Study of Weight Quantization Associations over a Weight Range for Application in Memristor Devices

The development of hardware-based cognitive computing systems critically hinges upon the integration of memristor devices capable of versatile weight expression across a spectrum of resistance levels while preserving consistent electrical properties. This investigation aims to explore the practical...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) Vol. 15; no. 10; p. 1258
Main Authors: Kim, Yerim, Noh, Hee Yeon, Koo, Gyogwon, Lee, Hyunki, Lee, Sanghan, Choi, Rock-Hyun, Lee, Shinbuhm, Lee, Myoung-Jae, Lee, Hyeon-Jun
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 15-10-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The development of hardware-based cognitive computing systems critically hinges upon the integration of memristor devices capable of versatile weight expression across a spectrum of resistance levels while preserving consistent electrical properties. This investigation aims to explore the practical implementation of a digit recognition system utilizing memristor devices with minimized weighting levels. Through the process of weight quantization for digits represented by 25 or 49 input signals, the study endeavors to ascertain the feasibility of digit recognition via neural network computation. The integration of memristor devices into the system architecture is poised to streamline the representation of the resistors required for weight expression, thereby facilitating the realization of neural-network-based cognitive systems. To minimize the information corruption in the system caused by weight quantization, we introduce the concept of "weight range" in this work. The weight range is the range between the maximum and minimum values of the weights in the neural network. We found that this has a direct impact on weight quantization, which reduces the number of digits represented by a weight below a certain level. This was found to help maintain the information integrity of the entire system despite the reduction in weight levels. Moreover, to validate the efficacy of the proposed methodology, quantized weights are systematically applied to an array of double-layer neural networks. This validation process involves the construction of cross-point array circuits with dimensions of 25 × 10 and 10 × 10, followed by a meticulous examination of the resultant changes in the recognition rate of randomly generated numbers through device simulations. Such endeavors contribute to advancing the understanding and practical implementation of hardware-based cognitive computing systems leveraging memristor devices and weight quantization techniques.
AbstractList The development of hardware-based cognitive computing systems critically hinges upon the integration of memristor devices capable of versatile weight expression across a spectrum of resistance levels while preserving consistent electrical properties. This investigation aims to explore the practical implementation of a digit recognition system utilizing memristor devices with minimized weighting levels. Through the process of weight quantization for digits represented by 25 or 49 input signals, the study endeavors to ascertain the feasibility of digit recognition via neural network computation. The integration of memristor devices into the system architecture is poised to streamline the representation of the resistors required for weight expression, thereby facilitating the realization of neural-network-based cognitive systems. To minimize the information corruption in the system caused by weight quantization, we introduce the concept of "weight range" in this work. The weight range is the range between the maximum and minimum values of the weights in the neural network. We found that this has a direct impact on weight quantization, which reduces the number of digits represented by a weight below a certain level. This was found to help maintain the information integrity of the entire system despite the reduction in weight levels. Moreover, to validate the efficacy of the proposed methodology, quantized weights are systematically applied to an array of double-layer neural networks. This validation process involves the construction of cross-point array circuits with dimensions of 25 × 10 and 10 × 10, followed by a meticulous examination of the resultant changes in the recognition rate of randomly generated numbers through device simulations. Such endeavors contribute to advancing the understanding and practical implementation of hardware-based cognitive computing systems leveraging memristor devices and weight quantization techniques.
The development of hardware-based cognitive computing systems critically hinges upon the integration of memristor devices capable of versatile weight expression across a spectrum of resistance levels while preserving consistent electrical properties. This investigation aims to explore the practical implementation of a digit recognition system utilizing memristor devices with minimized weighting levels. Through the process of weight quantization for digits represented by 25 or 49 input signals, the study endeavors to ascertain the feasibility of digit recognition via neural network computation. The integration of memristor devices into the system architecture is poised to streamline the representation of the resistors required for weight expression, thereby facilitating the realization of neural-network-based cognitive systems. To minimize the information corruption in the system caused by weight quantization, we introduce the concept of "weight range" in this work. The weight range is the range between the maximum and minimum values of the weights in the neural network. We found that this has a direct impact on weight quantization, which reduces the number of digits represented by a weight below a certain level. This was found to help maintain the information integrity of the entire system despite the reduction in weight levels. Moreover, to validate the efficacy of the proposed methodology, quantized weights are systematically applied to an array of double-layer neural networks. This validation process involves the construction of cross-point array circuits with dimensions of 25 × 10 and 10 × 10, followed by a meticulous examination of the resultant changes in the recognition rate of randomly generated numbers through device simulations. Such endeavors contribute to advancing the understanding and practical implementation of hardware-based cognitive computing systems leveraging memristor devices and weight quantization techniques.The development of hardware-based cognitive computing systems critically hinges upon the integration of memristor devices capable of versatile weight expression across a spectrum of resistance levels while preserving consistent electrical properties. This investigation aims to explore the practical implementation of a digit recognition system utilizing memristor devices with minimized weighting levels. Through the process of weight quantization for digits represented by 25 or 49 input signals, the study endeavors to ascertain the feasibility of digit recognition via neural network computation. The integration of memristor devices into the system architecture is poised to streamline the representation of the resistors required for weight expression, thereby facilitating the realization of neural-network-based cognitive systems. To minimize the information corruption in the system caused by weight quantization, we introduce the concept of "weight range" in this work. The weight range is the range between the maximum and minimum values of the weights in the neural network. We found that this has a direct impact on weight quantization, which reduces the number of digits represented by a weight below a certain level. This was found to help maintain the information integrity of the entire system despite the reduction in weight levels. Moreover, to validate the efficacy of the proposed methodology, quantized weights are systematically applied to an array of double-layer neural networks. This validation process involves the construction of cross-point array circuits with dimensions of 25 × 10 and 10 × 10, followed by a meticulous examination of the resultant changes in the recognition rate of randomly generated numbers through device simulations. Such endeavors contribute to advancing the understanding and practical implementation of hardware-based cognitive computing systems leveraging memristor devices and weight quantization techniques.
Audience Academic
Author Lee, Shinbuhm
Choi, Rock-Hyun
Lee, Hyeon-Jun
Noh, Hee Yeon
Lee, Myoung-Jae
Koo, Gyogwon
Lee, Sanghan
Lee, Hyunki
Kim, Yerim
AuthorAffiliation 4 Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
3 Institute of Next-Generation Semiconductor Convergence Technology (INST), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
1 Division of Nanotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
2 Division of Intelligent Robot, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
AuthorAffiliation_xml – name: 1 Division of Nanotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– name: 4 Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– name: 2 Division of Intelligent Robot, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– name: 3 Institute of Next-Generation Semiconductor Convergence Technology (INST), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
Author_xml – sequence: 1
  givenname: Yerim
  surname: Kim
  fullname: Kim, Yerim
  organization: Division of Nanotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– sequence: 2
  givenname: Hee Yeon
  orcidid: 0000-0001-6847-0648
  surname: Noh
  fullname: Noh, Hee Yeon
  organization: Division of Nanotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– sequence: 3
  givenname: Gyogwon
  orcidid: 0000-0001-9385-8249
  surname: Koo
  fullname: Koo, Gyogwon
  organization: Division of Intelligent Robot, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– sequence: 4
  givenname: Hyunki
  orcidid: 0000-0002-5903-6716
  surname: Lee
  fullname: Lee, Hyunki
  organization: Division of Intelligent Robot, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– sequence: 5
  givenname: Sanghan
  surname: Lee
  fullname: Lee, Sanghan
  organization: Institute of Next-Generation Semiconductor Convergence Technology (INST), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– sequence: 6
  givenname: Rock-Hyun
  surname: Choi
  fullname: Choi, Rock-Hyun
  organization: Division of Intelligent Robot, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– sequence: 7
  givenname: Shinbuhm
  surname: Lee
  fullname: Lee, Shinbuhm
  organization: Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– sequence: 8
  givenname: Myoung-Jae
  orcidid: 0000-0003-2626-0460
  surname: Lee
  fullname: Lee, Myoung-Jae
  organization: Institute of Next-Generation Semiconductor Convergence Technology (INST), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
– sequence: 9
  givenname: Hyeon-Jun
  orcidid: 0000-0002-6790-4413
  surname: Lee
  fullname: Lee, Hyeon-Jun
  organization: Institute of Next-Generation Semiconductor Convergence Technology (INST), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39459132$$D View this record in MEDLINE/PubMed
BookMark eNpdUttq3DAQFSWluTQv_YBi6EspbDqSLFt6Kkt6C6SU3mjfhKzLRostbSR7Ifn6KuskTSqBZhidc-bCHKK9EINF6AWGE0oFvB08ZhgwYfwJOiDQkkXTNH_2Hvj76DjnNZTTtqI8z9A-FTUTmJID1P0YJ3NVRVf9tn51MVbfJhVGf61GH0O1zDlqv_NzFbc2VeoO912Fla1cTNVys-m9ngk-VF_skHwey8d7u_Xa5ufoqVN9tse39gj9-vjh5-nnxfnXT2eny_OFrgGPC6dEy2uuFYfaaaC6NVowwpjSDa9rW9cApOFUGWDEmU4Z0xHL6wZIxwuVHqGzWddEtZab5AeVrmRUXu4CMa2kSqPXvZUdIaqBtmQyUFvScs51sSWhUR13rmi9m7U2UzdYo20Yk-ofiT7-Cf5CruJWYsxAUGBF4fWtQoqXk82jHHzWtu9VsHHKkmKCoSFMiAJ99R90HacUyqxuUKVMIYAU1MmMWqnSgQ8ulsS6XGMHr8tSOF_iS47LoAjsCG9mgk4x52TdffkY5M3uyH-7U8AvHzZ8D73bFPoX0rbALA
Cites_doi 10.1063/5.0177175
10.2307/2407137
10.3389/fnins.2019.00593
10.1109/JPROC.2017.2761740
10.1109/ACCESS.2018.2839106
10.1021/acsami.1c01076
10.1109/CVPR.2019.00748
10.1016/j.apsusc.2023.156620
10.3389/fnins.2021.717222
10.1016/j.mtnano.2024.100491
10.1109/LED.2020.2986478
10.1038/s41598-022-24212-7
10.1016/j.ijfatigue.2023.108007
10.1109/5.58356
10.1109/MWSCAS.2017.8052950
10.1109/MDAT.2023.3241116
10.1038/nature14441
10.1007/3-540-59497-3
10.1038/323533a0
10.1021/acsami.8b09046
10.1016/j.neunet.2014.09.003
10.1039/D3NR02591H
10.1038/nmat3070
10.1038/s41586-020-1942-4
10.1109/18.720541
10.1609/aaai.v31i1.10862
10.3390/cryst9020075
10.1201/9781003162810-13
10.1038/s41928-020-0397-9
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID NPM
AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi15101258
DatabaseName PubMed
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
Advanced Technologies Database with Aerospace
Engineering Collection
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_b22a607804d04e27888c4e2dc9dab8ff
A814402002
10_3390_mi15101258
39459132
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: DGIST R&D Program of the Ministry of Science
  grantid: 24-CoE-NT-01; 24-ET-02
– fundername: National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT)
  grantid: 2023R1A2C1004131
– fundername: Commercialization Promotion Agency for R&D Outcomes (COMPA) funded by the Ministry of Science and ICT (MSIT)
  grantid: RS-2024-00417600
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
AAYXX
CITATION
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c401t-fa97848ca804fc03c7dc95255ac6844e44002683ad052fdbaddb2e84602b89783
IEDL.DBID RPM
ISSN 2072-666X
IngestDate Mon Oct 28 19:36:43 EDT 2024
Mon Oct 28 05:43:01 EDT 2024
Mon Oct 28 17:09:45 EDT 2024
Sat Oct 26 13:55:30 EDT 2024
Tue Nov 05 04:31:05 EST 2024
Wed Oct 23 14:20:07 EDT 2024
Sat Nov 02 12:09:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords recognition
neural network
weight quantization
memristor
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-fa97848ca804fc03c7dc95255ac6844e44002683ad052fdbaddb2e84602b89783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5903-6716
0000-0001-6847-0648
0000-0001-9385-8249
0000-0003-2626-0460
0000-0002-6790-4413
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509305/
PMID 39459132
PQID 3120789902
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_b22a607804d04e27888c4e2dc9dab8ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11509305
proquest_miscellaneous_3121062599
proquest_journals_3120789902
gale_infotracacademiconefile_A814402002
crossref_primary_10_3390_mi15101258
pubmed_primary_39459132
PublicationCentury 2000
PublicationDate 20241015
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 20241015
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Nei (ref_2) 1975; 29
Lee (ref_7) 2011; 10
Prezioso (ref_11) 2015; 521
ref_14
ref_12
Gao (ref_4) 2024; 178
Lin (ref_10) 2020; 3
Yao (ref_9) 2020; 577
ref_19
ref_18
ref_17
ref_15
Haripriya (ref_8) 2023; 15
Su (ref_3) 2023; 40
Rumelhart (ref_24) 1986; 323
Wang (ref_29) 2021; 13
ref_23
Su (ref_25) 2023; 617
Naqi (ref_22) 2024; 27
Mead (ref_6) 1990; 78
Sze (ref_5) 2017; 105
Li (ref_20) 2024; 124
ref_27
Gray (ref_13) 1998; 44
ref_26
Xu (ref_16) 2018; 6
Lee (ref_28) 2020; 41
Lee (ref_21) 2018; 10
Schmidhuber (ref_1) 2015; 61
References_xml – volume: 124
  start-page: 013505
  year: 2024
  ident: ref_20
  article-title: Resistance switching stability of STO memristor under Au ion implantation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0177175
  contributor:
    fullname: Li
– volume: 29
  start-page: 1
  year: 1975
  ident: ref_2
  article-title: The Bottleneck Effect and Genetic Variability in Populations
  publication-title: Evolution
  doi: 10.2307/2407137
  contributor:
    fullname: Nei
– ident: ref_18
  doi: 10.3389/fnins.2019.00593
– volume: 105
  start-page: 2295
  year: 2017
  ident: ref_5
  article-title: Efficient Processing of Deep Neural Networks: A Tutorial and Survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2761740
  contributor:
    fullname: Sze
– volume: 6
  start-page: 29320
  year: 2018
  ident: ref_16
  article-title: Optimized Near-Zero Quantization Method for Flexible Memristor Based Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2839106
  contributor:
    fullname: Xu
– volume: 13
  start-page: 17844
  year: 2021
  ident: ref_29
  article-title: High-Stability Memristive Devices Based on Pd Conductive Filaments and Its Applications in Neuromorphic Computing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01076
  contributor:
    fullname: Wang
– ident: ref_15
  doi: 10.1109/CVPR.2019.00748
– volume: 617
  start-page: 156620
  year: 2023
  ident: ref_25
  article-title: Oxygen ion migration induced polarity switchable SrFeOx memristor for high-precision handwriting recognition
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.156620
  contributor:
    fullname: Su
– ident: ref_17
  doi: 10.3389/fnins.2021.717222
– volume: 27
  start-page: 100491
  year: 2024
  ident: ref_22
  article-title: Integration of IGZO-based memristor and Pt-based temperature sensor for enhanced artificial nociceptor system
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2024.100491
  contributor:
    fullname: Naqi
– volume: 41
  start-page: 896
  year: 2020
  ident: ref_28
  article-title: A Study on the Effect of Pulse Rising and Falling Time on Amorphous Oxide Semiconductor Transistors in Driver Circuits
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2020.2986478
  contributor:
    fullname: Lee
– ident: ref_27
  doi: 10.1038/s41598-022-24212-7
– volume: 178
  start-page: 108007
  year: 2024
  ident: ref_4
  article-title: A novel machine learning method for multiaxial fatigue life prediction: Improved adaptive neuro-fuzzy inference system
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2023.108007
  contributor:
    fullname: Gao
– volume: 78
  start-page: 1629
  year: 1990
  ident: ref_6
  article-title: Neuromorphic electronic systems
  publication-title: Proc. IEEE
  doi: 10.1109/5.58356
  contributor:
    fullname: Mead
– ident: ref_12
  doi: 10.1109/MWSCAS.2017.8052950
– volume: 40
  start-page: 8
  year: 2023
  ident: ref_3
  article-title: Testability and Dependability of AI Hardware: Survey, Trends, Challenges, and Perspectives
  publication-title: IEEE Des. Test
  doi: 10.1109/MDAT.2023.3241116
  contributor:
    fullname: Su
– volume: 521
  start-page: 61
  year: 2015
  ident: ref_11
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
  contributor:
    fullname: Prezioso
– ident: ref_23
  doi: 10.1007/3-540-59497-3
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_24
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
  contributor:
    fullname: Rumelhart
– volume: 10
  start-page: 29757
  year: 2018
  ident: ref_21
  article-title: Reliable Multivalued Conductance States in TaOx Memristors through Oxygen Plasma-Assisted Electrode Deposition with in Situ-Biased Conductance State Transmission Electron Microscopy Analysis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09046
  contributor:
    fullname: Lee
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_1
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
  contributor:
    fullname: Schmidhuber
– volume: 15
  start-page: 14476
  year: 2023
  ident: ref_8
  article-title: Interface roughness effects and relaxation dynamics of an amorphous semiconductor oxide-based analog resistance switching memory
  publication-title: Nanoscale
  doi: 10.1039/D3NR02591H
  contributor:
    fullname: Haripriya
– volume: 10
  start-page: 625
  year: 2011
  ident: ref_7
  article-title: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3070
  contributor:
    fullname: Lee
– volume: 577
  start-page: 641
  year: 2020
  ident: ref_9
  article-title: Fully hardware-implemented memristor convolutional neural network
  publication-title: Nature
  doi: 10.1038/s41586-020-1942-4
  contributor:
    fullname: Yao
– volume: 44
  start-page: 2325
  year: 1998
  ident: ref_13
  article-title: Quantization
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.720541
  contributor:
    fullname: Gray
– ident: ref_19
  doi: 10.1609/aaai.v31i1.10862
– ident: ref_26
  doi: 10.3390/cryst9020075
– ident: ref_14
  doi: 10.1201/9781003162810-13
– volume: 3
  start-page: 225
  year: 2020
  ident: ref_10
  article-title: Three-dimensional memristor circuits as complex neural networks
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0397-9
  contributor:
    fullname: Lin
SSID ssj0000779007
Score 2.3624976
Snippet The development of hardware-based cognitive computing systems critically hinges upon the integration of memristor devices capable of versatile weight...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1258
SubjectTerms Accuracy
Arrays
Artificial intelligence
Back propagation
Computation
Devices
Digits
Electric properties
Electrical properties
Expected values
Feasibility studies
Hardware
memristor
Memristors
neural network
Neural networks
Recognition
Software
Variables
weight quantization
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB21e2oPFW0pDaWVqyJxivA6TtY-bgsrLq3UAoKb5U91D2QRyx7498w42SUrDr30FCm2IueNPZ5nj58BDmOs3UTVsQxOVqUUIZWaN7xEyhx14krqfMr17Hzy61qdnJJMzuaqL8oJ6-SBO-COnRC24SSTE7iMghibx2fwOlinUsrelzcDMpV9MMno8UmnR1ohrz--mY-p-wm6230wA2Wh_ufueDAfbedKDiaf2Q686aNGNu1a-xZexPYdvB5oCb4HRxmBD2yR2FVe7WS_Vwhaf8qSDaywZJS1yey63h86XsAwdmXTp81sNm_Zz3iThQfu2EnM_mQXLmenFz_Oyv4ChdIjbbovk0WOKJW3iF7yvPIThK1GEmF9o6SMUhIFU5UNvBYpOPR1TkSMSLhwitaEPsCoXbTxI7CmHqfYeCV9UBK_oqXTUtgUaudd1LGAb2tQzW2nk2GQXxD05gn6Ar4T3psapG2dX6DFTW9x8y-LF3BE1jI0AtEk3vYHCbChpGVlpoo2rCn5pICDtUFNPzSXphoLktjXVPx1U4yDinZKbBsXq1wH-xQyQ13AXmf_TZsrLWuNHL4AtdUztn5qu6Sd_83C3RR9a3Sw-_8Dhk_wSmCARfPouD6A0f3dKn6Gl8uw-pLHwiM04xAP
  priority: 102
  providerName: Directory of Open Access Journals
Title Study of Weight Quantization Associations over a Weight Range for Application in Memristor Devices
URI https://www.ncbi.nlm.nih.gov/pubmed/39459132
https://www.proquest.com/docview/3120789902
https://www.proquest.com/docview/3121062599
https://pubmed.ncbi.nlm.nih.gov/PMC11509305
https://doaj.org/article/b22a607804d04e27888c4e2dc9dab8ff
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7RPcEB8SawrIxA4pSt4zipfSz70F4W8RTcIj-hEk1X7faw_35n3KSbiBunSLGTOJ4Zez575jPA-xAqO1NVyL2VZS6Fj7nmNc8RMgcduZI6ZblefJt9-qVOz4gmp-5zYVLQvrOL4_bv8rhd_EmxlVdLN-3jxKafL0_Ii9GoqNMJTNA5HGD0NP4ShR6f7bhIS8T00-WiINUTFZ3OV2pZ6aIUo4ko8fX_OyoPpqVxyORgDjp_BA8755HNd418DPdC-wQeDCgFn4KlwMAbtorsZ1r0ZF-22HddsiUbCGPDKHiTmb7eV8oyYOjCsvndnjZbtOwyLBP_wJqdhjSsPIMf52ffTy7y7hyF3CF6us6jQagolTOKy-h46Wbe6QqxhHG1kjJISUhMlcbzSkRvccizIqBjwoVVtDT0HA7aVRteAqurIobaKem8kvgWLa2WwkRfWWeDDhm86zu1udrRZTQIM0gKzZ0UMvhI_b2vQRTX6cZq_bvpBN1YIUzNiR_JcxkEQXWHV_yoN1bFmMEHklZDhogicabLJ8CGEqVVM1e0b00xKBkc9gJtOgvdNGUhiGlfU_HbfTHaFm2YmDastqkOImYEiDqDFzv579vcq1EGaqQZo58al6A6J_7uXn1f_f-jr-G-QO-KJtGiOoSD6_U2vIHJxm-P0qrCUTKJW3maEVQ
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY5QAceD8CCxiBxClbx3FS-1j2oSK2Kx6L4Gb5yVbapqt2e-DfM-Mm3VTc9hQpdhLHM2PPZ898JuRDCJUdyirk3ooyF9zHXLGa5QCZg4pMCpWyXMc_hqe_5eER0uTUXS5MCtp3drrfXMz2m-l5iq28nLlBFyc2-Do5QC9GgaIOdshtMFjGeig9jcBIoseGazbSElD9YDYtUPl4hefzlUpUqij51lSUGPv_H5d7E9N20GRvFjp-cNP2PyT3W7-Tjtblj8it0Dwm93pshE-IxZjCv3Qe6a-0Xkq_raDb2zxN2pPjkmLcJzVdve-YoEDB-6Wj6-1wOm3oJMwSdcGCHoY0Ij0lP4-Pzg7GeXsEQ-4AeF3l0QDKFNIZyUR0rHRD71QFMMS4WgoRhEAQJ0vjWcWjtzBaWh7Ap2HcSlxVekZ2m3kTXhBaV0UMtZPCeSngLUpYJbiJvrLOBhUy8r6Thr5cM21oQCgoPn0tvox8QkFtaiA7droxX_zRbR9ry7mpGVIreSYCR5Tv4Aof9cbKGDPyEcWs0YZBls60qQjQUGTD0iOJW94YvpKRvU4TdGvcS10WHEn6FRa_2xSDWeJei2nCfJXqANgGbKky8nytOJs2d_qXEbmlUls_tV0CmpSovzvNeXnzR9-SO-OzyYk--Xz65RW5y8FJw7m4qPbI7tViFV6TnaVfvUkW9Q9pMCYQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUJw4P0ILGAEEqdsHMdJbW5lu9Ui2NXyEtys-AWVaFq12wP_nhk36SbiBqdIsZPYnhl7PnvmCyGvvC_NSJY-dUYUqeAupIpVLAXI7FVgUqiY5XryeXT2XU6OkSbnTZcLE4P2rZkdNr_mh83sZ4ytXM5t1sWJZeenR-jFKFDUbOlCtkeugtEy3kPqcRZGIj022jKSFoDss_ksRwXkJf6jr1CiVHnBB8tRZO3_e27uLU7DwMneSjS99T99uE1utv4nHW_r3CFXfHOX3OixEt4jBmMLf9NFoN_ivin9uIHhb_M1aU-ea4rxn7Tu6n3CRAUKXjAdXx6L01lDT_08Uhis6MTHmek--To9_nJ0kra_YkgtALCLNNSANoW0tWQiWFbYkbOqBDhS20oK4YVAMCeL2rGSB2dg1jTcg2_DuJG4u_SA7DeLxj8itCrz4CsrhXVSwFuUMErwOrjSWOOVT8jLTiJ6uWXc0IBUUIT6UoQJeYvC2tVAlux4Y7H6odtx1obzumJIseSY8BzRvoUrfNTVRoaQkNcoao22DPK0dZuSAA1FViw9lnj0jWEsCTnotEG3Rr7WRc6RrF9h8YtdMZgnnrnUjV9sYh0A3YAxVUIebpVn1-ZOBxMiB2o16NSwBLQpUoB32vP43x99Tq6dT6b6w7uz90_IdQ6-Gi7JeXlA9i9WG_-U7K3d5lk0qj-V8iiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+Weight+Quantization+Associations+over+a+Weight+Range+for+Application+in+Memristor+Devices&rft.jtitle=Micromachines+%28Basel%29&rft.au=Kim%2C+Yerim&rft.au=Noh%2C+Hee+Yeon&rft.au=Koo%2C+Gyogwon&rft.au=Lee%2C+Hyunki&rft.date=2024-10-15&rft.pub=MDPI+AG&rft.eissn=2072-666X&rft.volume=15&rft.issue=10&rft.spage=1258&rft_id=info:doi/10.3390%2Fmi15101258&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon