In Vitro Multi-Functional Microelectrode Array Featuring 59 760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement, and Neurotransmitter Detection Channels

Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide hig...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits Vol. 52; no. 6; pp. 1576 - 1590
Main Authors: Dragas, Jelena, Viswam, Vijay, Shadmani, Amir, Chen, Yihui, Bounik, Raziyeh, Stettler, Alexander, Radivojevic, Milos, Geissler, Sydney, Obien, Marie Engelene J., Muller, Jan, Hierlemann, Andreas
Format: Journal Article
Language:English
Published: New York IEEE 01-06-2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high-spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system for in vitro applications that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48 × 2.43 mm 2 ) to accommodate 59760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5-μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2048 action potential (AP, bandwidth: 300 Hz-10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz-300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.
AbstractList Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high-spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system for in vitro applications that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date ([Formula Omitted] mm2) to accommodate 59 760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5-[Formula Omitted]m electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2048 action potential (AP, bandwidth: 300 Hz–10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz–300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.
Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high-spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system for in vitro applications that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48 × 2.43 mm 2 ) to accommodate 59760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5-μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2048 action potential (AP, bandwidth: 300 Hz-10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz-300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.
Author Viswam, Vijay
Shadmani, Amir
Obien, Marie Engelene J.
Radivojevic, Milos
Dragas, Jelena
Bounik, Raziyeh
Chen, Yihui
Stettler, Alexander
Geissler, Sydney
Muller, Jan
Hierlemann, Andreas
Author_xml – sequence: 1
  givenname: Jelena
  surname: Dragas
  fullname: Dragas, Jelena
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 2
  givenname: Vijay
  surname: Viswam
  fullname: Viswam, Vijay
  email: vijay.viswam@bsse.ethz.ch
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 3
  givenname: Amir
  surname: Shadmani
  fullname: Shadmani, Amir
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 4
  givenname: Yihui
  surname: Chen
  fullname: Chen, Yihui
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 5
  givenname: Raziyeh
  surname: Bounik
  fullname: Bounik, Raziyeh
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 6
  givenname: Alexander
  surname: Stettler
  fullname: Stettler, Alexander
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 7
  givenname: Milos
  surname: Radivojevic
  fullname: Radivojevic, Milos
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 8
  givenname: Sydney
  surname: Geissler
  fullname: Geissler, Sydney
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 9
  givenname: Marie Engelene J.
  surname: Obien
  fullname: Obien, Marie Engelene J.
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 10
  givenname: Jan
  surname: Muller
  fullname: Muller, Jan
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
– sequence: 11
  givenname: Andreas
  surname: Hierlemann
  fullname: Hierlemann, Andreas
  organization: Dept. of Biosyst. Sci. & Eng., ETH Zurich, Basel, Switzerland
BookMark eNo9kcFuGyEQhlGVSnXSPkDUC1KvXneA3QWOkRunruL24CbKbYV3ZxOiXXCBPfjN-njFdZITgvn-meH_z8mZ8w4JuWSwYAz01x_b7XLBgckFr1VdKXhHZqyqVMGkeDgjMwCmCs0BPpDzGJ_ztSwVm5G_a0fvbQqebqYh2WI1uTZZ78xAN7YNHgdsc7VDehWCOdAVmjQF6x5ppamsgV6_AnFOOZTq9WH_dIjWD_7xQJdPxjkcMrBNdpwGcxwwp-txj51xLdINmjgFHNGlOTWuoz9xCj4F4-JoU8JAv2HC_3u9NftI3vdmiPjp5bwgd6vr38vvxe2vm_Xy6rZoS-Apf7mHUisOnEkOou6rDqHa9V2nBeNCVpqbbFMtJRe8NQLrXadkr1uhd9ghExfky6nvPvg_E8bUPPspZH9iwzRwLkulVabYicqWxRiwb_bBjiYcGgbNMaDmGFBzDKh5CShrPp80FhHfeKmZqGst_gFNbpAx
CODEN IJSCBC
CitedBy_id crossref_primary_10_1109_JSSC_2021_3085571
crossref_primary_10_3389_fnins_2019_00385
crossref_primary_10_3389_fncel_2019_00159
crossref_primary_10_1016_j_jneumeth_2017_09_008
crossref_primary_10_1109_TCSII_2021_3111257
crossref_primary_10_1109_TCSII_2020_2980009
crossref_primary_10_1109_TBME_2018_2866830
crossref_primary_10_1038_s41378_024_00691_8
crossref_primary_10_1109_JMEMS_2020_3015836
crossref_primary_10_1002_elps_201900286
crossref_primary_10_1186_s42234_018_0010_y
crossref_primary_10_1109_TBCAS_2018_2881044
crossref_primary_10_1002_adma_202101272
crossref_primary_10_1109_TBCAS_2022_3211275
crossref_primary_10_1002_advs_202207732
crossref_primary_10_1109_TBCAS_2018_2876069
crossref_primary_10_1038_s41467_020_18620_4
crossref_primary_10_1109_MSSC_2019_2939337
crossref_primary_10_1002_adbi_201800138
crossref_primary_10_1109_JSSC_2020_3005816
crossref_primary_10_1109_TCSII_2022_3186788
crossref_primary_10_1021_acs_chemrev_2c00212
crossref_primary_10_1038_s41467_018_06895_7
crossref_primary_10_1109_TCSI_2020_3048740
crossref_primary_10_3390_electronics11213477
crossref_primary_10_1109_TBCAS_2023_3274834
crossref_primary_10_1109_TBME_2018_2890530
crossref_primary_10_3390_electronics10212726
crossref_primary_10_1016_j_bios_2018_04_009
crossref_primary_10_1109_RBME_2022_3151340
crossref_primary_10_3390_s22239085
crossref_primary_10_1109_JSSC_2023_3344798
crossref_primary_10_1038_s41467_021_25443_4
crossref_primary_10_1109_TBCAS_2022_3194809
crossref_primary_10_1109_TBCAS_2022_3214243
crossref_primary_10_1109_TBCAS_2019_2953579
crossref_primary_10_3389_fncel_2019_00404
crossref_primary_10_3390_bios11080256
crossref_primary_10_1109_JSEN_2023_3272620
crossref_primary_10_1016_j_snb_2018_01_188
crossref_primary_10_1021_acssensors_2c01678
crossref_primary_10_1021_acs_analchem_0c00921
crossref_primary_10_1109_TBCAS_2018_2861220
crossref_primary_10_34133_2022_9857485
crossref_primary_10_1109_TCSI_2023_3268686
crossref_primary_10_1016_j_bios_2019_111931
crossref_primary_10_1088_1361_6439_ab8e91
crossref_primary_10_1002_advs_201700731
crossref_primary_10_3390_electronics13071222
crossref_primary_10_1039_C8LC00156A
crossref_primary_10_1109_TBCAS_2019_2897287
crossref_primary_10_1109_TCSII_2022_3153786
crossref_primary_10_3389_fbioe_2022_945575
crossref_primary_10_1109_JSSC_2018_2863952
crossref_primary_10_1021_acs_nanolett_9b02209
crossref_primary_10_1016_j_sna_2019_111531
crossref_primary_10_1109_TCSI_2022_3214470
crossref_primary_10_1109_JSEN_2018_2835829
crossref_primary_10_1016_j_neuron_2020_10_011
crossref_primary_10_1109_ACCESS_2021_3107299
crossref_primary_10_3390_bios13050502
crossref_primary_10_1049_el_2017_4032
crossref_primary_10_1109_TBCAS_2017_2759220
crossref_primary_10_1016_j_snb_2019_126649
crossref_primary_10_1109_TBCAS_2019_2935468
crossref_primary_10_1088_1741_2552_ac15e4
crossref_primary_10_1126_sciadv_aay2789
crossref_primary_10_1021_acs_nanolett_1c00543
crossref_primary_10_1587_elex_20_20230604
crossref_primary_10_1109_TBCAS_2018_2881800
crossref_primary_10_1126_sciadv_adf9524
crossref_primary_10_1016_j_bios_2019_111476
crossref_primary_10_3390_mi12020124
crossref_primary_10_1002_adfm_201701083
crossref_primary_10_7567_JJAP_57_06HH01
crossref_primary_10_1109_TBCAS_2021_3113556
crossref_primary_10_1109_TBCAS_2023_3252402
crossref_primary_10_1016_j_copbio_2021_10_002
crossref_primary_10_1109_TCSII_2023_3258880
crossref_primary_10_3389_fnins_2022_951964
crossref_primary_10_1039_C9AY00055K
crossref_primary_10_1109_JSEN_2020_2998168
crossref_primary_10_1109_TBCAS_2023_3287835
crossref_primary_10_1016_j_bios_2024_116474
crossref_primary_10_1038_s41578_018_0062_3
crossref_primary_10_1016_j_diamond_2018_09_024
crossref_primary_10_1088_1758_5090_acb466
crossref_primary_10_1016_j_ooc_2022_100016
crossref_primary_10_1007_s13534_022_00233_z
crossref_primary_10_1109_JSSC_2021_3066043
crossref_primary_10_3389_fnins_2022_904931
crossref_primary_10_1016_j_bios_2020_112546
crossref_primary_10_1039_D2LC01163H
crossref_primary_10_1016_j_electacta_2019_134638
crossref_primary_10_1109_TBCAS_2022_3146324
crossref_primary_10_3390_s21196456
crossref_primary_10_1109_TCSII_2020_3046451
crossref_primary_10_3390_electronics10030316
Cites_doi 10.1016/j.bios.2012.07.049
10.1109/IEMBS.2004.1404148
10.1109/JSSC.2009.2035196
10.1007/s00216-003-2149-x
10.1109/TBCAS.2015.2504984
10.1109/BioCAS.2014.6981723
10.1109/ISSCC.2009.4977450
10.1016/j.jphysparis.2011.10.003
10.3109/00207458708985928
10.1039/b907394a
10.1016/0956-5663(95)96931-N
10.1109/ISSCC.2016.7418073
10.1002/1439-7641(20020315)3:3<276::AID-CPHC276>3.0.CO;2-A
10.1109/TBCAS.2012.2189569
10.1109/JSSC.2005.845981
10.1109/TBCAS.2010.2081669
10.1016/j.snb.2012.07.024
10.1016/S0956-5663(00)00095-6
10.1109/JSSC.2014.2359219
10.1021/cr068081q
10.1109/JSSC.2006.873891
10.3389/fnins.2014.00423
10.1109/TBCAS.2013.2262998
10.1109/JSSC.2009.2035549
10.1109/JSSC.2012.2197929
10.1016/0165-0270(95)00085-2
10.1109/ESSCIR.2005.1541628
10.3390/s110504572
10.1109/TBCAS.2012.2203597
10.3389/fnins.2014.00087
10.1016/j.neuron.2006.09.020
10.1146/annurev-anchem-071114-040426
10.5962/bhl.title.20311
10.1109/TNS.2004.832706
10.1007/s002210050895
10.1109/ICSENS.2012.6411339
10.1007/978-1-4419-6478-6
10.1109/TBCAS.2015.2468052
10.1109/4.705353
10.1016/j.jneumeth.2004.03.005
10.1109/TBCAS.2010.2080676
10.1007/BF02524436
10.1039/C5LC00133A
10.1038/nature09160
10.1016/0014-4827(72)90481-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSSC.2017.2686580
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 1590
ExternalDocumentID 10_1109_JSSC_2017_2686580
7913669
Genre orig-research
GrantInformation_xml – fundername: “neuroXscales.”
– fundername: ERC
  grantid: 267351
  funderid: 10.13039/501100000781
– fundername: individual support through FP7-MTN “EngCaBra”
  grantid: 264417
– fundername: “NeuroCMOS”
  grantid: 694829
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RIG
RNS
TAE
TN5
UKR
VH1
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c402t-92f0498202172036f5de05bfdd931237592a558677232ca3e6bd87f9c39bede13
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Thu Oct 10 17:57:09 EDT 2024
Fri Aug 23 00:44:18 EDT 2024
Wed Jun 26 19:22:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-92f0498202172036f5de05bfdd931237592a558677232ca3e6bd87f9c39bede13
ORCID 0000-0003-4615-5158
OpenAccessLink https://europepmc.org/articles/pmc5447818?pdf=render
PQID 1902274898
PQPubID 85482
PageCount 15
ParticipantIDs crossref_primary_10_1109_JSSC_2017_2686580
proquest_journals_1902274898
ieee_primary_7913669
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
maloberti (ref39) 2007
gosselin (ref31) 2011; 11
ref17
ref16
ref19
ref51
ref50
ref46
viswam (ref30) 2016
ref45
ref48
ref47
ref42
ref44
ref43
eversmann (ref18) 2011
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
borland (ref36) 2007
ref33
ref32
ref2
bard (ref37) 2001
ref1
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
guo (ref41) 2013
ref28
ref27
ref29
References_xml – ident: ref9
  doi: 10.1016/j.bios.2012.07.049
– ident: ref5
  doi: 10.1109/IEMBS.2004.1404148
– ident: ref17
  doi: 10.1109/JSSC.2009.2035196
– ident: ref15
  doi: 10.1007/s00216-003-2149-x
– ident: ref6
  doi: 10.1109/TBCAS.2015.2504984
– ident: ref20
  doi: 10.1109/BioCAS.2014.6981723
– ident: ref40
  doi: 10.1109/ISSCC.2009.4977450
– start-page: 56
  year: 2013
  ident: ref41
  article-title: A 51 fA/Hz 0.5 low power heterodyne impedance analyzer for electrochemical impedance spectroscopy
  publication-title: Symposium on VLSI Circuits (VLSIC)
  contributor:
    fullname: guo
– ident: ref46
  doi: 10.1016/j.jphysparis.2011.10.003
– ident: ref27
  doi: 10.3109/00207458708985928
– ident: ref19
  doi: 10.1039/b907394a
– ident: ref14
  doi: 10.1016/0956-5663(95)96931-N
– year: 2007
  ident: ref36
  publication-title: An Introduction to Electrochemical Methods in Neuroscience
  contributor:
    fullname: borland
– ident: ref29
  doi: 10.1109/ISSCC.2016.7418073
– ident: ref12
  doi: 10.1002/1439-7641(20020315)3:3<276::AID-CPHC276>3.0.CO;2-A
– ident: ref28
  doi: 10.1109/TBCAS.2012.2189569
– year: 2001
  ident: ref37
  publication-title: Electrochemical Methods Fundamentals and Applications
  contributor:
    fullname: bard
– ident: ref43
  doi: 10.1109/JSSC.2005.845981
– ident: ref10
  doi: 10.1109/TBCAS.2010.2081669
– ident: ref8
  doi: 10.1016/j.snb.2012.07.024
– year: 2007
  ident: ref39
  publication-title: Data Converters
  contributor:
    fullname: maloberti
– ident: ref13
  doi: 10.1016/S0956-5663(00)00095-6
– ident: ref21
  doi: 10.1109/JSSC.2014.2359219
– ident: ref38
  doi: 10.1021/cr068081q
– ident: ref44
  doi: 10.1109/JSSC.2006.873891
– ident: ref22
  doi: 10.3389/fnins.2014.00423
– ident: ref42
  doi: 10.1109/TBCAS.2013.2262998
– ident: ref2
  doi: 10.1109/JSSC.2009.2035549
– ident: ref45
  doi: 10.1109/JSSC.2012.2197929
– ident: ref23
  doi: 10.1016/0165-0270(95)00085-2
– ident: ref48
  doi: 10.1109/ESSCIR.2005.1541628
– volume: 11
  start-page: 4572
  year: 2011
  ident: ref31
  article-title: Recent advances in neural recording microsystems
  publication-title: SENSORS
  doi: 10.3390/s110504572
  contributor:
    fullname: gosselin
– ident: ref3
  doi: 10.1109/TBCAS.2012.2203597
– ident: ref51
  doi: 10.3389/fnins.2014.00087
– ident: ref1
  doi: 10.1016/j.neuron.2006.09.020
– ident: ref34
  doi: 10.1146/annurev-anchem-071114-040426
– ident: ref49
  doi: 10.5962/bhl.title.20311
– ident: ref16
  doi: 10.1109/TNS.2004.832706
– start-page: 136
  year: 2016
  ident: ref30
  article-title: Action potential recording channels with 2.4 $\mu$ Vrms noise and stimulation artefact suppression
  publication-title: Proc Biomed Circuits Syst Conf (BIOCAS)
  contributor:
    fullname: viswam
– ident: ref26
  doi: 10.1007/s002210050895
– ident: ref35
  doi: 10.1109/ICSENS.2012.6411339
– ident: ref32
  doi: 10.1007/978-1-4419-6478-6
– ident: ref4
  doi: 10.1109/TBCAS.2015.2468052
– ident: ref33
  doi: 10.1109/4.705353
– ident: ref50
  doi: 10.1016/j.jneumeth.2004.03.005
– ident: ref47
  doi: 10.1109/TBCAS.2010.2080676
– ident: ref7
  doi: 10.1007/BF02524436
– ident: ref25
  doi: 10.1039/C5LC00133A
– start-page: 211
  year: 2011
  ident: ref18
  article-title: A neural tissue interfacing chip for in-vitro applications with 32 k recording/stimulation channels on an active area of 2.6 mm 2
  publication-title: Proc Eur Solid-State Circuits Conf
  contributor:
    fullname: eversmann
– ident: ref24
  doi: 10.1038/nature09160
– ident: ref11
  doi: 10.1016/0014-4827(72)90481-8
SSID ssj0014481
Score 2.6259036
Snippet Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1576
SubjectTerms Bandwidths
Channels
CMOS
Devices
Electric potential
Electrodes
Electrophysiology
Extracellular recording and stimulation
high channel count
high-density microelectrode array (HD-MEA)
Impedance measurement
impedance spectroscopy
In vitro methods and tests
low noise
low power
Microelectrodes
multi-functionality
neural interface
neurotransmitter detection
Neurotransmitters
Power consumption
pre-charging
pseudo-resistor
Recording
Signal quality
Spatial resolution
Stimulation
switch matrix
Switches
Switching circuits
Title In Vitro Multi-Functional Microelectrode Array Featuring 59 760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement, and Neurotransmitter Detection Channels
URI https://ieeexplore.ieee.org/document/7913669
https://www.proquest.com/docview/1902274898
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUoEwx8IwoF3cCEEoidJo5HBK0ACZYCYosc25E6kKI2Hfhn_DzunLSAYGGLosSK8my_u_PdO8ZO0QXQ1hkeGm36YT-2WahxLw4Fd5rr0nLusypvRvLhJbsekExOsKyFcc755DN3Tpf-LN9OzJxCZRdS8ThNVYd1pMqaWq3liQG6GU13PI4LGKFvTzB5pC7uRqMrSuKS5yLNkHGjHxzkm6r82ok9vQw3__dhW2yjNSPhssF9m624aoetfxMX3GUftxU8j-vpBHyRbThEBmsCf3BPWXhtAxzrcJSpfgcyBn3NIiQKZBrBYPHALAAS3l3c8MEQH40Hqk2okF0DGNXj17YTWAC3aItbmk5w_xWCDEBXFrwYSE0E-TqmQiK4drXPBquWg-2xp-Hg8eombPs0hAa9zxp_d4l-BpoS1OwKGbFMrIuSorRWxUiMMlFCJwkJ56H5ZnTs0sJmslQmVoWzjsf7bLWaVO6AQSkEL0phIpOWfSuk1onkOI2cKXhkZNJlZwvk8rdGjiP3bkykcoI5J5jzFuYu2yWolg-2KHVZb4F13i7YWY52kRCkxJMd_v3WEVujsZsssR5bradzd8w6Mzs_8RPxE5G13r0
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xywE48FoQhQXmwAklu7FTx_ER7bZqYbuXLohb5NiO1MOmqE0P_DN-HjNOWkBw4RZFjhPls_3NewDekQpgfXAiddaN03Huy9TSWZxKEaywjRciRlXOlvr6a3k54TI5ySEXJoQQg8_CGV9GX75fux2bys61EXlRmCO4q8a60H221sFnQIpG3x9P0BYm8AcfpsjM-cfl8oLDuPSZLEri3OwPFoptVf46iyPBTB_936c9hoeDIIkfeuSfwJ3QPoUHv5UXPIEf8xa_rLrNGmOabTolDutNf7jgOLyhBY4PNMvGfkcWB2PWIiqDushwsh-wTZBL7-5vRHNItMcjZye0xK8JLrvV7dALLME5SeOeFxQufhkhE7Stx1gOpGOKvF1xKhFehi7Gg7WHyZ7B5-nk5mKWDp0aUkf6Z0e_uyFNg4QJbndFnNgoHzJVN96bnKhRKyOtUlw6jwQ4Z_NQ1L7UjXG5qYMPIn8Ox-26DS8AGylF3UiXuaIZe6mtVVrQQgquFpnTagTv98hV3_qCHFVUZDJTMcwVw1wNMI_ghKE6DBxQGsHpHutq2LLbiiQjKbkWT_ny30-9hXuzm8VVdTW__vQK7vN7-pixUzjuNrvwGo62fvcmLsqfa7LiDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vitro+Multi-Functional+Microelectrode+Array+Featuring+59+760+Electrodes%2C+2048+Electrophysiology+Channels%2C+Stimulation%2C+Impedance+Measurement%2C+and+Neurotransmitter+Detection+Channels&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Dragas%2C+Jelena&rft.au=Viswam%2C+Vijay&rft.au=Shadmani%2C+Amir&rft.au=Chen%2C+Yihui&rft.date=2017-06-01&rft.pub=IEEE&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=52&rft.issue=6&rft.spage=1576&rft.epage=1590&rft_id=info:doi/10.1109%2FJSSC.2017.2686580&rft.externalDocID=7913669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon