Experimental probing of dynamic self-organized columnar assemblies in colloidal liquid crystals
Self-organized supramolecular assemblies are widespread in nature and technology in the form of liquid crystals, colloids, and gels. The reversible nature of non-covalent bonding leads to dynamic functions such as stimuli-responsive switching and self-healing, which are unachievable from an isolated...
Saved in:
Published in: | Nanoscale advances Vol. 5; no. 14; pp. 3646 - 3654 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
RSC
11-07-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Self-organized supramolecular assemblies are widespread in nature and technology in the form of liquid crystals, colloids, and gels. The reversible nature of non-covalent bonding leads to dynamic functions such as stimuli-responsive switching and self-healing, which are unachievable from an isolated molecule. However, multiple intermolecular interactions generate diverse conformational and configurational molecular motions over various time scales in their self-assembled states, and their specific dynamics remains unclear. In the present study, we have experimentally unveiled the static structures and dynamical behaviors in columnar colloidal liquid crystals by a coherent X-ray scattering technique using refined model samples. We have found that controlling the size distribution of the colloidal nanoplates dramatically changed their static and dynamic properties. Furthermore, the resulting dynamical behaviors obtained by X-ray photon correlation spectroscopy have been successfully decomposed into multiple distinct modes, allowing us to explore the dynamical origin in the colloidal liquid-crystalline state. The present approaches using a columnar liquid crystal may contribute to a better understanding of the dynamic nature of molecular assemblies and dense colloidal systems and bring valuable insights into rational design of functional properties of self-assembled materials such as stimuli-responsive liquid crystals, self-healing gels, and colloidal crystals. For these materials, the motion of constituent particles and molecules in the self-assembled state is a key factor for structural formation and dynamically responsive performance.
Columnar colloidal liquid crystals composed of calcite nanoplates were synthesized by a bioinspired method using organic molecular templates. Their static structures and dynamic properties were revealed by X-ray photon correlation spectroscopy. |
---|---|
AbstractList | Self-organized supramolecular assemblies are widespread in nature and technology in the form of liquid crystals, colloids, and gels. The reversible nature of non-covalent bonding leads to dynamic functions such as stimuli-responsive switching and self-healing, which are unachievable from an isolated molecule. However, multiple intermolecular interactions generate diverse conformational and configurational molecular motions over various time scales in their self-assembled states, and their specific dynamics remains unclear. In the present study, we have experimentally unveiled the static structures and dynamical behaviors in columnar colloidal liquid crystals by a coherent X-ray scattering technique using refined model samples. We have found that controlling the size distribution of the colloidal nanoplates dramatically changed their static and dynamic properties. Furthermore, the resulting dynamical behaviors obtained by X-ray photon correlation spectroscopy have been successfully decomposed into multiple distinct modes, allowing us to explore the dynamical origin in the colloidal liquid-crystalline state. The present approaches using a columnar liquid crystal may contribute to a better understanding of the dynamic nature of molecular assemblies and dense colloidal systems and bring valuable insights into rational design of functional properties of self-assembled materials such as stimuli-responsive liquid crystals, self-healing gels, and colloidal crystals. For these materials, the motion of constituent particles and molecules in the self-assembled state is a key factor for structural formation and dynamically responsive performance. Self-organized supramolecular assemblies are widespread in nature and technology in the form of liquid crystals, colloids, and gels. The reversible nature of non-covalent bonding leads to dynamic functions such as stimuli-responsive switching and self-healing, which are unachievable from an isolated molecule. However, multiple intermolecular interactions generate diverse conformational and configurational molecular motions over various time scales in their self-assembled states, and their specific dynamics remains unclear. In the present study, we have experimentally unveiled the static structures and dynamical behaviors in columnar colloidal liquid crystals by a coherent X-ray scattering technique using refined model samples. We have found that controlling the size distribution of the colloidal nanoplates dramatically changed their static and dynamic properties. Furthermore, the resulting dynamical behaviors obtained by X-ray photon correlation spectroscopy have been successfully decomposed into multiple distinct modes, allowing us to explore the dynamical origin in the colloidal liquid-crystalline state. The present approaches using a columnar liquid crystal may contribute to a better understanding of the dynamic nature of molecular assemblies and dense colloidal systems and bring valuable insights into rational design of functional properties of self-assembled materials such as stimuli-responsive liquid crystals, self-healing gels, and colloidal crystals. For these materials, the motion of constituent particles and molecules in the self-assembled state is a key factor for structural formation and dynamically responsive performance. Columnar colloidal liquid crystals composed of calcite nanoplates were synthesized by a bioinspired method using organic molecular templates. Their static structures and dynamic properties were revealed by X-ray photon correlation spectroscopy. |
Author | Kajiyama, Satoshi Hoshino, Taiki Kato, Takashi Mochizuki, Kohei Kohmura, Yoshiki Hosokawa, Yoshihiro Nakayama, Masanari |
AuthorAffiliation | Shinshu University Institute of Multidisciplinary Research for Advanced Materials (IMRAM) The University of Tokyo Department of Chemistry and Biotechnology Research Initiative for Supra-Materials International Center for Synchrotron Radiation Innovation Smart (SRIS) RIKEN SPring-8 Center School of Engineering Tohoku University |
AuthorAffiliation_xml | – name: The University of Tokyo – name: Tohoku University – name: Institute of Multidisciplinary Research for Advanced Materials (IMRAM) – name: Department of Chemistry and Biotechnology – name: School of Engineering – name: Research Initiative for Supra-Materials – name: International Center for Synchrotron Radiation Innovation Smart (SRIS) – name: RIKEN SPring-8 Center – name: Shinshu University |
Author_xml | – sequence: 1 givenname: Taiki surname: Hoshino fullname: Hoshino, Taiki – sequence: 2 givenname: Masanari surname: Nakayama fullname: Nakayama, Masanari – sequence: 3 givenname: Yoshihiro surname: Hosokawa fullname: Hosokawa, Yoshihiro – sequence: 4 givenname: Kohei surname: Mochizuki fullname: Mochizuki, Kohei – sequence: 5 givenname: Satoshi surname: Kajiyama fullname: Kajiyama, Satoshi – sequence: 6 givenname: Yoshiki surname: Kohmura fullname: Kohmura, Yoshiki – sequence: 7 givenname: Takashi surname: Kato fullname: Kato, Takashi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37441264$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1PGzEQhq0KVALl0jtojwhpqb924z2hKASKitpLe7ZmvXbq1msndhYRfj0OSQM9jeV59HjG7zE68MFrhD4TfEUwa750zAPGRLC_H9CIVqQuMWX44N35CJ2m9AdjTAnnfNx8REdszDmhNR8hOXta6Gh77VfgikUMrfXzIpiiW3vorSqSdqYMcQ7ePuuuUMENvYdYQEq6b53VqbB-c-2C7bLC2eVgMxfXKRvTJ3RoctGnu3qCft3Ofk6_lg8_7u6nk4dScUxWZV13mHaCaNLiClrDGFRG1WAAjDCGNqbjIBpeCTMmyvCaYKipaFsORFe4ZSfoeutdDG2vO5X3ieDkIq8GcS0DWPl_x9vfch4eZf5Expkg2XCxM8SwHHRayd4mpZ0Dr8OQJBVMUM7ImGb0couqGFKK2uzfIXgjbOQN-z55TeVbhs_fT7ZH_2WQgbMtEJPad99iZS_FSJZ4 |
CitedBy_id | crossref_primary_10_1002_adma_202404396 crossref_primary_10_1016_j_jcis_2023_12_163 |
Cites_doi | 10.3390/nano7100305 10.1002/anie.201711163 10.1002/1521-4095(20020916)14:18<1267::AID-ADMA1267>3.0.CO;2-O 10.1063/1.3509399 10.1246/bcsj.20200304 10.1103/PhysRevResearch.3.023254 10.1088/1367-2630/12/5/055001 10.1039/C5SC01820J 10.1039/D0NA00130A 10.1103/PhysRevE.88.032602 10.1103/PhysRevLett.100.055702 10.1039/C9SM00101H 10.1038/s41598-021-89155-x 10.1103/PhysRevLett.98.265702 10.1002/anie.201004692 10.1246/cl.2001.480 10.1073/pnas.1906511116 10.1103/PhysRevLett.103.248304 10.1016/S0301-0104(02)00667-5 10.1063/1.4818532 10.1002/adma.202109063 10.1126/sciadv.aaw9733 10.1039/c0sm01265c 10.1021/acs.accounts.2c00063 10.1039/C9NR10996J 10.1039/D0SM02210A 10.1038/35097046 10.1039/C1SM06735D 10.1063/1.5090975 10.1016/j.polymer.2021.124003 10.1063/1.3330920 10.1021/jp981534d 10.1016/j.cap.2012.03.019 10.1016/S0168-9002(01)00446-6 10.1021/acsami.9b02485 10.1021/jp903783b 10.1038/s41467-018-02932-7 10.1209/epl/i2006-10357-4 10.1016/j.crhy.2007.04.008 10.1021/acsaenm.2c00248 10.1021/acs.langmuir.9b02335 10.1021/acs.cgd.0c01582 10.1103/PhysRevLett.124.118004 10.1016/0010-4655(82)90174-6 10.1021/acs.chemrev.1c00761 10.1107/S1600536810020659 10.1038/ncomms1583 10.1103/PhysRevLett.99.208301 10.1073/pnas.1802692115 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2023 RSC |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2023 RSC |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1039/d3na00183k |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2516-0230 |
EndPage | 3654 |
ExternalDocumentID | 10_1039_D3NA00183K 37441264 d3na00183k |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: JP19H05715; JP23H05403 |
GroupedDBID | AAFWJ ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS ANUXI BCNDV C6K EBS GROUPED_DOAJ M~E OK1 RPM SMJ H13 NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c401t-66d02d81e1b05abf33a5fc6afaaf8ff29fd4a89458f71cf4610a628bb4a1e50b3 |
IEDL.DBID | RPM |
ISSN | 2516-0230 |
IngestDate | Tue Sep 17 21:30:10 EDT 2024 Fri Oct 25 10:47:31 EDT 2024 Thu Nov 21 21:31:48 EST 2024 Wed Oct 16 00:38:04 EDT 2024 Wed Jul 12 04:20:53 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-66d02d81e1b05abf33a5fc6afaaf8ff29fd4a89458f71cf4610a628bb4a1e50b3 |
Notes | https://doi.org/10.1039/d3na00183k Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Equal contribution. |
ORCID | 0000-0002-2200-7524 0000-0001-7023-3801 0000-0002-0571-0883 0000-0001-8870-6611 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334381/ |
PMID | 37441264 |
PQID | 2838243172 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_37441264 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10334381 proquest_miscellaneous_2838243172 crossref_primary_10_1039_D3NA00183K rsc_primary_d3na00183k |
PublicationCentury | 2000 |
PublicationDate | 2023-07-11 |
PublicationDateYYYYMMDD | 2023-07-11 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale advances |
PublicationTitleAlternate | Nanoscale Adv |
PublicationYear | 2023 |
Publisher | RSC |
Publisher_xml | – name: RSC |
References | Grübel (D3NA00183K/cit21/1) 2008 Mourad (D3NA00183K/cit39/1) 2009; 113 Cheng (D3NA00183K/cit25/1) 2021; 229 Uchida (D3NA00183K/cit2/1) 2022; 34 Nakayama (D3NA00183K/cit16/1) 2018; 9 Hoshino (D3NA00183K/cit50/1) 2013; 88 Weeks (D3NA00183K/cit51/1) 2002; 284 Yavitt (D3NA00183K/cit27/1) 2023; 1 Xu (D3NA00183K/cit11/1) 2011; 2 Bikondoa (D3NA00183K/cit23/1) 2016 Madsen (D3NA00183K/cit22/1) 2010; 12 Yamamoto (D3NA00183K/cit53/1) 2021; 17 Nakayama (D3NA00183K/cit18/1) 2019; 11 Duri (D3NA00183K/cit47/1) 2006; 76 Pal (D3NA00183K/cit33/1) 2020; 6 Nakayama (D3NA00183K/cit15/1) 2022; 55 Kanie (D3NA00183K/cit43/1) 2001; 30 Kim (D3NA00183K/cit12/1) 2011; 50 Poulos (D3NA00183K/cit32/1) 2010; 132 Provencher (D3NA00183K/cit45/1) 1982; 27 De Michele (D3NA00183K/cit52/1) 2007; 98 Tamasaku (D3NA00183K/cit54/1) 2001; 467 Kato (D3NA00183K/cit7/1) 2021; 94 Pal (D3NA00183K/cit34/1) 2021; 3 Hoshino (D3NA00183K/cit26/1) 2021; 11 Patti (D3NA00183K/cit29/1) 2009; 103 (D3NA00183K/cit1/1) 2014 Sutton (D3NA00183K/cit20/1) 2008; 9 Zeng (D3NA00183K/cit41/1) 2019; 116 Nakayama (D3NA00183K/cit13/1) 2015; 6 Sprakel (D3NA00183K/cit48/1) 2007; 99 Chaput (D3NA00183K/cit42/1) 2019; 35 Sakane (D3NA00183K/cit38/1) 2010; 66 Dierking (D3NA00183K/cit6/1) 2017; 7 Davidson (D3NA00183K/cit40/1) 2018; 115 Bisoyi (D3NA00183K/cit3/1) 2021; 122 Lagerwall (D3NA00183K/cit4/1) 2012; 12 Berne (D3NA00183K/cit44/1) 1976 Caronna (D3NA00183K/cit49/1) 2008; 100 Miyamoto (D3NA00183K/cit10/1) 2002; 14 Cipelletti (D3NA00183K/cit46/1) 2005; 17 Benedini (D3NA00183K/cit19/1) 2021; 21 Kato (D3NA00183K/cit5/1) 2018; 57 Patti (D3NA00183K/cit30/1) 2011; 7 Hoshino (D3NA00183K/cit24/1) 2020; 124 Gabriel (D3NA00183K/cit9/1) 2001; 413 Morillo (D3NA00183K/cit31/1) 2019; 150 Constantin (D3NA00183K/cit35/1) 2010; 133 Holmqvist (D3NA00183K/cit37/1) 2013; 139 van der Kooij (D3NA00183K/cit8/1) 1998; 102 Nakayama (D3NA00183K/cit14/1) 2020; 2 Kajiyama (D3NA00183K/cit17/1) 2020; 12 Kleshchanok (D3NA00183K/cit36/1) 2012; 8 Hoshino (D3NA00183K/cit28/1) 2019; 15 |
References_xml | – issn: 2016 volume-title: X-Ray Photon Correlation Spectroscopy for the Characterization of Soft and Hard Condensed Matter publication-title: X-ray and Neutron Techniques for Nanomaterials Characterization doi: Bikondoa – issn: 2014 publication-title: Handbook of Liquid Crystals – issn: 1976 publication-title: Dynamic light scattering: with applications to chemistry, biology, and physics doi: Berne Pecora – issn: 2008 end-page: p 954-995 publication-title: Soft Matter Characterization doi: Grübel Madsen Robert – volume: 7 start-page: 305 year: 2017 ident: D3NA00183K/cit6/1 publication-title: Nanomaterials doi: 10.3390/nano7100305 contributor: fullname: Dierking – volume: 57 start-page: 4355 year: 2018 ident: D3NA00183K/cit5/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711163 contributor: fullname: Kato – volume: 14 start-page: 1267 year: 2002 ident: D3NA00183K/cit10/1 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020916)14:18<1267::AID-ADMA1267>3.0.CO;2-O contributor: fullname: Miyamoto – volume: 133 start-page: 224902 year: 2010 ident: D3NA00183K/cit35/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3509399 contributor: fullname: Constantin – volume: 94 start-page: 357 year: 2021 ident: D3NA00183K/cit7/1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20200304 contributor: fullname: Kato – volume: 3 start-page: 023254 year: 2021 ident: D3NA00183K/cit34/1 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.023254 contributor: fullname: Pal – volume: 12 start-page: 055001 year: 2010 ident: D3NA00183K/cit22/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/5/055001 contributor: fullname: Madsen – volume: 6 start-page: 6230 year: 2015 ident: D3NA00183K/cit13/1 publication-title: Chem. Sci. doi: 10.1039/C5SC01820J contributor: fullname: Nakayama – volume: 2 start-page: 2326 year: 2020 ident: D3NA00183K/cit14/1 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00130A contributor: fullname: Nakayama – volume: 88 start-page: 032602 year: 2013 ident: D3NA00183K/cit50/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.88.032602 contributor: fullname: Hoshino – volume: 100 start-page: 055702 year: 2008 ident: D3NA00183K/cit49/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.055702 contributor: fullname: Caronna – start-page: 954 volume-title: Soft Matter Characterization year: 2008 ident: D3NA00183K/cit21/1 contributor: fullname: Grübel – volume: 15 start-page: 3315 year: 2019 ident: D3NA00183K/cit28/1 publication-title: Soft Matter doi: 10.1039/C9SM00101H contributor: fullname: Hoshino – volume: 11 start-page: 9767 year: 2021 ident: D3NA00183K/cit26/1 publication-title: Sci. Rep. doi: 10.1038/s41598-021-89155-x contributor: fullname: Hoshino – volume: 98 start-page: 265702 year: 2007 ident: D3NA00183K/cit52/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.265702 contributor: fullname: De Michele – volume: 50 start-page: 3043 year: 2011 ident: D3NA00183K/cit12/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201004692 contributor: fullname: Kim – volume: 30 start-page: 480 year: 2001 ident: D3NA00183K/cit43/1 publication-title: Chem. Lett. doi: 10.1246/cl.2001.480 contributor: fullname: Kanie – volume: 116 start-page: 18322 year: 2019 ident: D3NA00183K/cit41/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1906511116 contributor: fullname: Zeng – volume: 103 start-page: 248304 year: 2009 ident: D3NA00183K/cit29/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.248304 contributor: fullname: Patti – volume: 284 start-page: 361 year: 2002 ident: D3NA00183K/cit51/1 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(02)00667-5 contributor: fullname: Weeks – volume: 139 start-page: 084905 year: 2013 ident: D3NA00183K/cit37/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4818532 contributor: fullname: Holmqvist – volume: 34 start-page: 2109063 year: 2022 ident: D3NA00183K/cit2/1 publication-title: Adv. Mater. doi: 10.1002/adma.202109063 contributor: fullname: Uchida – volume: 6 start-page: eaaw9733 year: 2020 ident: D3NA00183K/cit33/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw9733 contributor: fullname: Pal – volume: 17 start-page: R253 year: 2005 ident: D3NA00183K/cit46/1 publication-title: J. Phys.: Condens. Matter contributor: fullname: Cipelletti – volume-title: X-ray and Neutron Techniques for Nanomaterials Characterization year: 2016 ident: D3NA00183K/cit23/1 contributor: fullname: Bikondoa – volume: 7 start-page: 3533 year: 2011 ident: D3NA00183K/cit30/1 publication-title: Soft Matter doi: 10.1039/c0sm01265c contributor: fullname: Patti – volume: 55 start-page: 1796 year: 2022 ident: D3NA00183K/cit15/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.2c00063 contributor: fullname: Nakayama – volume: 12 start-page: 11468 year: 2020 ident: D3NA00183K/cit17/1 publication-title: Nanoscale doi: 10.1039/C9NR10996J contributor: fullname: Kajiyama – volume-title: Handbook of Liquid Crystals year: 2014 ident: D3NA00183K/cit1/1 – volume: 17 start-page: 4226 year: 2021 ident: D3NA00183K/cit53/1 publication-title: Soft Matter doi: 10.1039/D0SM02210A contributor: fullname: Yamamoto – volume: 413 start-page: 504 year: 2001 ident: D3NA00183K/cit9/1 publication-title: Nature doi: 10.1038/35097046 contributor: fullname: Gabriel – volume: 8 start-page: 1584 year: 2012 ident: D3NA00183K/cit36/1 publication-title: Soft Matter doi: 10.1039/C1SM06735D contributor: fullname: Kleshchanok – volume: 150 start-page: 204905 year: 2019 ident: D3NA00183K/cit31/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5090975 contributor: fullname: Morillo – volume: 229 start-page: 124003 year: 2021 ident: D3NA00183K/cit25/1 publication-title: Polymer doi: 10.1016/j.polymer.2021.124003 contributor: fullname: Cheng – volume: 132 start-page: 091101 year: 2010 ident: D3NA00183K/cit32/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3330920 contributor: fullname: Poulos – volume-title: Dynamic light scattering: with applications to chemistry, biology, and physics year: 1976 ident: D3NA00183K/cit44/1 contributor: fullname: Berne – volume: 102 start-page: 7829 year: 1998 ident: D3NA00183K/cit8/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp981534d contributor: fullname: van der Kooij – volume: 12 start-page: 1387 year: 2012 ident: D3NA00183K/cit4/1 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2012.03.019 contributor: fullname: Lagerwall – volume: 467 start-page: 686 year: 2001 ident: D3NA00183K/cit54/1 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/S0168-9002(01)00446-6 contributor: fullname: Tamasaku – volume: 11 start-page: 17759 year: 2019 ident: D3NA00183K/cit18/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02485 contributor: fullname: Nakayama – volume: 113 start-page: 11604 year: 2009 ident: D3NA00183K/cit39/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp903783b contributor: fullname: Mourad – volume: 9 start-page: 568 year: 2018 ident: D3NA00183K/cit16/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02932-7 contributor: fullname: Nakayama – volume: 76 start-page: 972 year: 2006 ident: D3NA00183K/cit47/1 publication-title: Europhys. Lett. doi: 10.1209/epl/i2006-10357-4 contributor: fullname: Duri – volume: 9 start-page: 657 year: 2008 ident: D3NA00183K/cit20/1 publication-title: C. R. Phys. doi: 10.1016/j.crhy.2007.04.008 contributor: fullname: Sutton – volume: 1 start-page: 868 year: 2023 ident: D3NA00183K/cit27/1 publication-title: ACS Appl. Eng. Mater. doi: 10.1021/acsaenm.2c00248 contributor: fullname: Yavitt – volume: 35 start-page: 16256 year: 2019 ident: D3NA00183K/cit42/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b02335 contributor: fullname: Chaput – volume: 21 start-page: 2154 year: 2021 ident: D3NA00183K/cit19/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01582 contributor: fullname: Benedini – volume: 124 start-page: 118004 year: 2020 ident: D3NA00183K/cit24/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.118004 contributor: fullname: Hoshino – volume: 27 start-page: 229 year: 1982 ident: D3NA00183K/cit45/1 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(82)90174-6 contributor: fullname: Provencher – volume: 122 start-page: 4887 year: 2021 ident: D3NA00183K/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00761 contributor: fullname: Bisoyi – volume: 66 start-page: m749 year: 2010 ident: D3NA00183K/cit38/1 publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online doi: 10.1107/S1600536810020659 contributor: fullname: Sakane – volume: 2 start-page: 571 year: 2011 ident: D3NA00183K/cit11/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1583 contributor: fullname: Xu – volume: 99 start-page: 208301 year: 2007 ident: D3NA00183K/cit48/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.208301 contributor: fullname: Sprakel – volume: 115 start-page: 6662 year: 2018 ident: D3NA00183K/cit40/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1802692115 contributor: fullname: Davidson |
SSID | ssj0002144479 |
Score | 2.2911758 |
Snippet | Self-organized supramolecular assemblies are widespread in nature and technology in the form of liquid crystals, colloids, and gels. The reversible nature of... |
SourceID | pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3646 |
SubjectTerms | Chemistry |
Title | Experimental probing of dynamic self-organized columnar assemblies in colloidal liquid crystals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37441264 https://search.proquest.com/docview/2838243172 https://pubmed.ncbi.nlm.nih.gov/PMC10334381 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMefKBd2mfixbgGGjMY1NInzwzmitqgSokJiSLtF_qlFS11o6GH763l2SEfFjWviWNGzZX9e_PL9AlwIhACqkNzy0kRhqjIRlpLJkKaJzLVUpvTanbP7Yv6LTaZOJifv_4XxRftS1Je2WVza-revrXxcyFFfJza6ux3HEaVOmmo0gAHC4Zsc3a2_TgQsLcpei5SWI0Utd-5z9M_27vMOKd9XRg5WvRGI33Cu9-HzKymSq-6NDmBH20PYG_cGbUdQTd-o8xPnDIPbEFkaojqXedLqxoSdbdM_rYh0C5HlK4K8rBcC4bMltXWXm2WtsIumflrX2G71F5Gxab_Aw_X053gWvvolhBKzpOcwz1WUKBbrWEQZF4ZSnhmZc8O5YcYkpVEpZ2WaMVPE0jildZ4nTIiUxzqLBB3Crl1a_Q0IQ6xBdkB4wVhKnnHGY6kzWjDkJcyYAvjRx7F67GQxKn-cTctqQudXPto3AZz3Ia4wNu4oglu9XLcVQg1LHLskAXztQr7phxaIaMhpAbCtwdg0cIrY23dwonhl7H5iBDDEcds88H_8jz_e5wl8clbz7rtuHJ_C7vNqrb_DoFXrM5_In_lZ-AKCkOWK |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NT9swGMZfUXZgF2AfjPA1T9s1NInz4RxRKSoCqklj0m6RP0W01IWGHuCv53XSFKreuMaJFeVx7J9j53kAfgmEAKqQ3NLcBH6sEuHnkkmfxpFMtVQmb7w7R3-y8T92PnQ2OWn3L0yzaV-K8tRWk1Nb3jV7K-8nst_tE-v_vhmEAaXOmqrfgw_4wgbBm1m664GdDVic5Z0bKc37ilru8ufo_9XxZw0q1_dG9mZdFEgz5FzsvPdmd2F7AZnkrC3_BBvafoatQZft9gWK4Rtjf-JCZXAEI1NDVBtQT2pdGb9NfHrWikjXh1k-I4jaeiKQW2tSWne4mpYKq6jKh3mJ582ekDar-iv8vRjeDkb-ImrBlzjBevTTVAWRYqEORZBwYSjliZEpN5wbZkyUGxVzlscJM1kojTNp52nEhIh5qJNA0D3YtFOr94EwJCLEDuQeFEHyhDMeSp3QjCFq4WTLg5-dAMV966hRNCvhNC_O6fiskenKgx-dNgU-G7eKwa2ezusCeYhFDnsiD761Wi3roRnSHSKeB2xFxeUJzkx7tQRla0y1O5k82EPBlxe8NpyD99f5HbZGtzfXxfXl-OoQPrrEevd5OAyPYPNxNtfH0KvV_KRpxC_Db_pF |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JT9wwGMU_MSC1XApdgEBLjdpryOIsDjc0i6goI6S2Um-RVzVqxjNMmEP71_dzQqaMuLXXxLGiPMf-OXbeA_goEAKoQnLLChP6iUqFX0gmfZrEMtNSmaL17rz6kk-_s9HY2eRc9P_CtJv2pajObT07t9WPdm_lYiaDfp9YcHszjEJKnTVVsFAmGMAOvrRh_Gim7nphZwWW5EXvSEqLQFHLXQYd_bk5Bj0By6f7IwfLPg6kHXYme_9zw_vw4gE2yWVX5iVsafsKng_7jLfXUI4fGfwTFy6DIxmZG6K6oHrS6Nr4XfLTb62IdH2Z5UuCyK1nAvm1IZV1h-t5pbCKurpbVVhu-Qups27ewLfJ-Ovwyn-IXPAlTrTu_SxTYaxYpCMRplwYSnlqZMYN54YZExdGJZwVScpMHknjzNp5FjMhEh7pNBT0ALbt3OojIAzJCPED-QeFkDzljEdSpzRniFw46fLgQy9CueicNcp2RZwW5YhOL1uprj046_Up8dm41Qxu9XzVlMhFLHb4E3tw2Om1rofmSHmIeh6wDSXXBZyp9uYZlK411-6l8uAARV9f8LfxHP97ne_h2e1oUn7-NL0-gV0XXO--EkfRW9i-X670Oxg0anXatuM_mPb8xQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+probing+of+dynamic+self-organized+columnar+assemblies+in+colloidal+liquid+crystals&rft.jtitle=Nanoscale+advances&rft.au=Hoshino%2C+Taiki&rft.au=Nakayama%2C+Masanari&rft.au=Hosokawa%2C+Yoshihiro&rft.au=Mochizuki%2C+Kohei&rft.date=2023-07-11&rft.eissn=2516-0230&rft.volume=5&rft.issue=14&rft.spage=3646&rft.epage=3654&rft_id=info:doi/10.1039%2Fd3na00183k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon |