Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning

The environment is seriously threatened by the rising energy demand and the use of conventional energy sources. Renewable energy sources including hydro, solar, and wind have been the focus of extensive research due to the proliferation of energy demands and technological advancement. Wind energy is...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 15; no. 23; p. 8901
Main Authors: Javaid, Ali, Javaid, Umer, Sajid, Muhammad, Rashid, Muhammad, Uddin, Emad, Ayaz, Yasar, Waqas, Adeel
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The environment is seriously threatened by the rising energy demand and the use of conventional energy sources. Renewable energy sources including hydro, solar, and wind have been the focus of extensive research due to the proliferation of energy demands and technological advancement. Wind energy is mostly harvested in coastal areas, and little work has been done on energy extraction from winds in a suburban environment. The fickle behavior of wind makes it a less attractive renewable energy source. However, an energy storage method may be added to store harvested wind energy. The purpose of this study is to evaluate the feasibility of extracting wind energy in terms of hydrogen energy in a suburban environment incorporating artificial intelligence techniques. To this end, a site was selected latitude 33.64° N, longitude 72.98° N, and elevation 500 m above mean sea level in proximity to hills. One year of wind data consisting of wind speed, wind direction, and wind gust was collected at 10 min intervals. Subsequently, long short-term memory (LSTM), support vector regression (SVR), and linear regression models were trained on the empirically collected data to estimate daily hydrogen production. The results reveal that the overall prediction performance of LSTM was best compared to that of SVR and linear regression models. Furthermore, we found that an average of 6.76 kg/day of hydrogen can be produced by a 1.5 MW wind turbine with the help of an artificial intelligence method (LSTM) that is well suited for time-series data to classify, process, and predict.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15238901