bib14 article-title: Parameter selection of a support vector machine, based on a chaotic particle swarm optimization algorithm publication-title: Cybern. Inf. Technol. contributor: fullname: Jian – volume: 67 start-page: 136 year: 2015 end-page: 145 ident: bib1 article-title: Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification publication-title: Comput. Biol. Med. contributor: fullname: Lee – volume: 93 start-page: 395 year: 2018 end-page: 422 ident: bib35 article-title: Classifier ensemble reduction using a modified firefly algorithm: an empirical evaluation publication-title: Expert Syst. Appl. contributor: fullname: Pandit – volume: 71 start-page: 1679 year: 2007 end-page: 1683 ident: bib9 article-title: A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification publication-title: Talanta contributor: fullname: Ye – volume: 72 start-page: 1567 year: 2014 end-page: 1579 ident: bib24 article-title: A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints publication-title: Int. J. Adv. Manuf. Technol. contributor: fullname: Nickolas – volume: 7 start-page: 100 year: 2010 end-page: 107 ident: bib17 article-title: Sparse support vector machines with Lp penalty for biomarker identification publication-title: IEEE Trans. Comput. Bi. contributor: fullname: Tan – volume: 51 start-page: 6380 year: 2007 end-page: 6394 ident: bib18 article-title: Support vector machines with adaptive Lq penalty publication-title: Comput. Stat. Data Anal. contributor: fullname: Ahn – volume: 14 start-page: 198 year: 2013 end-page: 211 ident: bib8 article-title: Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification publication-title: BMC Bioinf. contributor: fullname: Zhang – volume: 95 start-page: 759 year: 2008 end-page: 771 ident: bib26 article-title: Extended Bayesian information criteria for model selection with large model spaces publication-title: Biometrika contributor: fullname: Chen – year: 2018 ident: bib4 article-title: A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification publication-title: Adv. Data Anal. Classif. contributor: fullname: Lee – volume: 58 start-page: 335 year: 2016 end-page: 356 ident: bib32 article-title: Regularisation parameter selection via bootstrapping publication-title: Aust. N. Z. J. Stat. contributor: fullname: Jiang – volume: 16 start-page: 49 year: 2004 end-page: 56 ident: bib11 article-title: 1-norm support vector machines publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Tibshirani – volume: 84 start-page: 1596 year: 2013 end-page: 1607 ident: bib27 article-title: Robust sparse regression and tuning parameter selection via the efficient bootstrap information criteria publication-title: J. Stat. Comput. Simulat. contributor: fullname: Konishi – year: 2017 ident: bib33 article-title: NCBI data base – start-page: 82 year: 1998 end-page: 90 ident: bib15 article-title: Feature Selection via Concave Minimization and Support Vector Machines contributor: fullname: Mangasarian – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: bib13 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. contributor: fullname: Li – volume: 62 start-page: 29 year: 2018 end-page: 44 ident: bib23 article-title: A modified firefly algorithm for global minimum optimization publication-title: Appl. Soft Comput. contributor: fullname: Köse – volume: 64 start-page: 641 year: 2002 end-page: 656 ident: bib25 article-title: A model selection approach for the identification of quantitative trait loci in experimental crosses publication-title: J. Roy. Stat. Soc. B contributor: fullname: Speed – volume: 42 start-page: 864 year: 2015 end-page: 872 ident: bib2 article-title: Data mining for feature selection in gene expression autism data publication-title: Expert Syst. Appl. contributor: fullname: Osowski – volume: 13 start-page: 34 year: 2013 end-page: 46 ident: bib22 article-title: A comprehensive review of firefly algorithms publication-title: Swarm and Evolutionary Computation contributor: fullname: Brest – volume: 71 start-page: 1185 year: 2015 end-page: 1194 ident: bib29 article-title: A permutation approach for selecting the penalty parameter in penalized model selection publication-title: Biometrics contributor: fullname: Nobel – volume: 27 start-page: 167 year: 2015 end-page: 179 ident: bib30 article-title: A K-fold averaging cross-validation procedure publication-title: J. Nonparametric Statistics contributor: fullname: Hu – volume: 28 start-page: 2795 year: 2016 end-page: 2808 ident: bib37 article-title: Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion publication-title: Neural Comput. Appl. contributor: fullname: Wang – volume: 29 start-page: 175 year: 2013 end-page: 184 ident: bib21 article-title: Multiobjective firefly algorithm for continuous optimization publication-title: Eng. Comput. contributor: fullname: Yang – volume: 182 start-page: 41 year: 2018 end-page: 46 ident: bib36 article-title: Feature selection using particle swarm optimization-based logistic regression model publication-title: Chemometr. Intell. Lab. Syst. contributor: fullname: Algamal – volume: 12 year: 2017 ident: bib3 article-title: Selection and classification of gene expression in autism disorder: use of a combination of statistical filters and a GBPSO-SVM algorithm publication-title: PloS One contributor: fullname: Muhammad – volume: 12 start-page: 138 year: 2011 end-page: 151 ident: bib20 article-title: Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data publication-title: BMC Bioinf. contributor: fullname: Benner – volume: 42 start-page: 9326 year: 2015 end-page: 9332 ident: bib6 article-title: Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification publication-title: Expert Syst. Appl. contributor: fullname: Lee – volume: 24 start-page: 412 year: 2008 end-page: 419 ident: bib12 article-title: Hybrid huberized support vector machines for microarray classification and gene selection publication-title: Bioinformatics contributor: fullname: Zou – year: 2017 ident: bib38 article-title: Continuous Versions of Firefly Algorithm: a Review contributor: fullname: Hamadneh – volume: 38 start-page: 13367 year: 2011 ident: 10.1016/j.compbiomed.2018.10.034_bib7 article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.165 contributor: fullname: Chuang – volume: 12 start-page: 138 year: 2011 ident: 10.1016/j.compbiomed.2018.10.034_bib20 article-title: Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data publication-title: BMC Bioinf. doi: 10.1186/1471-2105-12-138 contributor: fullname: Becker – volume: 95 start-page: 759 year: 2008 ident: 10.1016/j.compbiomed.2018.10.034_bib26 article-title: Extended Bayesian information criteria for model selection with large model spaces publication-title: Biometrika doi: 10.1093/biomet/asn034 contributor: fullname: Chen – volume: 7 start-page: 100 year: 2010 ident: 10.1016/j.compbiomed.2018.10.034_bib17 article-title: Sparse support vector machines with Lp penalty for biomarker identification publication-title: IEEE Trans. Comput. Bi. contributor: fullname: Liu – volume: 96 start-page: 1348 year: 2001 ident: 10.1016/j.compbiomed.2018.10.034_bib13 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 contributor: fullname: Fan – volume: 27 start-page: 167 year: 2015 ident: 10.1016/j.compbiomed.2018.10.034_bib30 article-title: A K-fold averaging cross-validation procedure publication-title: J. Nonparametric Statistics doi: 10.1080/10485252.2015.1010532 contributor: fullname: Jung – volume: 16 start-page: 49 year: 2004 ident: 10.1016/j.compbiomed.2018.10.034_bib11 article-title: 1-norm support vector machines publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Zhu – volume: 51 start-page: 6380 year: 2007 ident: 10.1016/j.compbiomed.2018.10.034_bib18 article-title: Support vector machines with adaptive Lq penalty publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2007.02.006 contributor: fullname: Liu – volume: 28 start-page: 2795 year: 2016 ident: 10.1016/j.compbiomed.2018.10.034_bib37 article-title: Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2204-0 contributor: fullname: Zhang – volume: 70 start-page: 198 year: 2014 ident: 10.1016/j.compbiomed.2018.10.034_bib28 article-title: Stabilizing the lasso against cross-validation variability publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.09.008 contributor: fullname: Roberts – volume: 42 start-page: 864 year: 2015 ident: 10.1016/j.compbiomed.2018.10.034_bib2 article-title: Data mining for feature selection in gene expression autism data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.043 contributor: fullname: Latkowski – volume: 97 start-page: 741 year: 2015 ident: 10.1016/j.compbiomed.2018.10.034_bib34 article-title: Enhancing firefly algorithm using generalized opposition-based learning publication-title: Computing doi: 10.1007/s00607-015-0456-7 contributor: fullname: Yu – volume: 17 start-page: 2508 year: 2005 ident: 10.1016/j.compbiomed.2018.10.034_bib16 article-title: Geometrical properties of Nu support vector machines with different norms publication-title: Neur. comput. doi: 10.1162/0899766054796897 contributor: fullname: Ikeda – volume: 29 start-page: 175 year: 2013 ident: 10.1016/j.compbiomed.2018.10.034_bib21 article-title: Multiobjective firefly algorithm for continuous optimization publication-title: Eng. Comput. doi: 10.1007/s00366-012-0254-1 contributor: fullname: Yang – volume: 67 start-page: 136 year: 2015 ident: 10.1016/j.compbiomed.2018.10.034_bib1 article-title: Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.10.008 contributor: fullname: Algamal – volume: 13 start-page: 34 year: 2013 ident: 10.1016/j.compbiomed.2018.10.034_bib22 article-title: A comprehensive review of firefly algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.06.001 contributor: fullname: Fister – volume: 71 start-page: 1185 year: 2015 ident: 10.1016/j.compbiomed.2018.10.034_bib29 article-title: A permutation approach for selecting the penalty parameter in penalized model selection publication-title: Biometrics doi: 10.1111/biom.12359 contributor: fullname: Sabourin – volume: 22 start-page: 88 year: 2006 ident: 10.1016/j.compbiomed.2018.10.034_bib19 article-title: Gene selection using support vector machines with non-convex penalty publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti736 contributor: fullname: Zhang – volume: 93 start-page: 395 year: 2018 ident: 10.1016/j.compbiomed.2018.10.034_bib35 article-title: Classifier ensemble reduction using a modified firefly algorithm: an empirical evaluation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.10.001 contributor: fullname: Zhang – volume: 64 start-page: 641 year: 2002 ident: 10.1016/j.compbiomed.2018.10.034_bib25 article-title: A model selection approach for the identification of quantitative trait loci in experimental crosses publication-title: J. Roy. Stat. Soc. B doi: 10.1111/1467-9868.00354 contributor: fullname: Broman – volume: 9 start-page: 246 year: 2017 ident: 10.1016/j.compbiomed.2018.10.034_bib5 article-title: A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2017.10.004 contributor: fullname: Motieghader – volume: 55 start-page: 141 year: 2013 ident: 10.1016/j.compbiomed.2018.10.034_bib31 article-title: Efficient approximate k-fold and leave-one-out cross-validation for ridge regression publication-title: J. Biomech. contributor: fullname: Meijer – volume: 127 start-page: 35 year: 2013 ident: 10.1016/j.compbiomed.2018.10.034_bib10 article-title: Quantitative structure–activity relationship study of influenza virus neuraminidase A/PR/8/34 (H1N1) inhibitors by genetic algorithm feature selection and support vector regression publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.05.012 contributor: fullname: Cong – start-page: 82 year: 1998 ident: 10.1016/j.compbiomed.2018.10.034_bib15 contributor: fullname: Bradley – volume: 84 start-page: 1596 year: 2013 ident: 10.1016/j.compbiomed.2018.10.034_bib27 article-title: Robust sparse regression and tuning parameter selection via the efficient bootstrap information criteria publication-title: J. Stat. Comput. Simulat. doi: 10.1080/00949655.2012.755532 contributor: fullname: Park – volume: 62 start-page: 29 year: 2018 ident: 10.1016/j.compbiomed.2018.10.034_bib23 article-title: A modified firefly algorithm for global minimum optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.032 contributor: fullname: Yelghi – volume: 58 start-page: 335 year: 2016 ident: 10.1016/j.compbiomed.2018.10.034_bib32 article-title: Regularisation parameter selection via bootstrapping publication-title: Aust. N. Z. J. Stat. doi: 10.1111/anzs.12168 contributor: fullname: Pang – volume: 12 year: 2017 ident: 10.1016/j.compbiomed.2018.10.034_bib3 article-title: Selection and classification of gene expression in autism disorder: use of a combination of statistical filters and a GBPSO-SVM algorithm publication-title: PloS One doi: 10.1371/journal.pone.0187371 contributor: fullname: Hameed – year: 2017 ident: 10.1016/j.compbiomed.2018.10.034_bib38 contributor: fullname: Tilahun – volume: 24 start-page: 412 year: 2008 ident: 10.1016/j.compbiomed.2018.10.034_bib12 article-title: Hybrid huberized support vector machines for microarray classification and gene selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm579 contributor: fullname: Wang – volume: 15 year: 2015 ident: 10.1016/j.compbiomed.2018.10.034_bib14 article-title: Parameter selection of a support vector machine, based on a chaotic particle swarm optimization algorithm publication-title: Cybern. Inf. Technol. contributor: fullname: Dong – volume: 182 start-page: 41 year: 2018 ident: 10.1016/j.compbiomed.2018.10.034_bib36 article-title: Feature selection using particle swarm optimization-based logistic regression model publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.08.016 contributor: fullname: Qasim – volume: 14 start-page: 198 year: 2013 ident: 10.1016/j.compbiomed.2018.10.034_bib8 article-title: Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-198 contributor: fullname: Liang – volume: 42 start-page: 9326 year: 2015 ident: 10.1016/j.compbiomed.2018.10.034_bib6 article-title: Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.08.016 contributor: fullname: Algamal – volume: 71 start-page: 1679 year: 2007 ident: 10.1016/j.compbiomed.2018.10.034_bib9 article-title: A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification publication-title: Talanta doi: 10.1016/j.talanta.2006.07.047 contributor: fullname: Shen – year: 2018 ident: 10.1016/j.compbiomed.2018.10.034_bib4 article-title: A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-018-0334-1 contributor: fullname: Algamal – volume: 72 start-page: 1567 year: 2014 ident: 10.1016/j.compbiomed.2018.10.034_bib24 article-title: A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-5753-3 contributor: fullname: Karthikeyan |
SSID | ssj0004030 |
Score | 2.3890471 |
Snippet | In cancer classification, gene selection is one of the most important bioinformatics related topics. The selection of genes can be considered to be a variable... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 262 |
SubjectTerms | Algorithms Autism Bioinformatics Cancer Cancer classification Classification Datasets Efficiency Fines & penalties Firefly algorithm Gene expression Gene selection Genes Heuristic methods Mathematical functions Methods Ovarian cancer Parameter estimation Penalized support vector machine SCAD Support vector machines Tuning |
Title | Tuning parameter estimation in SCAD-support vector machine using firefly algorithm with application in gene selection and cancer classification |
URI | https://dx.doi.org/10.1016/j.compbiomed.2018.10.034 https://www.ncbi.nlm.nih.gov/pubmed/30399534 https://www.proquest.com/docview/2140043565 https://search.proquest.com/docview/2130801172 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6i4S4IN4UFmQkblZWeTSJI04VFO0FkGiRYC-RHbvbLk1atQ1SfwV_mRnbSdrVrrQIcYnapHUe35fxePzNmJC30s9UAWNZT5toVYCThJHPYZRSpCpOfcUl5jufjdPP3_mH0WDU6zW1dLp9_xVp2AdYY-bsX6DdNgo74DNgDltAHba3w702kQ4s6V2i1IVhGQ2bn4ixjTE8em9Tr9DtZr9MyJ6VRlCpWW3iBlMwgtPFjonFxXI9385Kl__WzXRjO3B-zTZmEZ1G0FwggdasQH8cBUgd5k0lBLeChJHg7ld_ujrBP1x4k5moli4ZbC5KNpSqXmAqS9mGasXGrgT9pRRrNhay0xkPFxeiNCsZsHPxU6znO8F-iNlO7Mc4An5FL9Im33RKJ2PMoQsZcJs3faqt_eZp5oFdGRwYeD_aN9HO-mv3jV_bkdiYxiUSYWULIaAMkJ-iEtC1flime2wqHWEiMAevIEqSI3InBOOHVvc8_trl6vqRTYtyF-_UZVZzeP3ZbnKZbhoSGddo8oDcd2MaOrRkfEh6unpE7n5yoD4mvy0nactJ2nGSziu6z0lqOUkdJ6nhJHWcpC0nKXKS7nES20FO0paTFJhFLSfpISefkG8fR5P3Z55bCMQrBn649aTQkVYwklfpNIhUIoXwpxpc91jysPAz4YcilhFXgQwFOOCC42Sygs4rLmB4EURPyXG1rPRzQqXiaRhmXPMkGmjo7bNYyCSUYKqSqfCLPgmaZ52vbL2XvBFCXuYdPjnig0cAnz5514CSO7_V-qM5sOkW_z5pcMydHdnkYYB9awR32Cdv2sNg-XE6T1R6WeNvwKhiScewT55Z_NtLBgpmGbwGL_7p0l6Se93beEKOt-tavyJHG1W_NqT-A1dL5OM |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+parameter+estimation+in+SCAD-support+vector+machine+using+firefly+algorithm+with+application+in+gene+selection+and+cancer+classification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Al-Thanoon%2C+Niam+Abdulmunim&rft.au=Qasim%2C+Omar+Saber&rft.au=Algamal%2C+Zakariya+Yahya&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=103&rft.spage=262&rft.epage=268&rft_id=info:doi/10.1016%2Fj.compbiomed.2018.10.034&rft.externalDocID=S0010482518303366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |