Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval

Polynomial interpolation between large numbers of arbitrary nodes does notoriously not, in general, yield useful approximations of continuous functions. Following [1], we suggest to determine for each set of n + 1 nodes another denominator of degree n, and then to interpolate every continuous functi...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) Vol. 33; no. 6; pp. 77 - 86
Main Authors: Berrut, J.-P., Mittelmann, H.D.
Format: Journal Article
Language:English
Published: Elsevier Ltd 1997
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Polynomial interpolation between large numbers of arbitrary nodes does notoriously not, in general, yield useful approximations of continuous functions. Following [1], we suggest to determine for each set of n + 1 nodes another denominator of degree n, and then to interpolate every continuous function by a rational function with that same denominator, so that the resulting interpolation process remains a linear projection. The optimal denominator is chosen so as to minimize the Lebesgue constant for the given nodes. It has to be computed numerically. For that purpose, the barycentric representation of rational interpolants, which displays the linearity of the interpolation and reduces the determination of the denominator to that of the barycentric weights, is used. The optimal weights can then be computed by solving an optimization problem with simple bounds which could not be solved accurately by the first author in [1]. We show here how to do so, and we present numerical results.
AbstractList Polynomial interpolation between large numbers of arbitrary nodes does notoriously not, in general, yield useful approximations of continuous functions. Following [1], we suggest to determine for each set of n + 1 nodes another denominator of degree n, and then to interpolate every continuous function by a rational function with that same denominator, so that the resulting interpolation process remains a linear projection. The optimal denominator is chosen so as to minimize the Lebesgue constant for the given nodes. It has to be computed numerically. For that purpose, the barycentric representation of rational interpolants, which displays the linearity of the interpolation and reduces the determination of the denominator to that of the barycentric weights, is used. The optimal weights can then be computed by solving an optimization problem with simple bounds which could not be solved accurately by the first author in [1]. We show here how to do so, and we present numerical results.
Author Mittelmann, H.D.
Berrut, J.-P.
Author_xml – sequence: 1
  givenname: J.-P.
  surname: Berrut
  fullname: Berrut, J.-P.
  organization: Université de Fribourg, Mathématiques CH-1700 Fribourg, Pérolles, Switzerland
– sequence: 2
  givenname: H.D.
  surname: Mittelmann
  fullname: Mittelmann, H.D.
  organization: Department of Mathematics, Arizona State University Tempe, AZ 85287-1804, U.S.A
BookMark eNqFkE9LxDAUxIMouLv6EYQc9VBN0jZNTyKL_2DBg3oOafKyRrrJkqQL-ultd8Wrp8c8ZobhN0fHPnhA6IKSa0oov3klohUFZYxets0VIaSsivoIzahoyqLhXByj2Z_lFM1T-hxNVcnIDJkVdJDWA2AdfMrKZ7xx3m3ct_Nr3DsPKuKosgte9dj5DHEb-r3GwU6h7PwQhoTt4PX0TjjsIOL8AQf7TvVn6MSqPsH5712g94f7t-VTsXp5fF7erQpdEZYLVnWdYR1n7ThWVYZYI6BUmhgOmuqWk6oBUnPBS2G6mtnG1MSW1ArKKW_acoHqQ6-OIaUIVm6j26j4JSmREyq5RyUnDrJt5B6VrMfc7SEH47idgyiTduA1GBdBZ2mC-6fhB1DcdQc
CitedBy_id crossref_primary_10_1216_rmjm_1030539685
crossref_primary_10_1016_S0377_0427_97_00147_7
crossref_primary_10_1007_s11075_010_9415_8
crossref_primary_10_1007_s00211_007_0093_y
crossref_primary_10_1016_j_apnum_2011_05_001
crossref_primary_10_1007_s40819_020_00891_6
crossref_primary_10_1016_S0377_0427_00_00552_5
crossref_primary_10_1007_s10444_022_09986_8
crossref_primary_10_1016_j_cam_2019_02_034
crossref_primary_10_1007_s00211_011_0442_8
crossref_primary_10_1016_j_cam_2019_112347
crossref_primary_10_1090_S0025_5718_99_01070_4
crossref_primary_10_1109_JSAIT_2021_3085676
crossref_primary_10_1137_110827156
crossref_primary_10_1002_mma_7548
crossref_primary_10_1016_j_cagd_2021_102003
crossref_primary_10_1016_j_jcp_2009_05_045
crossref_primary_10_1016_j_amc_2016_09_003
crossref_primary_10_1016_j_aml_2016_03_007
crossref_primary_10_1016_j_cam_2013_03_044
crossref_primary_10_1007_s10543_011_0357_x
crossref_primary_10_1007_s40315_020_00334_9
crossref_primary_10_1016_j_cam_2011_04_004
crossref_primary_10_1137_S0036144502417715
crossref_primary_10_1007_s00211_022_01316_w
crossref_primary_10_1109_TMM_2014_2348712
crossref_primary_10_1137_S106482750036615X
crossref_primary_10_1016_j_cam_2013_06_030
crossref_primary_10_1051_shsconf_202111907002
crossref_primary_10_1016_j_jat_2013_01_004
crossref_primary_10_1016_j_amc_2017_08_027
crossref_primary_10_1080_10586458_2015_1072862
crossref_primary_10_1088_1361_6501_aca0b3
crossref_primary_10_3390_math8040498
crossref_primary_10_3934_math_2023181
crossref_primary_10_1137_17M114371X
crossref_primary_10_1002_num_21864
crossref_primary_10_1007_s11766_024_3711_x
crossref_primary_10_1109_TPAMI_2022_3151434
crossref_primary_10_1007_s00211_013_0535_7
crossref_primary_10_1007_s11075_010_9399_4
crossref_primary_10_1016_S0377_0427_96_00163_X
Cites_doi 10.1007/BF01897094
10.1090/S0025-5718-1984-0744931-0
10.1090/S0025-5718-1986-0842136-8
10.2307/2323093
10.1137/0715046
10.1016/0898-1221(88)90067-3
10.1007/BF01396489
ContentType Journal Article
Copyright 1997
Copyright_xml – notice: 1997
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0898-1221(97)00034-5
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 86
ExternalDocumentID 10_1016_S0898_1221_97_00034_5
S0898122197000345
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
WUQ
XFK
XPP
ZMT
ZY4
~G-
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c402t-24bbd2b629898a4d0fd8e3ac0d6ec1c96047e0568638db52f7d50f31f81616793
ISSN 0898-1221
IngestDate Thu Sep 26 16:58:29 EDT 2024
Fri Feb 23 02:27:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Lebesgue constant
Interpolation
Linear interpolation
Rational interpolation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-24bbd2b629898a4d0fd8e3ac0d6ec1c96047e0568638db52f7d50f31f81616793
OpenAccessLink https://dx.doi.org/10.1016/S0898-1221(97)00034-5
PageCount 10
ParticipantIDs crossref_primary_10_1016_S0898_1221_97_00034_5
elsevier_sciencedirect_doi_10_1016_S0898_1221_97_00034_5
PublicationCentury 1900
PublicationDate 1997-00-00
PublicationDateYYYYMMDD 1997-01-01
PublicationDate_xml – year: 1997
  text: 1997-00-00
PublicationDecade 1990
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 1997
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Berrut (BIB1) 1994
Henrici (BIB2) 1982
Stoer (BIB14) 1983
Runge (BIB3) 1901; 46
Brutman (BIB7) 1978; 15
Berrut (BIB15) 1988; 15
Werner (BIB13) 1984; 43
Berrut (BIB17) 1989; 54
Rivlin (BIB11) 1981
de Boor (BIB20) 1978; 27
Powell (BIB6) 1981
Berrut, Mittelmann (BIB19) 1994
Rivlin (BIB10) 1974
Schneider, Werner (BIB16) 1986; 47
Erdős, Vértesi (BIB5) 1980; 36
Szabados, Vértesi (BIB9) 1990
Bulirsch, Rutishauser (BIB12) 1968; 141
Szegö (BIB8) 1939; Volume XXIII
Epperson (BIB4) 1987; 94
Zhou, Tits (BIB18) 1995
de Boor (10.1016/S0898-1221(97)00034-5_BIB20) 1978; 27
Berrut (10.1016/S0898-1221(97)00034-5_BIB1) 1994
Runge (10.1016/S0898-1221(97)00034-5_BIB3) 1901; 46
Henrici (10.1016/S0898-1221(97)00034-5_BIB2) 1982
Stoer (10.1016/S0898-1221(97)00034-5_BIB14) 1983
Szabados (10.1016/S0898-1221(97)00034-5_BIB9) 1990
Szegö (10.1016/S0898-1221(97)00034-5_BIB8) 1939; Volume XXIII
Werner (10.1016/S0898-1221(97)00034-5_BIB13) 1984; 43
Rivlin (10.1016/S0898-1221(97)00034-5_BIB10) 1974
Zhou (10.1016/S0898-1221(97)00034-5_BIB18) 1995
Berrut (10.1016/S0898-1221(97)00034-5_BIB15) 1988; 15
Schneider (10.1016/S0898-1221(97)00034-5_BIB16) 1986; 47
Berrut (10.1016/S0898-1221(97)00034-5_BIB17_1) 1989; 54
(10.1016/S0898-1221(97)00034-5_BIB17_2) 1989; 55
Epperson (10.1016/S0898-1221(97)00034-5_BIB4) 1987; 94
Berrut (10.1016/S0898-1221(97)00034-5_BIB19) 1994
Brutman (10.1016/S0898-1221(97)00034-5_BIB7) 1978; 15
Erdős (10.1016/S0898-1221(97)00034-5_BIB5) 1980; 36
Rivlin (10.1016/S0898-1221(97)00034-5_BIB11) 1981
Bulirsch (10.1016/S0898-1221(97)00034-5_BIB12) 1968; 141
Powell (10.1016/S0898-1221(97)00034-5_BIB6) 1981
References_xml – volume: 54
  start-page: 703
  year: 1989
  end-page: 718
  ident: BIB17
  article-title: Barycentric formulae for cardinal (SINC-) interpolants
  publication-title: Numer. Math.
  contributor:
    fullname: Berrut
– volume: 36
  start-page: 71
  year: 1980
  end-page: 89
  ident: BIB5
  article-title: On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary systems of nodes
  publication-title: Acta Math. Acad. Sci. Hungar.
  contributor:
    fullname: Vértesi
– volume: 15
  start-page: 1
  year: 1988
  end-page: 16
  ident: BIB15
  article-title: Rational functions for guaranteed and experimentally well-conditioned global interpolation
  publication-title: Computers Math. Applic.
  contributor:
    fullname: Berrut
– year: 1981
  ident: BIB11
  article-title: An Introduction to the Approximation of Functions
  contributor:
    fullname: Rivlin
– volume: 46
  start-page: 224
  year: 1901
  end-page: 243
  ident: BIB3
  article-title: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten
  publication-title: Z. Math. Phys.
  contributor:
    fullname: Runge
– year: 1983
  ident: BIB14
  article-title: Einführung in die Numerische Mathematik I
  contributor:
    fullname: Stoer
– volume: 27
  year: 1978
  ident: BIB20
  article-title: A Practical Guide to Splines
  publication-title: Applied Mathematical Sciences
  contributor:
    fullname: de Boor
– volume: 94
  start-page: 329
  year: 1987
  end-page: 341
  ident: BIB4
  article-title: On the Runge example
  publication-title: Amer. Math. Monthly
  contributor:
    fullname: Epperson
– volume: 15
  start-page: 694
  year: 1978
  end-page: 704
  ident: BIB7
  article-title: On the Lebesgue function for polynomial interpolation
  publication-title: SIAM J. Numer. Anal.
  contributor:
    fullname: Brutman
– volume: 141
  start-page: 232
  year: 1968
  end-page: 319
  ident: BIB12
  article-title: Interpolation und genäherte Quadratur
  publication-title: Mathematische Hilfsmittel des Ingenieurs
  contributor:
    fullname: Rutishauser
– year: 1982
  ident: BIB2
  article-title: Essentials of Numerical Analysis
  contributor:
    fullname: Henrici
– volume: 47
  start-page: 285
  year: 1986
  end-page: 299
  ident: BIB16
  article-title: Some new aspects of rational interpolation
  publication-title: Math. Comp.
  contributor:
    fullname: Werner
– year: 1981
  ident: BIB6
  article-title: Approximation Theory and Methods
  contributor:
    fullname: Powell
– year: 1990
  ident: BIB9
  article-title: Interpolation of Functions
  contributor:
    fullname: Vértesi
– year: 1995
  ident: BIB18
  article-title: User's guide for FFSQP version 3.5: A FORTRAN code for solving constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequalitites and linear constraints
  contributor:
    fullname: Tits
– start-page: 261
  year: 1994
  end-page: 264
  ident: BIB1
  article-title: Linear rational interpolation of continuous functions over an interval
  publication-title: Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics, (Proceedings of Symposia in Applied Mathematics)
  contributor:
    fullname: Berrut
– year: 1994
  ident: BIB19
  publication-title: Report 94-4
  contributor:
    fullname: Mittelmann
– year: 1974
  ident: BIB10
  article-title: The Chebyshev Polynomials
  contributor:
    fullname: Rivlin
– volume: 43
  start-page: 205
  year: 1984
  end-page: 217
  ident: BIB13
  article-title: Polynomial interpolation: Lagrange versus Newton
  publication-title: Math. Comp.
  contributor:
    fullname: Werner
– volume: Volume XXIII
  year: 1939
  ident: BIB8
  article-title: Orthogonal Polynomials
  publication-title: AMS Colloquium Publications
  contributor:
    fullname: Szegö
– volume: 46
  start-page: 224
  year: 1901
  ident: 10.1016/S0898-1221(97)00034-5_BIB3
  article-title: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten
  publication-title: Z. Math. Phys.
  contributor:
    fullname: Runge
– volume: 36
  start-page: 71
  year: 1980
  ident: 10.1016/S0898-1221(97)00034-5_BIB5
  article-title: On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary systems of nodes
  publication-title: Acta Math. Acad. Sci. Hungar.
  doi: 10.1007/BF01897094
  contributor:
    fullname: Erdős
– volume: 43
  start-page: 205
  year: 1984
  ident: 10.1016/S0898-1221(97)00034-5_BIB13
  article-title: Polynomial interpolation: Lagrange versus Newton
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1984-0744931-0
  contributor:
    fullname: Werner
– volume: 141
  start-page: 232
  year: 1968
  ident: 10.1016/S0898-1221(97)00034-5_BIB12
  article-title: Interpolation und genäherte Quadratur
  contributor:
    fullname: Bulirsch
– volume: 47
  start-page: 285
  year: 1986
  ident: 10.1016/S0898-1221(97)00034-5_BIB16
  article-title: Some new aspects of rational interpolation
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1986-0842136-8
  contributor:
    fullname: Schneider
– year: 1995
  ident: 10.1016/S0898-1221(97)00034-5_BIB18
  contributor:
    fullname: Zhou
– year: 1974
  ident: 10.1016/S0898-1221(97)00034-5_BIB10
  contributor:
    fullname: Rivlin
– year: 1983
  ident: 10.1016/S0898-1221(97)00034-5_BIB14
  contributor:
    fullname: Stoer
– year: 1990
  ident: 10.1016/S0898-1221(97)00034-5_BIB9
  contributor:
    fullname: Szabados
– volume: 94
  start-page: 329
  year: 1987
  ident: 10.1016/S0898-1221(97)00034-5_BIB4
  article-title: On the Runge example
  publication-title: Amer. Math. Monthly
  doi: 10.2307/2323093
  contributor:
    fullname: Epperson
– volume: 27
  year: 1978
  ident: 10.1016/S0898-1221(97)00034-5_BIB20
  article-title: A Practical Guide to Splines
  contributor:
    fullname: de Boor
– start-page: 261
  year: 1994
  ident: 10.1016/S0898-1221(97)00034-5_BIB1
  article-title: Linear rational interpolation of continuous functions over an interval
  contributor:
    fullname: Berrut
– year: 1982
  ident: 10.1016/S0898-1221(97)00034-5_BIB2
  contributor:
    fullname: Henrici
– volume: 55
  start-page: 747
  year: 1989
  ident: 10.1016/S0898-1221(97)00034-5_BIB17_2
  publication-title: Erratum
– year: 1981
  ident: 10.1016/S0898-1221(97)00034-5_BIB6
  contributor:
    fullname: Powell
– volume: 15
  start-page: 694
  year: 1978
  ident: 10.1016/S0898-1221(97)00034-5_BIB7
  article-title: On the Lebesgue function for polynomial interpolation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715046
  contributor:
    fullname: Brutman
– volume: Volume XXIII
  year: 1939
  ident: 10.1016/S0898-1221(97)00034-5_BIB8
  article-title: Orthogonal Polynomials
  publication-title: AMS Colloquium Publications
  contributor:
    fullname: Szegö
– year: 1981
  ident: 10.1016/S0898-1221(97)00034-5_BIB11
  contributor:
    fullname: Rivlin
– year: 1994
  ident: 10.1016/S0898-1221(97)00034-5_BIB19
  contributor:
    fullname: Berrut
– volume: 15
  start-page: 1
  year: 1988
  ident: 10.1016/S0898-1221(97)00034-5_BIB15
  article-title: Rational functions for guaranteed and experimentally well-conditioned global interpolation
  publication-title: Computers Math. Applic.
  doi: 10.1016/0898-1221(88)90067-3
  contributor:
    fullname: Berrut
– volume: 54
  start-page: 703
  year: 1989
  ident: 10.1016/S0898-1221(97)00034-5_BIB17_1
  article-title: Barycentric formulae for cardinal (SINC-) interpolants
  publication-title: Numer. Math.
  doi: 10.1007/BF01396489
  contributor:
    fullname: Berrut
SSID ssj0004320
Score 1.7674139
Snippet Polynomial interpolation between large numbers of arbitrary nodes does notoriously not, in general, yield useful approximations of continuous functions....
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 77
SubjectTerms Interpolation
Lebesgue constant
Linear interpolation
Rational interpolation
Title Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval
URI https://dx.doi.org/10.1016/S0898-1221(97)00034-5
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa63QsX3ojlJR84gFYOqePEyXFhiwpCCGkXaW9RYjuo0raL0oQDv54ZP-KutEKAxCWqIsduZ76Ox5OZbwh52SnkQBEt422jmMiVYK1edEyBL17Ijle8wXrn1Zn8fFGeLsVyNgtNUuO9_6ppuAe6xsrZv9D2NCncgM-gc7iC1uH6R3r_BPLafRttEjp6fsMxsods1j8xJoA-ZdMf9yECuHZdti4nvxEz19fbEfNiccfzaXIgBOug2uE__DcI9Aa-LcTOgmgzscCGsrm9F-SWFOp69OGt6fvRvQ5J2JdkUv96GMzlxjdwXiWnSYxOYM5KDJaFgpmYnWRtWgWHVu6KohPjbG4pMyYL110nGGXHjuHBt29hfdMXv1cXN-4CLiBxNi0Gvw75hivLxsPyuPVNCYl2LA6tpB2UH5BDDqaLz8nhyYflxcdYa5s5qs8wd6wKexMXfFXJ136xm_2dPR_m_C657Q8f9MSh5h6Zme19cidokHo7_4DoACIaQEQjiKgDEQ0gotdARK86GkFEJxBRBBEFcNAAoofk6_vl-bsV8-04mBIpHxj8o1vN2wI5-8tG6LTTpckalerCqIVClh9pwJ8uwaTrNued1HnaZYuuhFNFAcJ8RObbq615TGghqrZrC2nAn0W2oEYYmCqXxlSpUjk_IkkQWv3dsa7UMR0Rlq9RyrXLnchEnR-RMoi29q6jcwlrwMTvH33y748-JbccmzFG5J6R-dCP5jk52OnxhYfNLx7RkGw
link.rule.ids 315,782,786,4028,27932,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lebesgue+constant+minimizing+linear+rational+interpolation+of+continuous+functions+over+the+interval&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Berrut%2C+J.-P.&rft.au=Mittelmann%2C+H.D.&rft.date=1997&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=33&rft.issue=6&rft.spage=77&rft.epage=86&rft_id=info:doi/10.1016%2FS0898-1221%2897%2900034-5&rft.externalDocID=S0898122197000345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon