Size-dependent intranasal administration of magnetoelectric nanoparticles for targeted brain localization
The brain is a massive network of neurons which are interconnected through chemical and electrical field oscillations. It is hard to overestimate the significance of the ability to control chemical and physical properties of the network at both the collective and single-cell levels. Most psychiatric...
Saved in:
Published in: | Nanomedicine Vol. 32; p. 102337 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-02-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The brain is a massive network of neurons which are interconnected through chemical and electrical field oscillations. It is hard to overestimate the significance of the ability to control chemical and physical properties of the network at both the collective and single-cell levels. Most psychiatric and neurodegenerative diseases are typically characterized by certain aberrations of these oscillations. Recently, magnetoelectric nanoparticles (MENs) have been introduced to achieve the desired control. MENs effectively enable wirelessly controlled nanoelectrodes deep in the brain. Although MENs have been shown to cross the blood–brain barrier via intravenous (IV) administration, achieving adequate efficacy of the delivery remains an open question. Herein, through in vivo studies on a mouse model, we demonstrate at least a 4-fold improved efficacy of the targeted delivery of MENs across BBB via intranasal administration compared to an equivalent IV administration.
Magnetoelectric nanoparticles (MENs) can be administered intranasally to reach the brain crossing the blood brain barrier (BBB). Additionally, MENs can be relocated through the brain using external magnetic fields. [Display omitted]
•Intranasal administration of MENs allows fast distribution across the brain.•30 nm size MENs are capable to freely cross the BBB.•MENs are relocated using external non-invasive magnetic field. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1549-9634 1549-9642 |
DOI: | 10.1016/j.nano.2020.102337 |