Amphiphilic p-tert-butylthiacalix[4]arenes containing quaternary ammonium groups: from small molecules toward water-soluble nanoscale associates

The formation of supramolecular associates based on water‐soluble p‐tert‐butylthiacalix[4]arenes with amino acids has been studied. It was shown that amphiphilic p‐tert‐butylthiacalix[4]arenes preferably formed supramolecular associates with aromatic α‐amino acids (tyrosine and tryptophan). Increasi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical organic chemistry Vol. 28; no. 8; pp. 527 - 535
Main Authors: Andreyko, Elena A., Padnya, Pavel L., Stoikov, Ivan I.
Format: Journal Article
Language:English
Published: Bognor Regis Blackwell Publishing Ltd 01-08-2015
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation of supramolecular associates based on water‐soluble p‐tert‐butylthiacalix[4]arenes with amino acids has been studied. It was shown that amphiphilic p‐tert‐butylthiacalix[4]arenes preferably formed supramolecular associates with aromatic α‐amino acids (tyrosine and tryptophan). Increasing size of the substituents of p‐tert‐butylthiacalix[4]arenes led to increase molecular weight of supramolecular associates based on the macrocycles and “guest” molecules. The spatial structures of p‐tert‐butylthiacalix[4]arenes and their associates with phenylalanine were studied by two‐dimensional 1H‐1H nuclear Overhauser effect NMR spectroscopy. The ability of aggregates based on p‐tert‐butylthiacalix[4]arenes and amino acids to effectively interact with bovine serum albumin with the formation of 7‐ to 8‐nm nanoparticles was shown. Copyright © 2015 John Wiley & Sons, Ltd. The formation of supramolecular associates based on water‐soluble p‐tert‐butylthiacalix[4]arenes with amino acids has been studied. It was shown that amphiphilic p‐tert‐butylthiacalix[4]arenes preferably formed supramolecular associates with aromatic α‐amino acids (tyrosine and tryptophan). Increasing size of the substituents of p‐tert‐butylthiacalix[4]arenes led to increase molecular weight of supramolecular associates based on the macrocycles and “guest” molecules. The ability of aggregates based on p‐tert‐butylthiacalix[4]arenes and amino acids to effectively interact with bovine serum albumin with the formation of 7‐ to 8‐nm nanoparticles was shown.
Bibliography:Supporting info item
ark:/67375/WNG-7Q1CG3HB-1
ArticleID:POC3433
istex:E909FDE6E8AF7476BF5D4BABEB068DFFAAA0258B
ISSN:0894-3230
1099-1395
DOI:10.1002/poc.3433