Computational Intelligence Conceptions to Automated Diagnosis: Feature Grouping for Performance Improvement

Abstract The motivation of this work is to investigate two technological AI paths, evaluate the performance, and discuss the results. Using a covid-19 chest X-ray images databank, we address the two distinct experiments to this problem: (1) an investigation of feature extraction and classification u...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian Archives of Biology and Technology Vol. 66
Main Authors: Nascimento, Francisco Assis de Oliveira, Saraiva Junior, Raimundo Guimarães, Faria, Edilaine Gonçalves Costa de, Silva, Tony Alexandre Medeiros da, Carvalho, João Luiz Azevedo de
Format: Journal Article
Language:English
Published: Instituto de Tecnologia do Paraná (Tecpar) 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract The motivation of this work is to investigate two technological AI paths, evaluate the performance, and discuss the results. Using a covid-19 chest X-ray images databank, we address the two distinct experiments to this problem: (1) an investigation of feature extraction and classification using machine learning algorithms and (2) an approach based on transfer learning used in state-of-the-art applications. For the implementation of our proposal (1), an integrated framework consisting of 25 algorithms with different characteristics was developed to extract features from chest X-ray images. Following this path, we seek to focus on the spatial spectral signatures of shape, texture, local and global statistical quantities. The extraction of features based on information in Fourier and wavelet space-frequency domain was also implemented as part of the framework. On the other hand, several transfer learning CNN’s were also used to evaluate performance and to compere to the first technological path results. Furthermore, the performance of other results reported by various other works are provided. The comparative performance evaluation demonstrated that the two concepts for a computational intelligence tool can produce very good results even working in high-dimensional vector spaces.
AbstractList Abstract The motivation of this work is to investigate two technological AI paths, evaluate the performance, and discuss the results. Using a covid-19 chest X-ray images databank, we address the two distinct experiments to this problem: (1) an investigation of feature extraction and classification using machine learning algorithms and (2) an approach based on transfer learning used in state-of-the-art applications. For the implementation of our proposal (1), an integrated framework consisting of 25 algorithms with different characteristics was developed to extract features from chest X-ray images. Following this path, we seek to focus on the spatial spectral signatures of shape, texture, local and global statistical quantities. The extraction of features based on information in Fourier and wavelet space-frequency domain was also implemented as part of the framework. On the other hand, several transfer learning CNN’s were also used to evaluate performance and to compere to the first technological path results. Furthermore, the performance of other results reported by various other works are provided. The comparative performance evaluation demonstrated that the two concepts for a computational intelligence tool can produce very good results even working in high-dimensional vector spaces.
Author Carvalho, João Luiz Azevedo de
Nascimento, Francisco Assis de Oliveira
Silva, Tony Alexandre Medeiros da
Faria, Edilaine Gonçalves Costa de
Saraiva Junior, Raimundo Guimarães
Author_xml – sequence: 1
  givenname: Francisco Assis de Oliveira
  orcidid: 0000-0002-8217-1983
  surname: Nascimento
  fullname: Nascimento, Francisco Assis de Oliveira
  organization: Universidade de Brasília, Brazil
– sequence: 2
  givenname: Raimundo Guimarães
  orcidid: 0000-0002-4083-9404
  surname: Saraiva Junior
  fullname: Saraiva Junior, Raimundo Guimarães
  organization: Universidade de Brasília, Brazil; Instituto Federal do Ceará, Brasil
– sequence: 3
  givenname: Edilaine Gonçalves Costa de
  orcidid: 0000-0002-8346-0816
  surname: Faria
  fullname: Faria, Edilaine Gonçalves Costa de
  organization: Universidade de Brasília, Brazil
– sequence: 4
  givenname: Tony Alexandre Medeiros da
  orcidid: 0000-0001-5895-8439
  surname: Silva
  fullname: Silva, Tony Alexandre Medeiros da
  organization: Instituto Federal Goiano, Brazil
– sequence: 5
  givenname: João Luiz Azevedo de
  orcidid: 0000-0002-6485-6380
  surname: Carvalho
  fullname: Carvalho, João Luiz Azevedo de
  organization: Universidade de Brasília, Brazil
BookMark eNpFkM1KxDAUhYOM4Dj6Bi7yAtX8t3U3VGcsDOhC1yFJ05KxbUqaCr69rSPj5p7LOfAtvmuw6n1vAbjD6B7zHD1gkWYJo4QlBBFKKBIovwDrc72af45FkuWYXoHrcTwihJnAbA0-C98NU1TR-V61sOyjbVvX2N5YWPj5Dssywujhdoq-U9FW8MmppvejGx_hzqo4BQv3wU-D6xtY-wDfbJijUwuk7Ibgv2xn-3gDLmvVjvb2LzfgY_f8Xrwkh9d9WWwPiWGIxISZXKeVxrrSSJicI8WEzfN5xAxrbpCqGM2QJoxXRqQ85yLFlGnCuSZZldINKE_cyqujHILrVPiWXjn5W_jQSBWiM62VmdJohhGLBWWmVrrGtkaaE5PiKsvIzGInlgl-HIOtzzyM5CJfLpblYln-y6c_zrB6fA
CitedBy_id crossref_primary_10_1016_j_ecoinf_2023_102430
Cites_doi 10.1016/j.chaos.2021.110749
10.1016/j.asoc.2021.107160
10.1016/j.bbe.2021.01.002
10.1158/0008-5472.CAN-17-0339
10.1016/j.eswa.2021.115141
10.1371/journal.pone.0212110
10.1016/j.eswa.2020.114054
10.1016/j.media.2020.101794
10.1109/TAI.2022.3142241
10.1016/j.eswa.2021.115152
10.1109/JAS.2020.1003393
10.1016/j.jart.2016.12.009
10.1016/j.compbiomed.2020.104181
10.1109/ACCESS.2021.3083516
10.1016/j.bspc.2021.102622
10.1016/j.eswa.2021.114677
10.1016/j.bbe.2020.08.008
10.1016/j.ins.2021.03.062
10.1109/ACCESS.2022.3208138
10.1016/j.aej.2021.01.011
10.1016/j.patrec.2011.01.004
10.1109/ACCESS.2021.3064927
10.1007/s42979-022-01464-8
10.1016/j.aei.2021.101317
10.1016/j.eswa.2021.114883
10.1109/ACCESS.2022.3221531
10.1186/s12938-022-01045-z
10.1016/S0031-8914(34)80259-5
10.1109/ACCESS.2021.3086229
10.1016/j.compbiomed.2020.103805
10.1109/ACCESS.2021.3058537
10.1016/j.compbiomed.2021.104399
10.1016/j.neucom.2013.03.020
10.1109/TPAMI.2007.1110
10.1109/TSMC.1973.4309314
10.1016/j.patcog.2021.108055
10.1016/j.chaos.2021.110713
10.1109/ACCESS.2021.3065456
10.1038/s41586-020-2008-3
10.1109/ACCESS.2020.3007939
10.1016/j.cmpb.2020.105608
10.1016/j.patcog.2020.107613
10.1109/ACCESS.2020.2995597
10.1016/j.media.2021.102046
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1590/1678-4324-2023230609
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1678-4324
ExternalDocumentID oai_doaj_org_article_8ab04382e1634cfabf1ef0b52c71d882
10_1590_1678_4324_2023230609
GroupedDBID 23N
2WC
53G
5GY
5VS
6J9
AAYXX
ABXHO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
BAWUL
BCNDV
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
GX1
IPNFZ
KQ8
OK1
RIG
RNS
RSC
SCD
TR2
XSB
ID FETCH-LOGICAL-c402t-4c9b7db1bdb06c950a46e99c40141b5c0ad4380b245dc6759567134b255b28d73
IEDL.DBID DOA
ISSN 1516-8913
IngestDate Tue Oct 22 15:11:54 EDT 2024
Fri Aug 23 00:19:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-4c9b7db1bdb06c950a46e99c40141b5c0ad4380b245dc6759567134b255b28d73
ORCID 0000-0002-6485-6380
0000-0001-5895-8439
0000-0002-8346-0816
0000-0002-8217-1983
0000-0002-4083-9404
OpenAccessLink https://doaj.org/article/8ab04382e1634cfabf1ef0b52c71d882
ParticipantIDs doaj_primary_oai_doaj_org_article_8ab04382e1634cfabf1ef0b52c71d882
crossref_primary_10_1590_1678_4324_2023230609
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Brazilian Archives of Biology and Technology
PublicationYear 2023
Publisher Instituto de Tecnologia do Paraná (Tecpar)
Publisher_xml – name: Instituto de Tecnologia do Paraná (Tecpar)
References Oyelade ON (ref16) 2021; 9
Braga C (ref49) 2022; 71
Zhang Z (ref23) 2022
Tamal M (ref34) 2021; 180
Fang Z Ren J (ref10) 2022; 8
Nigam B (ref11) 2021; 176
Shabat AM (ref53) 2017; 15
Sharifrazi D (ref26) 2021; 68
Zhong F (ref52) 2013; 119
Mohammed MA (ref35) 2020; 8
Hertel R (ref9) 2021; 24
Lasker A (ref59) 2022; 4
Ismael AM (ref22) 2021; 164
Wang Z (ref41) 2021; 110
Zhao G (ref51) 2007; 29
Das AK (ref13) 2021; 144
Flusser J (ref43) 2009
Alahmari SS (ref6) 2022; 10
Ohata EF (ref21) 2021; 8
Löfstedt T (ref46) 2019; 14
Alhudhaif A (ref14) 2021; 180
Togac ar M (ref20) 2020; 121
Sheykhivand S (ref31) 2021; 60
Hu MK (ref44) 2009; 8
D´eniz O (ref50) 2011; 32
Brunese L (ref12) 2020; 196
Vidal PL (ref19) 2021; 173
Minaee S (ref15) 2020; 65
Karakani S (ref18) 2021; 130
Diederik PK (ref57) 2015
Catal’a ODT (ref40) 2021; 9
Pedregosa M (ref55) 2011; 12
Islam MM (ref7) 2021; 9
Tiwari S (ref4) 2023; 4
Signoroni A (ref37) 2021; 72
Demir F (ref32) 2021; 103
Lai C (ref2) 2020; 55
Dixit A (ref33) 2021; 571
Liu C (ref58) 2020; 19
Joshi RC (ref28) 2021; 41
Rajpal S (ref29) 2021; 145
Fan Y (ref27) 2021; 119
Cannata S (ref8) 2022; 10
Panetta K (ref38) 2021; 25
Zhou C (ref24) 2021; 9
Anter AM (ref36) 2021; 49
Jain G (ref17) 2020; 40
Das S (ref30) 2021; 25
Haralick RM (ref47) 1973; 6
Hussain AA (ref5) 2020; 8
Narin A (ref60) 2020
Quan H (ref39) 2021; 133
Islam MZ (ref42) 2020; 20
Wu F (ref1) 2020; 579
Zernike F (ref48) 1934; 1
Ahishali M (ref25) 2021; 9
Zwanenburg A (ref54) 2016
Duanmu H (ref3) 2022; 21
Van Griethuysen JJM (ref45) 2017; 77
Chen T (ref56) 2016
References_xml – volume: 145
  start-page: 110749
  year: 2021
  ident: ref29
  article-title: Using handpicked features in conjunction with ResNet-50 improved detection of COVID-19 from chest X-ray images
  publication-title: Chaos Soliton. Fract
  doi: 10.1016/j.chaos.2021.110749
  contributor:
    fullname: Rajpal S
– volume: 103
  start-page: 107160
  year: 2021
  ident: ref32
  article-title: DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images
  publication-title: Appl. Soft Comput
  doi: 10.1016/j.asoc.2021.107160
  contributor:
    fullname: Demir F
– volume: 41
  start-page: 239
  issue: 1
  year: 2021
  ident: ref28
  article-title: A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images
  publication-title: Biocybern. Biomed. Eng
  doi: 10.1016/j.bbe.2021.01.002
  contributor:
    fullname: Joshi RC
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  ident: ref45
  article-title: Computational Radiomics System to Decode the Radiographic Phenotype
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
  contributor:
    fullname: Van Griethuysen JJM
– volume: 180
  start-page: 1
  year: 2021
  ident: ref14
  article-title: Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2021.115141
  contributor:
    fullname: Alhudhaif A
– year: 2009
  ident: ref43
  contributor:
    fullname: Flusser J
– volume: 24
  start-page: 100620
  year: 2021
  ident: ref9
  article-title: COV-SNET: A deep learning model for X-ray-based COVID-19 classification
  publication-title: Inf. Med. Unloc
  contributor:
    fullname: Hertel R
– volume: 14
  start-page: 0212110
  issue: 2
  year: 2019
  ident: ref46
  article-title: Gray-level invariant Haralick texture features
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0212110
  contributor:
    fullname: Löfstedt T
– volume: 164
  start-page: 1
  year: 2021
  ident: ref22
  article-title: Deep learning approaches for COVID-19 detection based on chest X-ray images
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2020.114054
  contributor:
    fullname: Ismael AM
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: ref58
  article-title: Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning
  publication-title: BioMedi Eng
  contributor:
    fullname: Liu C
– volume: 8
  start-page: 17
  issue: 1
  year: 2022
  ident: ref10
  article-title: A Novel Multi-Stage Residual Feature Fusion Network for Detection of COVID-19 in Chest X-Ray Images
  publication-title: IEEE T. Mol. Biol. Mul-Scl. Communicat
  contributor:
    fullname: Fang Z Ren J
– volume: 65
  start-page: 101794
  year: 2020
  ident: ref15
  article-title: Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2020.101794
  contributor:
    fullname: Minaee S
– start-page: 1
  year: 2015
  ident: ref57
  contributor:
    fullname: Diederik PK
– volume: 4
  start-page: 44
  issue: 1
  year: 2023
  ident: ref4
  article-title: A Review of the Machine Learning Algorithms for Covid-19 Case Analysis
  publication-title: IEEE T. Art. Intellig
  doi: 10.1109/TAI.2022.3142241
  contributor:
    fullname: Tiwari S
– start-page: 2016:1612.07003
  year: 2016
  ident: ref54
  article-title: Image biomarker standardization initiative - feature definitions
  publication-title: In eprint arXiv [Internet]
  contributor:
    fullname: Zwanenburg A
– volume: 180
  start-page: 1
  year: 2021
  ident: ref34
  article-title: An integrated framework with machine learning and radiomics for accurate and rapid early diagnosis of COVID-19 from Chest X-ray
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115152
  contributor:
    fullname: Tamal M
– volume: 8
  start-page: 239
  issue: 1
  year: 2021
  ident: ref21
  article-title: Automatic Detection of COVID-19 Infection Using Chest X-Ray Images Through Transfer Learning
  publication-title: IEEE/CAA J. Autom. Sin
  doi: 10.1109/JAS.2020.1003393
  contributor:
    fullname: Ohata EF
– volume: 15
  start-page: 250
  year: 2017
  ident: ref53
  article-title: A comparative study of the use of local directional pattern for texture-based informal settlement classification
  publication-title: J. Appl. Res. Technol
  doi: 10.1016/j.jart.2016.12.009
  contributor:
    fullname: Shabat AM
– volume: 130
  start-page: 104181
  year: 2021
  ident: ref18
  article-title: Lightweight deep learning models for detecting COVID-19 from chest X-ray images
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2020.104181
  contributor:
    fullname: Karakani S
– start-page: 2003.10849
  year: 2020
  ident: ref60
  article-title: Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks
  publication-title: arXiv Prepr. arXiv
  contributor:
    fullname: Narin A
– volume: 9
  start-page: 77905
  year: 2021
  ident: ref16
  article-title: CovFrameNet: An Enhanced Deep Learning Framework for COVID-19 Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083516
  contributor:
    fullname: Oyelade ON
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref55
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn Res
  contributor:
    fullname: Pedregosa M
– volume: 68
  start-page: 1
  year: 2021
  ident: ref26
  article-title: Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images
  publication-title: Biomed. Signal Proces
  doi: 10.1016/j.bspc.2021.102622
  contributor:
    fullname: Sharifrazi D
– volume: 173
  start-page: 1
  year: 2021
  ident: ref19
  article-title: Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2021.114677
  contributor:
    fullname: Vidal PL
– volume: 40
  start-page: 1391
  year: 2020
  ident: ref17
  article-title: A deep learning approach to detect Covid-19 coronavirus with X-Ray images
  publication-title: Biocybern. Biomed. Eng
  doi: 10.1016/j.bbe.2020.08.008
  contributor:
    fullname: Jain G
– volume: 571
  start-page: 1
  year: 2021
  ident: ref33
  article-title: CoV2-Detect-Net: Design of COVID-19 prediction model based on hybrid DE-PSO with SVM using chest X-ray images
  publication-title: Infor. Sciences
  doi: 10.1016/j.ins.2021.03.062
  contributor:
    fullname: Dixit A
– volume: 71
  start-page: 1
  year: 2022
  ident: ref49
  article-title: Sparse Zernike Fitting for Dynamic LAS Tomographic Images of Temperature and Water Vapor Concentration
  publication-title: IEEE T. Instrum. Meas
  contributor:
    fullname: Braga C
– volume: 10
  start-page: 100763
  year: 2022
  ident: ref6
  article-title: A Comprehensive Review of Deep Learning-Based Methods for COVID-19 Detection Using Chest X-Ray Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3208138
  contributor:
    fullname: Alahmari SS
– volume: 60
  start-page: 2885
  year: 2021
  ident: ref31
  article-title: Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images
  publication-title: Alexandria Eng. J
  doi: 10.1016/j.aej.2021.01.011
  contributor:
    fullname: Sheykhivand S
– volume: 32
  start-page: 1598
  issue: 12
  year: 2011
  ident: ref50
  article-title: Face recognition using Histograms of Oriented Gradients
  publication-title: Pattern Recogn. Lett
  doi: 10.1016/j.patrec.2011.01.004
  contributor:
    fullname: D´eniz O
– volume: 9
  start-page: 41052
  year: 2021
  ident: ref25
  article-title: Advance Warning Methodologies for COVID-19 using Chest X-Ray Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064927
  contributor:
    fullname: Ahishali M
– volume: 4
  start-page: 65
  issue: 1
  year: 2022
  ident: ref59
  article-title: Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review
  publication-title: SN Comput. Sci
  doi: 10.1007/s42979-022-01464-8
  contributor:
    fullname: Lasker A
– volume: 49
  start-page: 1
  year: 2021
  ident: ref36
  article-title: AFCM-LSMA: New intelligent model based on L´evy slime mould algorithm and adaptive fuzzy C-means for identification of COVID-19 infection from chest X-ray images
  publication-title: Adv. Eng. Inform
  doi: 10.1016/j.aei.2021.101317
  contributor:
    fullname: Anter AM
– volume: 25
  start-page: 852
  issue: 6
  year: 2021
  ident: ref38
  article-title: Automated Detection of COVID-19 Cases on Radiographs using Shape-Dependent Fibonacci-p Patterns
  publication-title: IEEE J. Biomed. Health
  contributor:
    fullname: Panetta K
– volume: 176
  start-page: 114883
  year: 2021
  ident: ref11
  article-title: COVID-19: Automatic detection from X-ray images by utilizing deep learning methods
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2021.114883
  contributor:
    fullname: Nigam B
– volume: 10
  start-page: 119905
  year: 2022
  ident: ref8
  article-title: Deep Learning Algorithms for Automatic COVID-19 Detection on Chest X-Ray Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3221531
  contributor:
    fullname: Cannata S
– start-page: 785
  year: 2016
  ident: ref56
  contributor:
    fullname: Chen T
– volume: 21
  start-page: 1
  issue: 1
  year: 2022
  ident: ref3
  article-title: Deep learning of longitudinal chest X-ray and clinical variables predicts duration on ventilator and mortality in COVID-19 patients
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/s12938-022-01045-z
  contributor:
    fullname: Duanmu H
– volume: 1
  start-page: 689
  issue: 8
  year: 1934
  ident: ref48
  article-title: Beugungstheorie des Schneidenver-fahrens und seiner verbesserten form, der Phasenkontrastmethode
  publication-title: Physica
  doi: 10.1016/S0031-8914(34)80259-5
  contributor:
    fullname: Zernike F
– volume: 9
  start-page: 81902
  year: 2021
  ident: ref24
  article-title: COVID-19 Detection Based on Image Regrouping and Resnet-SVM Using Chest X-Ray Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3086229
  contributor:
    fullname: Zhou C
– volume: 8
  start-page: 79
  issue: 2
  year: 2009
  ident: ref44
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE T. Inform. Theor
  contributor:
    fullname: Hu MK
– volume: 121
  start-page: 103805
  year: 2020
  ident: ref20
  article-title: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2020.103805
  contributor:
    fullname: Togac ar M
– volume: 9
  start-page: 30551
  year: 2021
  ident: ref7
  article-title: A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058537
  contributor:
    fullname: Islam MM
– volume: 133
  start-page: 104399
  year: 2021
  ident: ref39
  article-title: DenseCapsNet: Detection of COVID-19 from X-ray images using a capsule neural network
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2021.104399
  contributor:
    fullname: Quan H
– volume: 119
  start-page: 375
  year: 2013
  ident: ref52
  article-title: Face recognition with enhanced local directional patterns
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.020
  contributor:
    fullname: Zhong F
– volume: 29
  start-page: 915
  issue: 6
  year: 2007
  ident: ref51
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE T. Pattern Anal
  doi: 10.1109/TPAMI.2007.1110
  contributor:
    fullname: Zhao G
– volume: 20
  start-page: 100412
  year: 2020
  ident: ref42
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images
  publication-title: Inf. Med. Unloc
  contributor:
    fullname: Islam MZ
– volume: 6
  start-page: 610
  issue: 6
  year: 1973
  ident: ref47
  article-title: Textural features for image classification
  publication-title: IEEE T. Syst. Sci. Cyb
  doi: 10.1109/TSMC.1973.4309314
  contributor:
    fullname: Haralick RM
– start-page: 1
  year: 2022
  ident: ref23
  article-title: Deep Ensemble Dynamic Learning Network for Corona Virus Disease 2019 Diagnosis
  publication-title: IEEE T. Neur. Net. Lear
  contributor:
    fullname: Zhang Z
– volume: 119
  start-page: 108055
  year: 2021
  ident: ref27
  article-title: COVID-19 Detection from X-ray Images using Multi-Kernel-Size Spatial-Channel Attention Network
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108055
  contributor:
    fullname: Fan Y
– volume: 144
  start-page: 110713
  year: 2021
  ident: ref13
  article-title: TLCoV - An automated Covid-19 screening model using Transfer Learning from chest X-ray images
  publication-title: Chaos Soliton. Fract
  doi: 10.1016/j.chaos.2021.110713
  contributor:
    fullname: Das AK
– volume: 9
  start-page: 42370
  year: 2021
  ident: ref40
  article-title: Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3065456
  contributor:
    fullname: Catal’a ODT
– volume: 579
  start-page: 265
  issue: 7798
  year: 2020
  ident: ref1
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
  contributor:
    fullname: Wu F
– volume: 55
  issue: 3
  year: 2020
  ident: ref2
  article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges
  publication-title: Int. J. Antimicrob. Ag
  contributor:
    fullname: Lai C
– volume: 8
  start-page: 128776
  year: 2020
  ident: ref5
  article-title: AI Techniques for COVID-19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007939
  contributor:
    fullname: Hussain AA
– volume: 196
  start-page: 105608
  year: 2020
  ident: ref12
  article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays
  publication-title: Comput. Meth. Prog. Bio
  doi: 10.1016/j.cmpb.2020.105608
  contributor:
    fullname: Brunese L
– volume: 25
  start-page: 1
  year: 2021
  ident: ref30
  article-title: Bi-Level Prediction Model for Screening COVID-19 Patients Using Chest X-Ray Images
  publication-title: Big Data Res
  contributor:
    fullname: Das S
– volume: 110
  start-page: 1
  year: 2021
  ident: ref41
  article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107613
  contributor:
    fullname: Wang Z
– volume: 8
  start-page: 99115
  year: 2020
  ident: ref35
  article-title: Benchmarking Methodology for Selection of Optimal COVID-19 Diagnostic Model Based on Entropy and TOPSIS Methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995597
  contributor:
    fullname: Mohammed MA
– volume: 72
  start-page: 102046
  year: 2021
  ident: ref37
  article-title: BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2021.102046
  contributor:
    fullname: Signoroni A
SSID ssj0014614
Score 2.3411465
Snippet Abstract The motivation of this work is to investigate two technological AI paths, evaluate the performance, and discuss the results. Using a covid-19 chest...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
SubjectTerms convolutional neural network
covid-19
feature extraction
machine learning
transfer learning
Title Computational Intelligence Conceptions to Automated Diagnosis: Feature Grouping for Performance Improvement
URI https://doaj.org/article/8ab04382e1634cfabf1ef0b52c71d882
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8MwDI1gJy4IBIjxMeXANVrTpmnLbexDm5AQEiBxq-IklRDShrb1_2Mnhe3GhWtTtdWLFT-79jNjdzp1YPBEFJXKQKjMSQHeSFEAGpcEXcogpD1_KZ7ey8mUZHJ-R31RTViUB47ADUsD4WeVR-KgbGOgkb5JIE9tIR3Sw3D6JjoGU11vXF4lQ4mnsCC5OUEDwoloU83hnu_Zk-gPvmR2wo47EshH8eWn7MAvz9hnHLDQJef4Yk8rk49jcyGZCN-u-KjdrpBpescnsVLuY3PPicy1a89DNgkdEkc6yp93fQE85g9COvCcvc2mr-O56EYhCIsB3lYoW0HhQIKDRNsqT4zSvqpwUSoJuU2MI-l4SFXuLMYAGPVQkyhgwABp6YrsgvWWq6W_ZDxTOS00xlRaOacBOYhurCtcanXpZJ-JH5Dqr6h4UVOkgKDWBGpNoNY7UPvsgZD8vZf0qsMF3MW628X6r128-o-HXLMj-qyYILlhve269bfscOPaAVrH4nEQbOQbaHbAkg
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Intelligence+Conceptions+to+Automated+Diagnosis%3A+Feature+Grouping+for+Performance+Improvement&rft.jtitle=Brazilian+Archives+of+Biology+and+Technology&rft.au=Francisco+Assis+de+Oliveira+Nascimento&rft.au=Raimundo+Guimar%C3%A3es+Saraiva+Junior&rft.au=Edilaine+Gon%C3%A7alves+Costa+de+Faria&rft.au=Tony+Alexandre+Medeiros+da+Silva&rft.date=2023-01-01&rft.pub=Instituto+de+Tecnologia+do+Paran%C3%A1+%28Tecpar%29&rft.eissn=1678-4324&rft.volume=66&rft_id=info:doi/10.1590%2F1678-4324-2023230609&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8ab04382e1634cfabf1ef0b52c71d882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1516-8913&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1516-8913&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1516-8913&client=summon