Abolishing cAMP sensitivity in HCN2 pacemaker channels induces generalized seizures

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a kn...

Full description

Saved in:
Bibliographic Details
Published in:JCI insight Vol. 4; no. 9
Main Authors: Hammelmann, Verena, Stieglitz, Marc Sebastian, Hülle, Henrik, Le Meur, Karim, Kass, Jennifer, Brümmer, Manuela, Gruner, Christian, Rötzer, René Dominik, Fenske, Stefanie, Hartmann, Jana, Zott, Benedikt, Lüthi, Anita, Spahn, Saskia, Moser, Markus, Isbrandt, Dirk, Ludwig, Andreas, Konnerth, Arthur, Wahl-Schott, Christian, Biel, Martin
Format: Journal Article
Language:English
Published: United States American Society for Clinical Investigation 02-05-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a knockin mouse model (HCN2EA), in which binding of cAMP to HCN2 was abolished by 2 amino acid exchanges (R591E, T592A), we found that cAMP gating of HCN2 is essential for regulating the transition between the burst and tonic modes of firing in thalamic dorsal-lateral geniculate (dLGN) and ventrobasal (VB) nuclei. HCN2EA mice display impaired visual learning, generalized seizures of thalamic origin, and altered NREM sleep properties. VB-specific deletion of HCN2, but not of HCN4, also induced these generalized seizures of the absence type, corroborating a key role of HCN2 in this particular nucleus for controlling consciousness. Together, our data define distinct pathological phenotypes resulting from the loss of cAMP-mediated gating of a neuronal HCN channel.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2379-3708
2379-3708
DOI:10.1172/jci.insight.126418