Almost All Finsler Metrics have Infinite Dimensional Holonomy Group
We show that the set of Finsler metrics on a manifold contains an open everywhere dense subset of Finsler metrics with infinite-dimensional holonomy groups.
Saved in:
Published in: | The Journal of geometric analysis Vol. 31; no. 6; pp. 6067 - 6079 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-06-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We show that the set of Finsler metrics on a manifold contains an open everywhere dense subset of Finsler metrics with infinite-dimensional holonomy groups. |
---|---|
AbstractList | We show that the set of Finsler metrics on a manifold contains an open everywhere dense subset of Finsler metrics with infinite-dimensional holonomy groups. |
Author | Matveev, V. S. Muzsnay, Z. Hubicska, B. |
Author_xml | – sequence: 1 givenname: B. surname: Hubicska fullname: Hubicska, B. organization: University of Debrecen, Institute of Mathematics – sequence: 2 givenname: V. S. orcidid: 0000-0002-2237-1422 surname: Matveev fullname: Matveev, V. S. organization: Friedrich-Schiller-Universität, Institut für Mathematik – sequence: 3 givenname: Z. orcidid: 0000-0003-4516-7261 surname: Muzsnay fullname: Muzsnay, Z. email: muzsnay@science.unideb.hu organization: University of Debrecen, Institute of Mathematics |
BookMark | eNp9UE1LxDAUDLKCu6t_wFPAc_UladLmuKzuB6x4UfAWutlX7dIma9IK--9tqeDNw_De480Mw8zIxHmHhNwyuGcA2UNknHNIYABIliX6gkyZlLo_-fuk30FCojRXV2QW4xEgVSLNpmS5qBsfW7qoa7qqXKwx0GdsQ2Uj_Sy-kW5dWbmqRfpYNehi5V1R042vvfPNma6D707X5LIs6og3v3NO3lZPr8tNsntZb5eLXWJT4G0ikWursgMqAZbZkvPS5ja1MgcsgOWwl4dCa1QZiBRSgQrt3tqCqf7JUYo5uRt9T8F_dRhbc_Rd6PNEw6VQUgiZ5z2LjywbfIwBS3MKVVOEs2FghrLMWJaBAUNZRvciMYpiT3YfGP6s_1H9ALsybZg |
CitedBy_id | crossref_primary_10_1007_s41980_023_00763_x crossref_primary_10_1007_s12220_022_00911_5 |
Cites_doi | 10.24033/bsmf.1464 10.2140/gt.2012.16.2135 10.1007/BF01283825 10.1007/978-3-662-02950-3 10.1016/j.difgeo.2015.01.001 10.1142/5263 10.1016/j.difgeo.2020.101677 10.4171/CMH/476 10.1016/j.geomphys.2011.04.019 10.2307/1970273 10.1007/s12220-018-00138-3 10.1515/forum-2012-0008 10.1017/CBO9780511609565 10.5486/PMD.2009.4458 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s12220-020-00517-9 |
DatabaseName | Springer_OA刊 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1559-002X |
EndPage | 6079 |
ExternalDocumentID | 10_1007_s12220_020_00517_9 |
GrantInformation_xml | – fundername: TKA grantid: 307818; 307818 – fundername: DAAD grantid: 57447379 – fundername: UNKP grantid: ÚNKP-19-3-I-DE-531 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 2.D 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA C6C CAG COF CS3 CSCUP D-I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IAO IGS IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJN SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AIGIU CITATION H13 ITC SJYHP |
ID | FETCH-LOGICAL-c402t-5e29c67de630c1cf22fc8c4c580ea0180b5da99e67034043e6ecbcca160182e53 |
IEDL.DBID | AEJHL |
ISSN | 1050-6926 |
IngestDate | Mon Nov 18 22:45:59 EST 2024 Thu Nov 21 22:07:45 EST 2024 Sat Dec 16 12:09:43 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 17B66 Finsler geometry 53B40 Holonomy 22E65 Curvature Algebras of vector fields 53C29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-5e29c67de630c1cf22fc8c4c580ea0180b5da99e67034043e6ecbcca160182e53 |
ORCID | 0000-0002-2237-1422 0000-0003-4516-7261 |
OpenAccessLink | http://link.springer.com/10.1007/s12220-020-00517-9 |
PQID | 2536533588 |
PQPubID | 2043891 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2536533588 crossref_primary_10_1007_s12220_020_00517_9 springer_journals_10_1007_s12220_020_00517_9 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Journal of geometric analysis |
PublicationTitleAbbrev | J Geom Anal |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Matveev (CR11) 2009; 14 Kozma (CR10) 2000; 62 Vincze (CR22) 2005; 21 Chern, Shen (CR4) 2005 Borel, Lichnerowicz (CR3) 1952; 234 CR5 CR19 Szabó (CR21) 1981; 35 CR17 Muzsnay, Nagy (CR16) 2015; 39 Kolar, Michor, Slovak (CR9) 1993 Matveev (CR14) 2012; 62 Berger (CR1) 1955; 83 Muzsnay, Nagy (CR15) 2015; 27 Matveev, Troyanov (CR13) 2012; 16 Hubicska, Muzsnay (CR7) 2020; 30 Hubicska, Muzsnay (CR6) 2020; 73 Matveev (CR12) 2009; 74 Simons (CR20) 1962; 76 Ivanov, Lytchak (CR8) 2019; 94 Berwald (CR2) 1926; 25 Pontryagin (CR18) 1966 S-S Chern (517_CR4) 2005 B Hubicska (517_CR7) 2020; 30 B Hubicska (517_CR6) 2020; 73 VS Matveev (517_CR14) 2012; 62 L Berwald (517_CR2) 1926; 25 S Ivanov (517_CR8) 2019; 94 ZI Szabó (517_CR21) 1981; 35 I Kolar (517_CR9) 1993 J Simons (517_CR20) 1962; 76 VS Matveev (517_CR11) 2009; 14 VS Matveev (517_CR12) 2009; 74 LS Pontryagin (517_CR18) 1966 A Borel (517_CR3) 1952; 234 M Berger (517_CR1) 1955; 83 CS Vincze (517_CR22) 2005; 21 L Kozma (517_CR10) 2000; 62 VS Matveev (517_CR13) 2012; 16 517_CR5 Z Muzsnay (517_CR15) 2015; 27 517_CR17 Z Muzsnay (517_CR16) 2015; 39 517_CR19 |
References_xml | – volume: 234 start-page: 1835 year: 1952 end-page: 1837 ident: CR3 article-title: Groupes d’holonomie des variétés riemanniennes publication-title: C. R. Acad. Sci. Paris contributor: fullname: Lichnerowicz – volume: 21 start-page: 199 year: 2005 end-page: 204 ident: CR22 article-title: A new proof of Szabó’s theorem on the Riemann metrizability of Berwald manifolds publication-title: Acta Math. Acad. Paedagog. Nyhazi contributor: fullname: Vincze – ident: CR19 – volume: 83 start-page: 279 year: 1955 end-page: 330 ident: CR1 article-title: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes publication-title: Bull. Soc. Math. Fr. doi: 10.24033/bsmf.1464 contributor: fullname: Berger – volume: 74 start-page: 405 year: 2009 end-page: 416 ident: CR12 article-title: Riemannian metrics having common geodesics with Berwald metrics publication-title: Publ. Math. Debr. contributor: fullname: Matveev – volume: 16 start-page: 2135 year: 2012 end-page: 2170 ident: CR13 article-title: The Binet-Legendre metric in Finsler geometry publication-title: Geom. Topol. doi: 10.2140/gt.2012.16.2135 contributor: fullname: Troyanov – volume: 25 start-page: 40 year: 1926 end-page: 73 ident: CR2 article-title: Untersuchung der Krümmung allgemeiner metrischer Räumen auf Grund des in inher herrschenden Parallelism publication-title: Math. Z. doi: 10.1007/BF01283825 contributor: fullname: Berwald – year: 1993 ident: CR9 publication-title: Natural Operations in Differential Geometry doi: 10.1007/978-3-662-02950-3 contributor: fullname: Slovak – volume: 14 start-page: 50 year: 2009 end-page: 52 ident: CR11 article-title: On “All regular Landsberg metrics are always Berwald” by Z publication-title: I. Szabo. Balkan J. Geom. contributor: fullname: Matveev – volume: 39 start-page: 1 year: 2015 end-page: 9 ident: CR16 article-title: Finsler 2-manifolds with maximal holonomy group of infinite dimension publication-title: Diff. Geom. Appl. doi: 10.1016/j.difgeo.2015.01.001 contributor: fullname: Nagy – year: 2005 ident: CR4 publication-title: Riemann-Finsler geometry doi: 10.1142/5263 contributor: fullname: Shen – volume: 73 start-page: 101677 year: 2020 ident: CR6 article-title: The holonomy groups of projectively flat Randers two-manifolds of constant curvature publication-title: Differ. Geom. Appl. doi: 10.1016/j.difgeo.2020.101677 contributor: fullname: Muzsnay – volume: 94 start-page: 855 year: 2019 end-page: 868 ident: CR8 article-title: Rigidity of Busemann convex Finsler metrics publication-title: Comment. Math. Helv. doi: 10.4171/CMH/476 contributor: fullname: Lytchak – volume: 62 start-page: 675 year: 2012 end-page: 691 ident: CR14 article-title: Geodesically equivalent metrics in general relativity publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2011.04.019 contributor: fullname: Matveev – volume: 76 start-page: 213 year: 1962 end-page: 234 ident: CR20 article-title: On transitivity of holonomy systems publication-title: Ann. Math. doi: 10.2307/1970273 contributor: fullname: Simons – ident: CR17 – year: 1966 ident: CR18 publication-title: Nepreryvnye Gruppy. Translation: Topological Groups contributor: fullname: Pontryagin – volume: 35 start-page: 25 issue: 1 year: 1981 end-page: 39 ident: CR21 article-title: Positive definite Berwald spaces. Structure theorems on Berwald spaces publication-title: Tensor contributor: fullname: Szabó – volume: 30 start-page: 107 year: 2020 end-page: 123 ident: CR7 article-title: Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory publication-title: J. Geom. Anal. doi: 10.1007/s12220-018-00138-3 contributor: fullname: Muzsnay – ident: CR5 – volume: 27 start-page: 767 year: 2015 end-page: 786 ident: CR15 article-title: Projectively flat Finsler manifolds with infinite dimensional holonomy publication-title: Forum Math. doi: 10.1515/forum-2012-0008 contributor: fullname: Nagy – volume: 62 start-page: 87 year: 2000 end-page: 90 ident: CR10 article-title: On holonomy groups of Landsberg manifolds publication-title: Tensor contributor: fullname: Kozma – volume-title: Riemann-Finsler geometry year: 2005 ident: 517_CR4 doi: 10.1142/5263 contributor: fullname: S-S Chern – volume: 62 start-page: 87 year: 2000 ident: 517_CR10 publication-title: Tensor contributor: fullname: L Kozma – ident: 517_CR17 doi: 10.1017/CBO9780511609565 – ident: 517_CR19 – volume: 25 start-page: 40 year: 1926 ident: 517_CR2 publication-title: Math. Z. doi: 10.1007/BF01283825 contributor: fullname: L Berwald – volume-title: Natural Operations in Differential Geometry year: 1993 ident: 517_CR9 doi: 10.1007/978-3-662-02950-3 contributor: fullname: I Kolar – volume-title: Nepreryvnye Gruppy. Translation: Topological Groups year: 1966 ident: 517_CR18 contributor: fullname: LS Pontryagin – ident: 517_CR5 – volume: 30 start-page: 107 year: 2020 ident: 517_CR7 publication-title: J. Geom. Anal. doi: 10.1007/s12220-018-00138-3 contributor: fullname: B Hubicska – volume: 21 start-page: 199 year: 2005 ident: 517_CR22 publication-title: Acta Math. Acad. Paedagog. Nyhazi contributor: fullname: CS Vincze – volume: 76 start-page: 213 year: 1962 ident: 517_CR20 publication-title: Ann. Math. doi: 10.2307/1970273 contributor: fullname: J Simons – volume: 39 start-page: 1 year: 2015 ident: 517_CR16 publication-title: Diff. Geom. Appl. doi: 10.1016/j.difgeo.2015.01.001 contributor: fullname: Z Muzsnay – volume: 94 start-page: 855 year: 2019 ident: 517_CR8 publication-title: Comment. Math. Helv. doi: 10.4171/CMH/476 contributor: fullname: S Ivanov – volume: 27 start-page: 767 year: 2015 ident: 517_CR15 publication-title: Forum Math. doi: 10.1515/forum-2012-0008 contributor: fullname: Z Muzsnay – volume: 62 start-page: 675 year: 2012 ident: 517_CR14 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2011.04.019 contributor: fullname: VS Matveev – volume: 16 start-page: 2135 year: 2012 ident: 517_CR13 publication-title: Geom. Topol. doi: 10.2140/gt.2012.16.2135 contributor: fullname: VS Matveev – volume: 234 start-page: 1835 year: 1952 ident: 517_CR3 publication-title: C. R. Acad. Sci. Paris contributor: fullname: A Borel – volume: 35 start-page: 25 issue: 1 year: 1981 ident: 517_CR21 publication-title: Tensor contributor: fullname: ZI Szabó – volume: 83 start-page: 279 year: 1955 ident: 517_CR1 publication-title: Bull. Soc. Math. Fr. doi: 10.24033/bsmf.1464 contributor: fullname: M Berger – volume: 73 start-page: 101677 year: 2020 ident: 517_CR6 publication-title: Differ. Geom. Appl. doi: 10.1016/j.difgeo.2020.101677 contributor: fullname: B Hubicska – volume: 14 start-page: 50 year: 2009 ident: 517_CR11 publication-title: I. Szabo. Balkan J. Geom. contributor: fullname: VS Matveev – volume: 74 start-page: 405 year: 2009 ident: 517_CR12 publication-title: Publ. Math. Debr. doi: 10.5486/PMD.2009.4458 contributor: fullname: VS Matveev |
SSID | ssj0046347 |
Score | 2.297395 |
Snippet | We show that the set of Finsler metrics on a manifold contains an open everywhere dense subset of Finsler metrics with infinite-dimensional holonomy groups. |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 6067 |
SubjectTerms | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics |
Title | Almost All Finsler Metrics have Infinite Dimensional Holonomy Group |
URI | https://link.springer.com/article/10.1007/s12220-020-00517-9 https://www.proquest.com/docview/2536533588 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RdoGBQgFRKMgDGxglTuzEY9QPFURZAIktcm1HVIQUNS2_HztNGoFgAEXJksiKzue7d2ffO4ALynmgDA7AnAUmQKGuwEIriQOlXOH4KjFPm7p4CO6fw8HQ0uR4m9RF9npd7UgWhrqudTOezME22il4pTBvQMv4HmqUuxUNb8d3lQH2mVf0FTPIwURGnLCyVubnUb76oxpkftsXLdzNqP2vH92D3RJdomitDvuwpbMOtEukicp1nHdgZ7Jha80PoB-lb_N8iaI0RaNZlqd6gSa205bM0Yv40OgmS2YWm6KB7QWw5vFAY2M2bUEEKtJXh_A0Gj72x7hsroClCRmXmGrCJQuUZp4jXZkQkshQ-pKGjhaW1WtKleBcM2MSLAOPZlpOzXS7JoILiabeETSzeaaPAfmSmIvLQBhw5SS-0FOlkoCpQBDtyaQLl5WI4_c1h0ZcsyVbacWOva20Yt6FXjULcbme8phQjxlgSsOwC1eV2OvXv4928rfPT2Gb2EMrRZqlB83lYqXPoJGr1XmpZZ9LWMo0 |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH4ROKgHUdSIovbgTZds3daux4UfgQhcxAROS2m7SDKHYeDfbzs2iUYPmqW7bGma1_a97732fQ_gzmeMSo0DLEaodlB8h1tcSWFRKR1uezLWbxO6eKLjadDpGpocr8yFyW-7l0eSuabeJbtpU2Zbxt3JiaUsVoGaYTvHVaiF09msU2pgj7h5YTENHbRrxDApkmV-7uWrQdqhzG8Ho7m96dX_N9JjOCrwJQq3C-IE9lTagHqBNVGxk7MGHI4--VqzU2iHyesyW6MwSVBvkWaJWqGRqbUlMvTC3xUapPHCoFPUMdUAtkweqK8Vp0mJQHkA6wyee91Ju28V5RUsoZ3GteUrzAShUhHXFo6IMY5FIDzhB7bihtdr7kvOmCJaKRgOHkWUmOsJd7QPF2Dlu-dQTZepugDkCawfJijX8MqOPa7mUsaUSMqxckXchPtSxtHblkUj2vElG2lFtmlGWhFrQquchqjYUVmEfZdoaOoHQRMeSrHvPv_e2-Xffr-F_f5kNIyGg_HjFRxgc4UlD7q0oLpebdQ1VDK5uSmW3AfSls5m |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7cBqIPTqfidGoefNOyNm2T5nHsB5tuQ1DBt5IlKQ5qN9bNv9-kazcUfRAp7UtLKJfL3XeX3HcANz5jVGocYDFCdYDiO9ziSgqLSulw25ORfprUxRMdvwadrqHJ2VTxZ6fdiy3JdU2DYWlKls25jJrbwjft1mzLhD4ZyZTFSlDxdCSjNb3S6t73h4U19oibNRnTMEKHSQyTvHDm51G-Oqct4vy2SZr5nl71_399CAc57kSttaIcwY5KalDNMSjKV3hag_3Rhsc1PYZ2K36fpUvUimPUmyZprBZoZHpwiRS98Q-FBkk0NagVdUyXgDXDB-prg2pKJVCW2DqBl173ud238rYLltDB5NLyFWaCUKmIawtHRBhHIhCe8ANbccP3NfElZ0wRbSwMN48iSky0Ijg6tguw8t1TKCezRJ0B8gTWFxOUa9hlRx5XEykjSiTlWLkiqsNtIe9wvmbXCLc8ykZaoW1uI62Q1aFRTEmYr7Q0xL5LNGT1g6AOd8UUbF__Ptr53z6_ht3HTi8cDsYPF7CHzcmWLBfTgPJysVKXUErl6irXvk_qDNbn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Almost+All+Finsler+Metrics+have+Infinite+Dimensional+Holonomy+Group&rft.jtitle=The+Journal+of+geometric+analysis&rft.au=Hubicska%2C+B.&rft.au=Matveev%2C+V.+S.&rft.au=Muzsnay%2C+Z.&rft.date=2021-06-01&rft.pub=Springer+US&rft.issn=1050-6926&rft.eissn=1559-002X&rft.volume=31&rft.issue=6&rft.spage=6067&rft.epage=6079&rft_id=info:doi/10.1007%2Fs12220-020-00517-9&rft.externalDocID=10_1007_s12220_020_00517_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6926&client=summon |