Effects of Different Waveforms on the Performance of Active Capillary Dielectric Barrier Discharge Ionization Mass Spectrometry

Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV p-p high-voltage square-wa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry Vol. 28; no. 4; pp. 575 - 578
Main Authors: Dumlao, Morphy C., Xiao, Dan, Zhang, Daming, Fletcher, John, Donald, William A.
Format: Journal Article
Language:English
Published: New York Springer US 01-04-2017
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV p-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Graphical Abstract ᅟ
AbstractList Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3).
Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Graphical Abstract ᅟ.
Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Graphical Abstract ᅟ.
Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV p-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Graphical Abstract ᅟ
Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV{sub p-p} high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). .
Author Fletcher, John
Zhang, Daming
Dumlao, Morphy C.
Xiao, Dan
Donald, William A.
Author_xml – sequence: 1
  givenname: Morphy C.
  surname: Dumlao
  fullname: Dumlao, Morphy C.
  organization: School of Chemistry, University of New South Wales
– sequence: 2
  givenname: Dan
  surname: Xiao
  fullname: Xiao, Dan
  organization: School of Electrical Engineering and Telecommunications, University of New South Wales
– sequence: 3
  givenname: Daming
  surname: Zhang
  fullname: Zhang, Daming
  organization: School of Electrical Engineering and Telecommunications, University of New South Wales
– sequence: 4
  givenname: John
  surname: Fletcher
  fullname: Fletcher, John
  organization: School of Electrical Engineering and Telecommunications, University of New South Wales
– sequence: 5
  givenname: William A.
  surname: Donald
  fullname: Donald, William A.
  email: w.donald@unsw.edu.au
  organization: School of Chemistry, University of New South Wales
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27830527$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22777089$$D View this record in Osti.gov
BookMark eNp1kU1v1DAQhi1URD_gB3BBkbhwCfVHEtvHsrSlUlGRAHG0HDPuutrYi-2tVC789U6UtuqFk2fGz7zj8XtI9mKKQMhbRj8ySuVxYUIMrKVsaFkv-rZ_QQ6YkrpljIs9jGnXtVTQfp8clnJDKZNUy1dkn0uFVS4PyL9T78HV0iTffA4YZ4i1-WVvwac8YTk2dQ3NN8hzbqODmTxxNdxCs7LbsNnYfIetsEGZHFzzyeYcIGOpuLXN19BcpBj-2hpQ66stpfm-ndE0Qc13r8lLbzcF3jycR-Tn2emP1Zf28ur8YnVy2bqO0tqO2lI3dL3rgQ3dOILiSvbad8JaPQ5DB9xzyhgmDoT1QkrNufYSWTVKIY7I-0U3lRpMcaGCW7sUIz7FcC6lpEoj9WGhtjn92UGpZsItAHeMkHbFMCU0o1qpZ4JP6E3a5Yg7GKYHRTvVa44UWyiXUykZvNnmMOGPGUbN7KFZPDTooZk9ND32vHtQ3o0T_H7qeDQNAb4ABa_iNeRno_-reg83pKir
CitedBy_id crossref_primary_10_1007_s13361_017_1832_7
crossref_primary_10_1021_acs_analchem_9b02044
crossref_primary_10_1021_jasms_3c00087
crossref_primary_10_1016_j_aca_2022_339649
crossref_primary_10_1021_acs_analchem_0c02938
crossref_primary_10_1016_j_trac_2017_10_011
crossref_primary_10_1016_j_aca_2019_01_038
crossref_primary_10_1016_j_ijms_2018_02_003
crossref_primary_10_1021_acs_analchem_9b05491
crossref_primary_10_1071_CH17440
crossref_primary_10_1080_13543776_2018_1423680
Cites_doi 10.1021/ac801641a
10.1002/rcm.6242
10.1021/acs.analchem.6b01507
10.1021/acs.analchem.5b03538
10.1007/s13361-015-1272-1
10.1146/annurev.anchem.111808.073702
10.1002/jms.3732
10.1007/s13361-016-1374-4
10.1039/c0an00994f
10.1021/ac200918u
10.1080/05704928.2011.561511
10.1039/C6AN00178E
10.1039/b925257f
10.1002/jms.1243
10.1016/j.ijms.2003.10.010
ContentType Journal Article
Copyright American Society for Mass Spectrometry 2016
Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: American Society for Mass Spectrometry 2016
– notice: Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2016). All Rights Reserved.
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FG
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
M0S
M1P
M2O
MBDVC
P5Z
P62
PQEST
PQQKQ
PQUKI
Q9U
7X8
OTOTI
DOI 10.1007/s13361-016-1535-5
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest research library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV
DatabaseTitle PubMed
CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
MEDLINE - Academic
PubMed


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1123
EndPage 578
ExternalDocumentID 22777089
10_1007_s13361_016_1535_5
27830527
Genre Journal Article
GrantInformation_xml – fundername: Organisation for the Prohibition of Chemical Weapons
  grantid: L/ICA/ICB/194482/15
  funderid: http://dx.doi.org/10.13039/501100004766
– fundername: Australian Research Council
  grantid: DE130100424
  funderid: http://dx.doi.org/10.13039/501100000923
– fundername: Department of Primary Industry, New South Wales Government
  grantid: New South Wales Smart Sensors Network
  funderid: http://dx.doi.org/10.13039/100010000
GroupedDBID ---
--K
-56
-5G
-BR
-EM
-~C
.GJ
.HR
06D
0R~
0SF
0VY
199
1B1
1RT
1~5
2.D
203
29L
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
408
40E
4G.
53G
5C9
5GY
5VS
67N
6I.
7-5
71M
7X7
88E
8FE
8FG
8FI
8FJ
8G5
8UJ
95.
96X
AAAVM
AABHQ
AACTN
AAEDT
AAEDW
AAFTH
AAIAL
AAIKJ
AAJKR
AAKDD
AALRI
AANXM
AAQFI
AAQXK
AARHV
AARTL
AATVU
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAZMS
ABEFU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMAC
ABPTK
ABQBU
ABQRX
ABTEG
ABTHY
ABTMW
ABULA
ABUWG
ABVKL
ABXPI
ACBXY
ACGFO
ACGFS
ACHXU
ACKNC
ACMLO
ACREN
ACS
ADBBV
ADEZE
ADHHG
ADHIR
ADINQ
ADKPE
ADMUD
ADRFC
ADURQ
ADYOE
ADZKW
AEBTG
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AETCA
AEXQZ
AEXYK
AFKRA
AFLOW
AFNRJ
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGHFR
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHGAQ
AHHHB
AHKAY
AHSBF
AHYZX
AIIXL
AITGF
AITUG
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMRAJ
AMTXH
AMYQR
ANMIH
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
BAWUL
BENPR
BGLVJ
BGNMA
BPHCQ
BVXVI
CCPQU
CS3
CSCUP
DIK
DU5
DWQXO
DX2
E3Z
EBS
EIOEI
EJD
EN4
EO8
EO9
EP2
EP3
ESBYG
F5P
FDB
FEDTE
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FNPLU
FRRFC
FSGXE
FYUFA
G-Q
GGCAI
GGK
GGRSB
GJIRD
GNUQQ
GQ6
GQ7
GUQSH
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IHE
ITM
IXB
J-C
JBSCW
KOV
KQ8
M1P
M2O
M36
M41
M4Y
NCXOZ
NQ-
NQJWS
NU0
O-L
O9-
O93
O9I
O9J
OK1
OZT
P2P
P62
PF-
PQQKQ
PROAC
PSQYO
R2-
R9I
RIG
RNS
ROL
RPZ
RSV
S16
S1Z
S27
S3A
S3B
SBL
SDG
SDP
SEW
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SSZ
STPWE
SZN
T13
TR2
TSG
U2A
UG4
UKHRP
UZXMN
VC2
VF5
VFIZW
VG9
VOH
WK8
WUQ
XPP
YK3
Z5O
Z7U
Z7X
Z92
ZMT
AAYZH
ADVLN
AFBBN
AKRWK
ALIPV
BAANH
CUPRZ
H13
NPM
AAYXX
CITATION
7XB
8FK
K9.
MBDVC
PQEST
PQUKI
Q9U
7X8
OTOTI
ID FETCH-LOGICAL-c400t-b9a0c645c5e164bbe828759f43aa9b664e2f2011a9bce3af3779229f74bb8b733
IEDL.DBID AEJHL
ISSN 1044-0305
IngestDate Thu May 18 22:32:33 EDT 2023
Fri Oct 25 04:52:26 EDT 2024
Wed Nov 06 08:33:17 EST 2024
Fri Nov 22 00:46:18 EST 2024
Wed Oct 16 00:50:45 EDT 2024
Sat Dec 16 12:08:51 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Thermometer ions
Chemical warfare agents
Dimethyl methyl phosphonate
Perfluorooctanoic acid
Dielectric barrier discharge ionization
Persistent organic pollutants
Low temperature plasma ionization
Nerve agents
Portable mass spectrometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-b9a0c645c5e164bbe828759f43aa9b664e2f2011a9bce3af3779229f74bb8b733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27830527
PQID 1968048592
PQPubID 2043687
PageCount 4
ParticipantIDs osti_scitechconnect_22777089
proquest_miscellaneous_1839109883
proquest_journals_1968048592
crossref_primary_10_1007_s13361_016_1535_5
pubmed_primary_27830527
springer_journals_10_1007_s13361_016_1535_5
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The official journal of The American Society for Mass Spectrometry
PublicationTitle Journal of the American Society for Mass Spectrometry
PublicationTitleAbbrev J. Am. Soc. Mass Spectrom
PublicationTitleAlternate J Am Soc Mass Spectrom
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Usmanov, Yu, Chen, Hiraoka, Yamabe (CR10) 2016; 51
Stephens, Dumlao, Xiao, Zhang, Donald (CR8) 2015; 26
Schütz, Brandt, Liedtke, Foest, Marggraf, Franzke (CR15) 2015; 87
Mirabelli, Wolf, Zenobi (CR13) 2016; 88
Nudnova, Zhu, Zenobi (CR9) 2012; 26
CR14
Dumlao, Jeffress, Gooding, Donald (CR12) 2016; 141
Harris, Galhena, Fernández (CR2) 2011; 83
Na, Zhang, Zhao, Zhang, Yang, Fang, Zhang (CR6) 2007; 42
Huang, Yuan, Cheng, Cho, Shiea (CR1) 2010; 3
Wolf, Etter, Schaer, Siegenthaler, Zenobi (CR11) 2016; 27
Hu, Li, Zheng, Hou (CR5) 2011; 46
Gabelica, De Pauw, Karas (CR16) 2004; 231
Ifa, Wu, Ouyang, Cooks (CR3) 2010; 135
Meyer, Muller, Gurevich, Franzke (CR4) 2011; 136
Harper, Charipar, Mulligan, Zhang, Cooks, Ouyang (CR7) 2008; 80
CR12/citCR12
CR14/citCR14
CR10/citCR10
CR11/citCR11
CR16/citCR16
CR15/citCR15
CR1/citCR1
CR2/citCR2
CR4/citCR4
CR3/citCR3
CR6/citCR6
CR5/citCR5
CR7/citCR7
CR9/citCR9
CR8/citCR8
CR13/citCR13
References_xml – volume: 80
  start-page: 9097
  year: 2008
  end-page: 9104
  ident: CR7
  article-title: Low-temperature plasma probe for ambient desorption ionization
  publication-title: Anal. Chem.
  doi: 10.1021/ac801641a
  contributor:
    fullname: Ouyang
– volume: 26
  start-page: 1447
  year: 2012
  end-page: 1452
  ident: CR9
  article-title: Active capillary plasma source for ambient mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.6242
  contributor:
    fullname: Zenobi
– volume: 88
  start-page: 7252
  year: 2016
  end-page: 7258
  ident: CR13
  article-title: Direct coupling of solid-phase microextraction with mass spectrometry: sub-pg/g sensitivity achieved using a dielectric barrier discharge ionization source
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b01507
  contributor:
    fullname: Zenobi
– volume: 87
  start-page: 11415
  year: 2015
  end-page: 11419
  ident: CR15
  article-title: Dielectric barrier discharge ionization of perfluorinated compounds
  publication-title: Anal Chem.
  doi: 10.1021/acs.analchem.5b03538
  contributor:
    fullname: Franzke
– volume: 26
  start-page: 2081
  year: 2015
  end-page: 2084
  ident: CR8
  article-title: Benzylammonium thermometer ions: internal energies of ions formed by low temperature plasma and atmospheric pressure chemical ionization
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-015-1272-1
  contributor:
    fullname: Donald
– ident: CR14
– volume: 3
  start-page: 43
  year: 2010
  end-page: 65
  ident: CR1
  article-title: Ambient ionization mass spectrometry
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev.anchem.111808.073702
  contributor:
    fullname: Shiea
– volume: 51
  start-page: 132
  year: 2016
  end-page: 140
  ident: CR10
  article-title: Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.3732
  contributor:
    fullname: Yamabe
– volume: 27
  start-page: 1197
  year: 2016
  end-page: 1202
  ident: CR11
  article-title: Direct and sensitive detection of CWA simulants by active capillary plasma ionization coupled to a handheld ion trap mass spectrometer
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-016-1374-4
  contributor:
    fullname: Zenobi
– volume: 136
  start-page: 2427
  year: 2011
  end-page: 2440
  ident: CR4
  article-title: Dielectric barrier discharges in analytical chemistry
  publication-title: Analyst
  doi: 10.1039/c0an00994f
  contributor:
    fullname: Franzke
– volume: 83
  start-page: 4508
  year: 2011
  end-page: 4538
  ident: CR2
  article-title: Ambient sampling/ionization mass spectrometry: applications and current trends
  publication-title: Anal. Chem.
  doi: 10.1021/ac200918u
  contributor:
    fullname: Fernández
– volume: 46
  start-page: 368
  year: 2011
  end-page: 387
  ident: CR5
  article-title: Dielectric barrier discharge in analytical spectrometry
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2011.561511
  contributor:
    fullname: Hou
– volume: 141
  start-page: 3714
  year: 2016
  end-page: 3721
  ident: CR12
  article-title: Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures
  publication-title: Analyst
  doi: 10.1039/C6AN00178E
  contributor:
    fullname: Donald
– volume: 135
  start-page: 669
  year: 2010
  end-page: 681
  ident: CR3
  article-title: Desorption electrospray ionization and other ambient ionization methods: current progress and preview
  publication-title: Analyst
  doi: 10.1039/b925257f
  contributor:
    fullname: Cooks
– volume: 42
  start-page: 1079
  year: 2007
  end-page: 1085
  ident: CR6
  article-title: Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.1243
  contributor:
    fullname: Zhang
– volume: 231
  start-page: 189
  year: 2004
  end-page: 195
  ident: CR16
  article-title: Influence of the capillary temperature and the source pressure on the internal energy distribution of electrosprayed ions
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2003.10.010
  contributor:
    fullname: Karas
– ident: CR3/citCR3
  doi: 10.1039/b925257f
– ident: CR7/citCR7
  doi: 10.1021/ac801641a
– ident: CR4/citCR4
  doi: 10.1039/c0an00994f
– ident: CR15/citCR15
  doi: 10.1021/acs.analchem.5b03538
– ident: CR16/citCR16
  doi: 10.1016/j.ijms.2003.10.010
– ident: CR9/citCR9
  doi: 10.1002/rcm.6242
– ident: CR2/citCR2
  doi: 10.1021/ac200918u
– ident: CR10/citCR10
  doi: 10.1002/jms.3732
– ident: CR14/citCR14
– ident: CR12/citCR12
  doi: 10.1039/C6AN00178E
– ident: CR13/citCR13
  doi: 10.1021/acs.analchem.6b01507
– ident: CR11/citCR11
  doi: 10.1007/s13361-016-1374-4
– ident: CR5/citCR5
  doi: 10.1080/05704928.2011.561511
– ident: CR6/citCR6
  doi: 10.1002/jms.1243
– ident: CR1/citCR1
  doi: 10.1146/annurev.anchem.111808.073702
– ident: CR8/citCR8
  doi: 10.1007/s13361-015-1272-1
SSID ssj0017097
Score 2.3203733
Snippet Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules...
SourceID osti
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 575
SubjectTerms ABUNDANCE
ALTERNATING CURRENT
Analytical Chemistry
Batteries
Bioinformatics
Biotechnology
CAPILLARIES
Capillary waves
Chemistry
Chemistry and Materials Science
COMPARATIVE EVALUATIONS
Dielectric barrier discharge
DIELECTRIC MATERIALS
DIFFUSION BARRIERS
ELECTRIC POTENTIAL
ENERGY ABSORPTION
Energy consumption
Focus: Emerging Investigators: Short Communication
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Internal energy
ION DETECTION
IONIZATION
Ions
MASS SPECTROMETERS
Mass spectrometry
MASS SPECTROSCOPY
Organic Chemistry
PHOSPHONATES
Plasma
Plasmas
Power consumption
Proteomics
Scientific imaging
Spectrometers
Spectroscopy
WAVE FORMS
Waveforms
Title Effects of Different Waveforms on the Performance of Active Capillary Dielectric Barrier Discharge Ionization Mass Spectrometry
URI https://link.springer.com/article/10.1007/s13361-016-1535-5
https://www.ncbi.nlm.nih.gov/pubmed/27830527
https://www.proquest.com/docview/1968048592
https://search.proquest.com/docview/1839109883
https://www.osti.gov/biblio/22777089
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7YFeKI8W0peMxAlklI3t2D5ut1sVBAipIHqLHGNLFVJS7WYr9cRfZyaPXVDbQznGdizLM7Y_e-zvA3iTShFShc7rtbFc5j5yG8OYm5J4Mf1YRd8eXZzrLxfmZEY0Odnq6KL69X6ISLYT9fqtmxA57XxzjoNUcbUBm7j0KPTtzcns49mnVexAp52kSiolJ3ceYpl3VfLPajSqcVTdhTRvRUnbxed0-3-a_RSe9FCTTTrfeAaPQvUcHk8HhbcX8LujLl6wOrKTXiilYT_cdSAki8kVQ3jIvq7fFlDJSTtDsqm7IsGi-Q3-2mnpXHp27OakgIdJi5aCKbAP9fDSk31GnM5I774higRswQ58P519m57xXpCBexzqDS-tS30ulVcBd1llGYgtX9kohXO2zHMZskiAAj98EC4SmWGW2aixrCm1ELswquoqvAKG7qFi9KWTJkoptcl1-yhX5Nr7EF0CbwfDFFcd70axZlimPi3obhr1aaESOCDTFQgaiPnW0xUh3xRYodapsZg9mLToR-iiwJnH4OylbJbA61U2GoACJq4K9RLLIHocp9YYkcDLzhVWjSGFklRlOoF3g-H_qvy-lu49qPQ-bGWEItqLQgcwaubLcAgbi5_LI9wDTM-Petf_A30N-x4
link.rule.ids 230,315,782,786,887,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7aFceD8CLRiJEyhSNrZj-7hsu3RFWyGxCG6W49oSl6TazVbqib_OTB67oLYHeozjWJZnxvmS8XwfwPtM8JBJdF6vtElF4WNqYhinuiReTD-W0be_Lr6ps5_68IhocvhQC9Oedh9Sku1OvS1247ygT98ixSiVqdyBXWEKga68O5kvPs82yQOVdZoqmRAp-fOQzLxpkH9eR6Maw-omqHktTdq-fWYP7zTvR_CgB5ts0nnHY7gXqiewNx003p7C7468eMXqyA57qZSG_XCXgbAsNlcMASL7uq0uoJ6Tdo9kU3dBkkXLK3y0U9P55dkntyQNPGxatSRMgc3rodaTnSJSZ6R43xBJAs7gGXyfHS2mx2kvyZB6DPYmLY3LfCGklwG_s8oyEF--NFFw50xZFCLkkSAFXvjAXSQ6wzw3UWFfXSrOn8OoqqvwEhg6iIzRl07oKIRQulBtWS4vlPchugQ-DJaxFx3zht1yLNOaWjqdRmtqZQL7ZDuLsIG4bz0dEvKNxQGVyrTB24NNbR-jK4t7j8b9S5o8gXeb22gASpm4KtRr7IP4cZwZrXkCLzpf2EyGNEoymasEPg6G_2vw22b66r96v4W948XpiT2Zn315DfdzwhTtsaF9GDXLdTiAndX5-k0fAX8Apf7-Fg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrQRceD8CBYzECWQ1m9ixfULLPtRCqSoVBDfLcW2JA8lqN4vEib_OTB67IMoBcYztWI49tj9nPN8H8CIVeUglGq9X2nBR-MhNDGOuS-LF9GMZffvr4lydftazOdHkvB5iYdrb7oNLsotpIJamqjlcXsTDXeBbnhd0DC44zljJ5R7sCzzIoKHvT-Zvj062jgSVdvoqqRCcbHtwbF5WyW9b06jGKXYZ7PzDZdruRIub__0Nt-BGD0LZpLOa23AlVHfg2nTQfrsLPzpS4zWrI5v1EioN--S-BcK4mFwxBI7sbBd1QCUn7drJpm5JUkar7_hqp7LzxbM3bkXaeJi0bsmZAjuuhxhQ9h4RPDtftoI8XwO24B58XMw_TI94L9XAPS4CDS-NS30hpJcBz19lGYhHX5oocudMWRQiZJGgBj74kLtINIdZZqLCsrpUeX4fRlVdhYfA0HBkjL50QkchhNKFasN180J5H6JL4OUwSnbZMXLYHfcy9amlW2vUp1YmcEDjaBFOECeup8tDvrFYoVKpNpg9jK_t5-7a4pqkcV2TJkvg-TYbB4BcKa4K9QbLIK4cp0brPIEHnV1sG0PaJanMVAKvBiP4pfK_tfTRP5V-BlfPZgt7cnz67jFczwhqtLeJDmDUrDbhCeytLzZP-8nwE9N5Bug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Different+Waveforms+on+the+Performance+of+Active+Capillary+Dielectric+Barrier+Discharge+Ionization+Mass+Spectrometry&rft.jtitle=Journal+of+the+American+Society+for+Mass+Spectrometry&rft.au=Dumlao%2C+Morphy+C.&rft.au=Xiao%2C+Dan&rft.au=Zhang%2C+Daming&rft.au=Fletcher%2C+John&rft.date=2017-04-01&rft.pub=Springer+US&rft.issn=1044-0305&rft.eissn=1879-1123&rft.volume=28&rft.issue=4&rft.spage=575&rft.epage=578&rft_id=info:doi/10.1007%2Fs13361-016-1535-5&rft.externalDocID=10_1007_s13361_016_1535_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-0305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-0305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-0305&client=summon