Computational Intelligence Conceptions to Automated Diagnosis: Feature Grouping for Performance Improvement
Abstract The motivation of this work is to investigate two technological AI paths, evaluate the performance, and discuss the results. Using a covid-19 chest X-ray images databank, we address the two distinct experiments to this problem: (1) an investigation of feature extraction and classification u...
Saved in:
Published in: | Brazilian Archives of Biology and Technology Vol. 66 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Instituto de Tecnologia do Paraná (Tecpar)
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Abstract The motivation of this work is to investigate two technological AI paths, evaluate the performance, and discuss the results. Using a covid-19 chest X-ray images databank, we address the two distinct experiments to this problem: (1) an investigation of feature extraction and classification using machine learning algorithms and (2) an approach based on transfer learning used in state-of-the-art applications. For the implementation of our proposal (1), an integrated framework consisting of 25 algorithms with different characteristics was developed to extract features from chest X-ray images. Following this path, we seek to focus on the spatial spectral signatures of shape, texture, local and global statistical quantities. The extraction of features based on information in Fourier and wavelet space-frequency domain was also implemented as part of the framework. On the other hand, several transfer learning CNN’s were also used to evaluate performance and to compere to the first technological path results. Furthermore, the performance of other results reported by various other works are provided. The comparative performance evaluation demonstrated that the two concepts for a computational intelligence tool can produce very good results even working in high-dimensional vector spaces. |
---|---|
AbstractList | Abstract The motivation of this work is to investigate two technological AI paths, evaluate the performance, and discuss the results. Using a covid-19 chest X-ray images databank, we address the two distinct experiments to this problem: (1) an investigation of feature extraction and classification using machine learning algorithms and (2) an approach based on transfer learning used in state-of-the-art applications. For the implementation of our proposal (1), an integrated framework consisting of 25 algorithms with different characteristics was developed to extract features from chest X-ray images. Following this path, we seek to focus on the spatial spectral signatures of shape, texture, local and global statistical quantities. The extraction of features based on information in Fourier and wavelet space-frequency domain was also implemented as part of the framework. On the other hand, several transfer learning CNN’s were also used to evaluate performance and to compere to the first technological path results. Furthermore, the performance of other results reported by various other works are provided. The comparative performance evaluation demonstrated that the two concepts for a computational intelligence tool can produce very good results even working in high-dimensional vector spaces. |
Author | Carvalho, João Luiz Azevedo de Nascimento, Francisco Assis de Oliveira Silva, Tony Alexandre Medeiros da Faria, Edilaine Gonçalves Costa de Saraiva Junior, Raimundo Guimarães |
Author_xml | – sequence: 1 givenname: Francisco Assis de Oliveira orcidid: 0000-0002-8217-1983 surname: Nascimento fullname: Nascimento, Francisco Assis de Oliveira organization: Universidade de Brasília, Brazil – sequence: 2 givenname: Raimundo Guimarães orcidid: 0000-0002-4083-9404 surname: Saraiva Junior fullname: Saraiva Junior, Raimundo Guimarães organization: Universidade de Brasília, Brazil; Instituto Federal do Ceará, Brasil – sequence: 3 givenname: Edilaine Gonçalves Costa de orcidid: 0000-0002-8346-0816 surname: Faria fullname: Faria, Edilaine Gonçalves Costa de organization: Universidade de Brasília, Brazil – sequence: 4 givenname: Tony Alexandre Medeiros da orcidid: 0000-0001-5895-8439 surname: Silva fullname: Silva, Tony Alexandre Medeiros da organization: Instituto Federal Goiano, Brazil – sequence: 5 givenname: João Luiz Azevedo de orcidid: 0000-0002-6485-6380 surname: Carvalho fullname: Carvalho, João Luiz Azevedo de organization: Universidade de Brasília, Brazil |
BookMark | eNpFkM1KxDAUhYOM4Dj6Bi7yAtX8t3U3VGcsDOhC1yFJ05KxbUqaCr69rSPj5p7LOfAtvmuw6n1vAbjD6B7zHD1gkWYJo4QlBBFKKBIovwDrc72af45FkuWYXoHrcTwihJnAbA0-C98NU1TR-V61sOyjbVvX2N5YWPj5Dssywujhdoq-U9FW8MmppvejGx_hzqo4BQv3wU-D6xtY-wDfbJijUwuk7Ibgv2xn-3gDLmvVjvb2LzfgY_f8Xrwkh9d9WWwPiWGIxISZXKeVxrrSSJicI8WEzfN5xAxrbpCqGM2QJoxXRqQ85yLFlGnCuSZZldINKE_cyqujHILrVPiWXjn5W_jQSBWiM62VmdJohhGLBWWmVrrGtkaaE5PiKsvIzGInlgl-HIOtzzyM5CJfLpblYln-y6c_zrB6fA |
CitedBy_id | crossref_primary_10_1016_j_ecoinf_2023_102430 |
Cites_doi | 10.1016/j.chaos.2021.110749 10.1016/j.asoc.2021.107160 10.1016/j.bbe.2021.01.002 10.1158/0008-5472.CAN-17-0339 10.1016/j.eswa.2021.115141 10.1371/journal.pone.0212110 10.1016/j.eswa.2020.114054 10.1016/j.media.2020.101794 10.1109/TAI.2022.3142241 10.1016/j.eswa.2021.115152 10.1109/JAS.2020.1003393 10.1016/j.jart.2016.12.009 10.1016/j.compbiomed.2020.104181 10.1109/ACCESS.2021.3083516 10.1016/j.bspc.2021.102622 10.1016/j.eswa.2021.114677 10.1016/j.bbe.2020.08.008 10.1016/j.ins.2021.03.062 10.1109/ACCESS.2022.3208138 10.1016/j.aej.2021.01.011 10.1016/j.patrec.2011.01.004 10.1109/ACCESS.2021.3064927 10.1007/s42979-022-01464-8 10.1016/j.aei.2021.101317 10.1016/j.eswa.2021.114883 10.1109/ACCESS.2022.3221531 10.1186/s12938-022-01045-z 10.1016/S0031-8914(34)80259-5 10.1109/ACCESS.2021.3086229 10.1016/j.compbiomed.2020.103805 10.1109/ACCESS.2021.3058537 10.1016/j.compbiomed.2021.104399 10.1016/j.neucom.2013.03.020 10.1109/TPAMI.2007.1110 10.1109/TSMC.1973.4309314 10.1016/j.patcog.2021.108055 10.1016/j.chaos.2021.110713 10.1109/ACCESS.2021.3065456 10.1038/s41586-020-2008-3 10.1109/ACCESS.2020.3007939 10.1016/j.cmpb.2020.105608 10.1016/j.patcog.2020.107613 10.1109/ACCESS.2020.2995597 10.1016/j.media.2021.102046 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1590/1678-4324-2023230609 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1678-4324 |
ExternalDocumentID | oai_doaj_org_article_8ab04382e1634cfabf1ef0b52c71d882 10_1590_1678_4324_2023230609 |
GroupedDBID | 23N 2WC 53G 5GY 5VS 6J9 AAYXX ABXHO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS APOWU AZFZN BAWUL BCNDV C1A CITATION CS3 DIK DU5 E3Z EBS EJD FRP GROUPED_DOAJ GX1 IPNFZ KQ8 OK1 RIG RNS RSC SCD TR2 XSB |
ID | FETCH-LOGICAL-c402t-4c9b7db1bdb06c950a46e99c40141b5c0ad4380b245dc6759567134b255b28d73 |
IEDL.DBID | DOA |
ISSN | 1516-8913 |
IngestDate | Tue Oct 22 15:11:54 EDT 2024 Fri Aug 23 00:19:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-4c9b7db1bdb06c950a46e99c40141b5c0ad4380b245dc6759567134b255b28d73 |
ORCID | 0000-0002-6485-6380 0000-0001-5895-8439 0000-0002-8346-0816 0000-0002-8217-1983 0000-0002-4083-9404 |
OpenAccessLink | https://doaj.org/article/8ab04382e1634cfabf1ef0b52c71d882 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8ab04382e1634cfabf1ef0b52c71d882 crossref_primary_10_1590_1678_4324_2023230609 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Brazilian Archives of Biology and Technology |
PublicationYear | 2023 |
Publisher | Instituto de Tecnologia do Paraná (Tecpar) |
Publisher_xml | – name: Instituto de Tecnologia do Paraná (Tecpar) |
References | Oyelade ON (ref16) 2021; 9 Braga C (ref49) 2022; 71 Zhang Z (ref23) 2022 Tamal M (ref34) 2021; 180 Fang Z Ren J (ref10) 2022; 8 Nigam B (ref11) 2021; 176 Shabat AM (ref53) 2017; 15 Sharifrazi D (ref26) 2021; 68 Zhong F (ref52) 2013; 119 Mohammed MA (ref35) 2020; 8 Hertel R (ref9) 2021; 24 Lasker A (ref59) 2022; 4 Ismael AM (ref22) 2021; 164 Wang Z (ref41) 2021; 110 Zhao G (ref51) 2007; 29 Das AK (ref13) 2021; 144 Flusser J (ref43) 2009 Alahmari SS (ref6) 2022; 10 Ohata EF (ref21) 2021; 8 Löfstedt T (ref46) 2019; 14 Alhudhaif A (ref14) 2021; 180 Togac ar M (ref20) 2020; 121 Sheykhivand S (ref31) 2021; 60 Hu MK (ref44) 2009; 8 D´eniz O (ref50) 2011; 32 Brunese L (ref12) 2020; 196 Vidal PL (ref19) 2021; 173 Minaee S (ref15) 2020; 65 Karakani S (ref18) 2021; 130 Diederik PK (ref57) 2015 Catal’a ODT (ref40) 2021; 9 Pedregosa M (ref55) 2011; 12 Islam MM (ref7) 2021; 9 Tiwari S (ref4) 2023; 4 Signoroni A (ref37) 2021; 72 Demir F (ref32) 2021; 103 Lai C (ref2) 2020; 55 Dixit A (ref33) 2021; 571 Liu C (ref58) 2020; 19 Joshi RC (ref28) 2021; 41 Rajpal S (ref29) 2021; 145 Fan Y (ref27) 2021; 119 Cannata S (ref8) 2022; 10 Panetta K (ref38) 2021; 25 Zhou C (ref24) 2021; 9 Anter AM (ref36) 2021; 49 Jain G (ref17) 2020; 40 Das S (ref30) 2021; 25 Haralick RM (ref47) 1973; 6 Hussain AA (ref5) 2020; 8 Narin A (ref60) 2020 Quan H (ref39) 2021; 133 Islam MZ (ref42) 2020; 20 Wu F (ref1) 2020; 579 Zernike F (ref48) 1934; 1 Ahishali M (ref25) 2021; 9 Zwanenburg A (ref54) 2016 Duanmu H (ref3) 2022; 21 Van Griethuysen JJM (ref45) 2017; 77 Chen T (ref56) 2016 |
References_xml | – volume: 145 start-page: 110749 year: 2021 ident: ref29 article-title: Using handpicked features in conjunction with ResNet-50 improved detection of COVID-19 from chest X-ray images publication-title: Chaos Soliton. Fract doi: 10.1016/j.chaos.2021.110749 contributor: fullname: Rajpal S – volume: 103 start-page: 107160 year: 2021 ident: ref32 article-title: DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2021.107160 contributor: fullname: Demir F – volume: 41 start-page: 239 issue: 1 year: 2021 ident: ref28 article-title: A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images publication-title: Biocybern. Biomed. Eng doi: 10.1016/j.bbe.2021.01.002 contributor: fullname: Joshi RC – volume: 77 start-page: e104 issue: 21 year: 2017 ident: ref45 article-title: Computational Radiomics System to Decode the Radiographic Phenotype publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 contributor: fullname: Van Griethuysen JJM – volume: 180 start-page: 1 year: 2021 ident: ref14 article-title: Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2021.115141 contributor: fullname: Alhudhaif A – year: 2009 ident: ref43 contributor: fullname: Flusser J – volume: 24 start-page: 100620 year: 2021 ident: ref9 article-title: COV-SNET: A deep learning model for X-ray-based COVID-19 classification publication-title: Inf. Med. Unloc contributor: fullname: Hertel R – volume: 14 start-page: 0212110 issue: 2 year: 2019 ident: ref46 article-title: Gray-level invariant Haralick texture features publication-title: PLoS ONE doi: 10.1371/journal.pone.0212110 contributor: fullname: Löfstedt T – volume: 164 start-page: 1 year: 2021 ident: ref22 article-title: Deep learning approaches for COVID-19 detection based on chest X-ray images publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2020.114054 contributor: fullname: Ismael AM – volume: 19 start-page: 1 issue: 1 year: 2020 ident: ref58 article-title: Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning publication-title: BioMedi Eng contributor: fullname: Liu C – volume: 8 start-page: 17 issue: 1 year: 2022 ident: ref10 article-title: A Novel Multi-Stage Residual Feature Fusion Network for Detection of COVID-19 in Chest X-Ray Images publication-title: IEEE T. Mol. Biol. Mul-Scl. Communicat contributor: fullname: Fang Z Ren J – volume: 65 start-page: 101794 year: 2020 ident: ref15 article-title: Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning publication-title: Med. Image Anal doi: 10.1016/j.media.2020.101794 contributor: fullname: Minaee S – start-page: 1 year: 2015 ident: ref57 contributor: fullname: Diederik PK – volume: 4 start-page: 44 issue: 1 year: 2023 ident: ref4 article-title: A Review of the Machine Learning Algorithms for Covid-19 Case Analysis publication-title: IEEE T. Art. Intellig doi: 10.1109/TAI.2022.3142241 contributor: fullname: Tiwari S – start-page: 2016:1612.07003 year: 2016 ident: ref54 article-title: Image biomarker standardization initiative - feature definitions publication-title: In eprint arXiv [Internet] contributor: fullname: Zwanenburg A – volume: 180 start-page: 1 year: 2021 ident: ref34 article-title: An integrated framework with machine learning and radiomics for accurate and rapid early diagnosis of COVID-19 from Chest X-ray publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115152 contributor: fullname: Tamal M – volume: 8 start-page: 239 issue: 1 year: 2021 ident: ref21 article-title: Automatic Detection of COVID-19 Infection Using Chest X-Ray Images Through Transfer Learning publication-title: IEEE/CAA J. Autom. Sin doi: 10.1109/JAS.2020.1003393 contributor: fullname: Ohata EF – volume: 15 start-page: 250 year: 2017 ident: ref53 article-title: A comparative study of the use of local directional pattern for texture-based informal settlement classification publication-title: J. Appl. Res. Technol doi: 10.1016/j.jart.2016.12.009 contributor: fullname: Shabat AM – volume: 130 start-page: 104181 year: 2021 ident: ref18 article-title: Lightweight deep learning models for detecting COVID-19 from chest X-ray images publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2020.104181 contributor: fullname: Karakani S – start-page: 2003.10849 year: 2020 ident: ref60 article-title: Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks publication-title: arXiv Prepr. arXiv contributor: fullname: Narin A – volume: 9 start-page: 77905 year: 2021 ident: ref16 article-title: CovFrameNet: An Enhanced Deep Learning Framework for COVID-19 Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083516 contributor: fullname: Oyelade ON – volume: 12 start-page: 2825 year: 2011 ident: ref55 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn Res contributor: fullname: Pedregosa M – volume: 68 start-page: 1 year: 2021 ident: ref26 article-title: Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images publication-title: Biomed. Signal Proces doi: 10.1016/j.bspc.2021.102622 contributor: fullname: Sharifrazi D – volume: 173 start-page: 1 year: 2021 ident: ref19 article-title: Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19 publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2021.114677 contributor: fullname: Vidal PL – volume: 40 start-page: 1391 year: 2020 ident: ref17 article-title: A deep learning approach to detect Covid-19 coronavirus with X-Ray images publication-title: Biocybern. Biomed. Eng doi: 10.1016/j.bbe.2020.08.008 contributor: fullname: Jain G – volume: 571 start-page: 1 year: 2021 ident: ref33 article-title: CoV2-Detect-Net: Design of COVID-19 prediction model based on hybrid DE-PSO with SVM using chest X-ray images publication-title: Infor. Sciences doi: 10.1016/j.ins.2021.03.062 contributor: fullname: Dixit A – volume: 71 start-page: 1 year: 2022 ident: ref49 article-title: Sparse Zernike Fitting for Dynamic LAS Tomographic Images of Temperature and Water Vapor Concentration publication-title: IEEE T. Instrum. Meas contributor: fullname: Braga C – volume: 10 start-page: 100763 year: 2022 ident: ref6 article-title: A Comprehensive Review of Deep Learning-Based Methods for COVID-19 Detection Using Chest X-Ray Images publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3208138 contributor: fullname: Alahmari SS – volume: 60 start-page: 2885 year: 2021 ident: ref31 article-title: Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images publication-title: Alexandria Eng. J doi: 10.1016/j.aej.2021.01.011 contributor: fullname: Sheykhivand S – volume: 32 start-page: 1598 issue: 12 year: 2011 ident: ref50 article-title: Face recognition using Histograms of Oriented Gradients publication-title: Pattern Recogn. Lett doi: 10.1016/j.patrec.2011.01.004 contributor: fullname: D´eniz O – volume: 9 start-page: 41052 year: 2021 ident: ref25 article-title: Advance Warning Methodologies for COVID-19 using Chest X-Ray Images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064927 contributor: fullname: Ahishali M – volume: 4 start-page: 65 issue: 1 year: 2022 ident: ref59 article-title: Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review publication-title: SN Comput. Sci doi: 10.1007/s42979-022-01464-8 contributor: fullname: Lasker A – volume: 49 start-page: 1 year: 2021 ident: ref36 article-title: AFCM-LSMA: New intelligent model based on L´evy slime mould algorithm and adaptive fuzzy C-means for identification of COVID-19 infection from chest X-ray images publication-title: Adv. Eng. Inform doi: 10.1016/j.aei.2021.101317 contributor: fullname: Anter AM – volume: 25 start-page: 852 issue: 6 year: 2021 ident: ref38 article-title: Automated Detection of COVID-19 Cases on Radiographs using Shape-Dependent Fibonacci-p Patterns publication-title: IEEE J. Biomed. Health contributor: fullname: Panetta K – volume: 176 start-page: 114883 year: 2021 ident: ref11 article-title: COVID-19: Automatic detection from X-ray images by utilizing deep learning methods publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2021.114883 contributor: fullname: Nigam B – volume: 10 start-page: 119905 year: 2022 ident: ref8 article-title: Deep Learning Algorithms for Automatic COVID-19 Detection on Chest X-Ray Images publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3221531 contributor: fullname: Cannata S – start-page: 785 year: 2016 ident: ref56 contributor: fullname: Chen T – volume: 21 start-page: 1 issue: 1 year: 2022 ident: ref3 article-title: Deep learning of longitudinal chest X-ray and clinical variables predicts duration on ventilator and mortality in COVID-19 patients publication-title: BioMed. Eng. OnLine doi: 10.1186/s12938-022-01045-z contributor: fullname: Duanmu H – volume: 1 start-page: 689 issue: 8 year: 1934 ident: ref48 article-title: Beugungstheorie des Schneidenver-fahrens und seiner verbesserten form, der Phasenkontrastmethode publication-title: Physica doi: 10.1016/S0031-8914(34)80259-5 contributor: fullname: Zernike F – volume: 9 start-page: 81902 year: 2021 ident: ref24 article-title: COVID-19 Detection Based on Image Regrouping and Resnet-SVM Using Chest X-Ray Images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3086229 contributor: fullname: Zhou C – volume: 8 start-page: 79 issue: 2 year: 2009 ident: ref44 article-title: Visual pattern recognition by moment invariants publication-title: IRE T. Inform. Theor contributor: fullname: Hu MK – volume: 121 start-page: 103805 year: 2020 ident: ref20 article-title: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2020.103805 contributor: fullname: Togac ar M – volume: 9 start-page: 30551 year: 2021 ident: ref7 article-title: A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19) publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058537 contributor: fullname: Islam MM – volume: 133 start-page: 104399 year: 2021 ident: ref39 article-title: DenseCapsNet: Detection of COVID-19 from X-ray images using a capsule neural network publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2021.104399 contributor: fullname: Quan H – volume: 119 start-page: 375 year: 2013 ident: ref52 article-title: Face recognition with enhanced local directional patterns publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.020 contributor: fullname: Zhong F – volume: 29 start-page: 915 issue: 6 year: 2007 ident: ref51 article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions publication-title: IEEE T. Pattern Anal doi: 10.1109/TPAMI.2007.1110 contributor: fullname: Zhao G – volume: 20 start-page: 100412 year: 2020 ident: ref42 article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images publication-title: Inf. Med. Unloc contributor: fullname: Islam MZ – volume: 6 start-page: 610 issue: 6 year: 1973 ident: ref47 article-title: Textural features for image classification publication-title: IEEE T. Syst. Sci. Cyb doi: 10.1109/TSMC.1973.4309314 contributor: fullname: Haralick RM – start-page: 1 year: 2022 ident: ref23 article-title: Deep Ensemble Dynamic Learning Network for Corona Virus Disease 2019 Diagnosis publication-title: IEEE T. Neur. Net. Lear contributor: fullname: Zhang Z – volume: 119 start-page: 108055 year: 2021 ident: ref27 article-title: COVID-19 Detection from X-ray Images using Multi-Kernel-Size Spatial-Channel Attention Network publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108055 contributor: fullname: Fan Y – volume: 144 start-page: 110713 year: 2021 ident: ref13 article-title: TLCoV - An automated Covid-19 screening model using Transfer Learning from chest X-ray images publication-title: Chaos Soliton. Fract doi: 10.1016/j.chaos.2021.110713 contributor: fullname: Das AK – volume: 9 start-page: 42370 year: 2021 ident: ref40 article-title: Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3065456 contributor: fullname: Catal’a ODT – volume: 579 start-page: 265 issue: 7798 year: 2020 ident: ref1 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 contributor: fullname: Wu F – volume: 55 issue: 3 year: 2020 ident: ref2 article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges publication-title: Int. J. Antimicrob. Ag contributor: fullname: Lai C – volume: 8 start-page: 128776 year: 2020 ident: ref5 article-title: AI Techniques for COVID-19 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007939 contributor: fullname: Hussain AA – volume: 196 start-page: 105608 year: 2020 ident: ref12 article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays publication-title: Comput. Meth. Prog. Bio doi: 10.1016/j.cmpb.2020.105608 contributor: fullname: Brunese L – volume: 25 start-page: 1 year: 2021 ident: ref30 article-title: Bi-Level Prediction Model for Screening COVID-19 Patients Using Chest X-Ray Images publication-title: Big Data Res contributor: fullname: Das S – volume: 110 start-page: 1 year: 2021 ident: ref41 article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays publication-title: Pattern Recogn doi: 10.1016/j.patcog.2020.107613 contributor: fullname: Wang Z – volume: 8 start-page: 99115 year: 2020 ident: ref35 article-title: Benchmarking Methodology for Selection of Optimal COVID-19 Diagnostic Model Based on Entropy and TOPSIS Methods publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995597 contributor: fullname: Mohammed MA – volume: 72 start-page: 102046 year: 2021 ident: ref37 article-title: BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset publication-title: Med. Image Anal doi: 10.1016/j.media.2021.102046 contributor: fullname: Signoroni A |
SSID | ssj0014614 |
Score | 2.3411465 |
Snippet | Abstract The motivation of this work is to investigate two technological AI paths, evaluate the performance, and discuss the results. Using a covid-19 chest... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
SubjectTerms | convolutional neural network covid-19 feature extraction machine learning transfer learning |
Title | Computational Intelligence Conceptions to Automated Diagnosis: Feature Grouping for Performance Improvement |
URI | https://doaj.org/article/8ab04382e1634cfabf1ef0b52c71d882 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8MwDI1gJy4IBIjxMeXANVrTpmnLbexDm5AQEiBxq-IklRDShrb1_2Mnhe3GhWtTtdWLFT-79jNjdzp1YPBEFJXKQKjMSQHeSFEAGpcEXcogpD1_KZ7ey8mUZHJ-R31RTViUB47ADUsD4WeVR-KgbGOgkb5JIE9tIR3Sw3D6JjoGU11vXF4lQ4mnsCC5OUEDwoloU83hnu_Zk-gPvmR2wo47EshH8eWn7MAvz9hnHLDQJef4Yk8rk49jcyGZCN-u-KjdrpBpescnsVLuY3PPicy1a89DNgkdEkc6yp93fQE85g9COvCcvc2mr-O56EYhCIsB3lYoW0HhQIKDRNsqT4zSvqpwUSoJuU2MI-l4SFXuLMYAGPVQkyhgwABp6YrsgvWWq6W_ZDxTOS00xlRaOacBOYhurCtcanXpZJ-JH5Dqr6h4UVOkgKDWBGpNoNY7UPvsgZD8vZf0qsMF3MW628X6r128-o-HXLMj-qyYILlhve269bfscOPaAVrH4nEQbOQbaHbAkg |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Intelligence+Conceptions+to+Automated+Diagnosis%3A+Feature+Grouping+for+Performance+Improvement&rft.jtitle=Brazilian+Archives+of+Biology+and+Technology&rft.au=Francisco+Assis+de+Oliveira+Nascimento&rft.au=Raimundo+Guimar%C3%A3es+Saraiva+Junior&rft.au=Edilaine+Gon%C3%A7alves+Costa+de+Faria&rft.au=Tony+Alexandre+Medeiros+da+Silva&rft.date=2023-01-01&rft.pub=Instituto+de+Tecnologia+do+Paran%C3%A1+%28Tecpar%29&rft.eissn=1678-4324&rft.volume=66&rft_id=info:doi/10.1590%2F1678-4324-2023230609&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8ab04382e1634cfabf1ef0b52c71d882 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1516-8913&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1516-8913&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1516-8913&client=summon |