Effects of Different Waveforms on the Performance of Active Capillary Dielectric Barrier Discharge Ionization Mass Spectrometry
Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV p-p high-voltage square-wa...
Saved in:
Published in: | Journal of the American Society for Mass Spectrometry Vol. 28; no. 4; pp. 575 - 578 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-04-2017
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV
p-p
high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3).
Graphical Abstract
ᅟ |
---|---|
AbstractList | Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Graphical Abstract ᅟ. Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Graphical Abstract ᅟ. Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV p-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Graphical Abstract ᅟ Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV{sub p-p} high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). . |
Author | Fletcher, John Zhang, Daming Dumlao, Morphy C. Xiao, Dan Donald, William A. |
Author_xml | – sequence: 1 givenname: Morphy C. surname: Dumlao fullname: Dumlao, Morphy C. organization: School of Chemistry, University of New South Wales – sequence: 2 givenname: Dan surname: Xiao fullname: Xiao, Dan organization: School of Electrical Engineering and Telecommunications, University of New South Wales – sequence: 3 givenname: Daming surname: Zhang fullname: Zhang, Daming organization: School of Electrical Engineering and Telecommunications, University of New South Wales – sequence: 4 givenname: John surname: Fletcher fullname: Fletcher, John organization: School of Electrical Engineering and Telecommunications, University of New South Wales – sequence: 5 givenname: William A. surname: Donald fullname: Donald, William A. email: w.donald@unsw.edu.au organization: School of Chemistry, University of New South Wales |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27830527$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22777089$$D View this record in Osti.gov |
BookMark | eNp1kU1v1DAQhi1URD_gB3BBkbhwCfVHEtvHsrSlUlGRAHG0HDPuutrYi-2tVC789U6UtuqFk2fGz7zj8XtI9mKKQMhbRj8ySuVxYUIMrKVsaFkv-rZ_QQ6YkrpljIs9jGnXtVTQfp8clnJDKZNUy1dkn0uFVS4PyL9T78HV0iTffA4YZ4i1-WVvwac8YTk2dQ3NN8hzbqODmTxxNdxCs7LbsNnYfIetsEGZHFzzyeYcIGOpuLXN19BcpBj-2hpQ66stpfm-ndE0Qc13r8lLbzcF3jycR-Tn2emP1Zf28ur8YnVy2bqO0tqO2lI3dL3rgQ3dOILiSvbad8JaPQ5DB9xzyhgmDoT1QkrNufYSWTVKIY7I-0U3lRpMcaGCW7sUIz7FcC6lpEoj9WGhtjn92UGpZsItAHeMkHbFMCU0o1qpZ4JP6E3a5Yg7GKYHRTvVa44UWyiXUykZvNnmMOGPGUbN7KFZPDTooZk9ND32vHtQ3o0T_H7qeDQNAb4ABa_iNeRno_-reg83pKir |
CitedBy_id | crossref_primary_10_1007_s13361_017_1832_7 crossref_primary_10_1021_acs_analchem_9b02044 crossref_primary_10_1021_jasms_3c00087 crossref_primary_10_1016_j_aca_2022_339649 crossref_primary_10_1021_acs_analchem_0c02938 crossref_primary_10_1016_j_trac_2017_10_011 crossref_primary_10_1016_j_aca_2019_01_038 crossref_primary_10_1016_j_ijms_2018_02_003 crossref_primary_10_1021_acs_analchem_9b05491 crossref_primary_10_1071_CH17440 crossref_primary_10_1080_13543776_2018_1423680 |
Cites_doi | 10.1021/ac801641a 10.1002/rcm.6242 10.1021/acs.analchem.6b01507 10.1021/acs.analchem.5b03538 10.1007/s13361-015-1272-1 10.1146/annurev.anchem.111808.073702 10.1002/jms.3732 10.1007/s13361-016-1374-4 10.1039/c0an00994f 10.1021/ac200918u 10.1080/05704928.2011.561511 10.1039/C6AN00178E 10.1039/b925257f 10.1002/jms.1243 10.1016/j.ijms.2003.10.010 |
ContentType | Journal Article |
Copyright | American Society for Mass Spectrometry 2016 Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2016). All Rights Reserved. |
Copyright_xml | – notice: American Society for Mass Spectrometry 2016 – notice: Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2016). All Rights Reserved. |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FG 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. M0S M1P M2O MBDVC P5Z P62 PQEST PQQKQ PQUKI Q9U 7X8 OTOTI |
DOI | 10.1007/s13361-016-1535-5 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest research library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic OSTI.GOV |
DatabaseTitle | PubMed CrossRef Research Library Prep ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1123 |
EndPage | 578 |
ExternalDocumentID | 22777089 10_1007_s13361_016_1535_5 27830527 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Organisation for the Prohibition of Chemical Weapons grantid: L/ICA/ICB/194482/15 funderid: http://dx.doi.org/10.13039/501100004766 – fundername: Australian Research Council grantid: DE130100424 funderid: http://dx.doi.org/10.13039/501100000923 – fundername: Department of Primary Industry, New South Wales Government grantid: New South Wales Smart Sensors Network funderid: http://dx.doi.org/10.13039/100010000 |
GroupedDBID | --- --K -56 -5G -BR -EM -~C .GJ .HR 06D 0R~ 0SF 0VY 199 1B1 1RT 1~5 2.D 203 29L 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 408 40E 4G. 53G 5C9 5GY 5VS 67N 6I. 7-5 71M 7X7 88E 8FE 8FG 8FI 8FJ 8G5 8UJ 95. 96X AAAVM AABHQ AACTN AAEDT AAEDW AAFTH AAIAL AAIKJ AAJKR AAKDD AALRI AANXM AAQFI AAQXK AARHV AARTL AATVU AAWCG AAXUO AAYIU AAYQN AAYTO AAZMS ABEFU ABFTV ABHLI ABJNI ABJOX ABKCH ABMAC ABPTK ABQBU ABQRX ABTEG ABTHY ABTMW ABULA ABUWG ABVKL ABXPI ACBXY ACGFO ACGFS ACHXU ACKNC ACMLO ACREN ACS ADBBV ADEZE ADHHG ADHIR ADINQ ADKPE ADMUD ADRFC ADURQ ADYOE ADZKW AEBTG AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AETCA AEXQZ AEXYK AFKRA AFLOW AFNRJ AFWTZ AFYQB AFZKB AGAYW AGDGC AGHFR AGJBK AGQMX AGWZB AGYKE AHAVH AHBYD AHGAQ AHHHB AHKAY AHSBF AHYZX AIIXL AITGF AITUG AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMTXH AMYQR ANMIH ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC BAWUL BENPR BGLVJ BGNMA BPHCQ BVXVI CCPQU CS3 CSCUP DIK DU5 DWQXO DX2 E3Z EBS EIOEI EJD EN4 EO8 EO9 EP2 EP3 ESBYG F5P FDB FEDTE FFXSO FGOYB FIGPU FINBP FNLPD FNPLU FRRFC FSGXE FYUFA G-Q GGCAI GGK GGRSB GJIRD GNUQQ GQ6 GQ7 GUQSH HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IHE ITM IXB J-C JBSCW KOV KQ8 M1P M2O M36 M41 M4Y NCXOZ NQ- NQJWS NU0 O-L O9- O93 O9I O9J OK1 OZT P2P P62 PF- PQQKQ PROAC PSQYO R2- R9I RIG RNS ROL RPZ RSV S16 S1Z S27 S3A S3B SBL SDG SDP SEW SHX SISQX SNE SNX SOJ SPISZ SSZ STPWE SZN T13 TR2 TSG U2A UG4 UKHRP UZXMN VC2 VF5 VFIZW VG9 VOH WK8 WUQ XPP YK3 Z5O Z7U Z7X Z92 ZMT AAYZH ADVLN AFBBN AKRWK ALIPV BAANH CUPRZ H13 NPM AAYXX CITATION 7XB 8FK K9. MBDVC PQEST PQUKI Q9U 7X8 OTOTI |
ID | FETCH-LOGICAL-c400t-b9a0c645c5e164bbe828759f43aa9b664e2f2011a9bce3af3779229f74bb8b733 |
IEDL.DBID | AEJHL |
ISSN | 1044-0305 |
IngestDate | Thu May 18 22:32:33 EDT 2023 Fri Oct 25 04:52:26 EDT 2024 Wed Nov 06 08:33:17 EST 2024 Fri Nov 22 00:46:18 EST 2024 Wed Oct 16 00:50:45 EDT 2024 Sat Dec 16 12:08:51 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Thermometer ions Chemical warfare agents Dimethyl methyl phosphonate Perfluorooctanoic acid Dielectric barrier discharge ionization Persistent organic pollutants Low temperature plasma ionization Nerve agents Portable mass spectrometry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-b9a0c645c5e164bbe828759f43aa9b664e2f2011a9bce3af3779229f74bb8b733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27830527 |
PQID | 1968048592 |
PQPubID | 2043687 |
PageCount | 4 |
ParticipantIDs | osti_scitechconnect_22777089 proquest_miscellaneous_1839109883 proquest_journals_1968048592 crossref_primary_10_1007_s13361_016_1535_5 pubmed_primary_27830527 springer_journals_10_1007_s13361_016_1535_5 |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The official journal of The American Society for Mass Spectrometry |
PublicationTitle | Journal of the American Society for Mass Spectrometry |
PublicationTitleAbbrev | J. Am. Soc. Mass Spectrom |
PublicationTitleAlternate | J Am Soc Mass Spectrom |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Usmanov, Yu, Chen, Hiraoka, Yamabe (CR10) 2016; 51 Stephens, Dumlao, Xiao, Zhang, Donald (CR8) 2015; 26 Schütz, Brandt, Liedtke, Foest, Marggraf, Franzke (CR15) 2015; 87 Mirabelli, Wolf, Zenobi (CR13) 2016; 88 Nudnova, Zhu, Zenobi (CR9) 2012; 26 CR14 Dumlao, Jeffress, Gooding, Donald (CR12) 2016; 141 Harris, Galhena, Fernández (CR2) 2011; 83 Na, Zhang, Zhao, Zhang, Yang, Fang, Zhang (CR6) 2007; 42 Huang, Yuan, Cheng, Cho, Shiea (CR1) 2010; 3 Wolf, Etter, Schaer, Siegenthaler, Zenobi (CR11) 2016; 27 Hu, Li, Zheng, Hou (CR5) 2011; 46 Gabelica, De Pauw, Karas (CR16) 2004; 231 Ifa, Wu, Ouyang, Cooks (CR3) 2010; 135 Meyer, Muller, Gurevich, Franzke (CR4) 2011; 136 Harper, Charipar, Mulligan, Zhang, Cooks, Ouyang (CR7) 2008; 80 CR12/citCR12 CR14/citCR14 CR10/citCR10 CR11/citCR11 CR16/citCR16 CR15/citCR15 CR1/citCR1 CR2/citCR2 CR4/citCR4 CR3/citCR3 CR6/citCR6 CR5/citCR5 CR7/citCR7 CR9/citCR9 CR8/citCR8 CR13/citCR13 |
References_xml | – volume: 80 start-page: 9097 year: 2008 end-page: 9104 ident: CR7 article-title: Low-temperature plasma probe for ambient desorption ionization publication-title: Anal. Chem. doi: 10.1021/ac801641a contributor: fullname: Ouyang – volume: 26 start-page: 1447 year: 2012 end-page: 1452 ident: CR9 article-title: Active capillary plasma source for ambient mass spectrometry publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.6242 contributor: fullname: Zenobi – volume: 88 start-page: 7252 year: 2016 end-page: 7258 ident: CR13 article-title: Direct coupling of solid-phase microextraction with mass spectrometry: sub-pg/g sensitivity achieved using a dielectric barrier discharge ionization source publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01507 contributor: fullname: Zenobi – volume: 87 start-page: 11415 year: 2015 end-page: 11419 ident: CR15 article-title: Dielectric barrier discharge ionization of perfluorinated compounds publication-title: Anal Chem. doi: 10.1021/acs.analchem.5b03538 contributor: fullname: Franzke – volume: 26 start-page: 2081 year: 2015 end-page: 2084 ident: CR8 article-title: Benzylammonium thermometer ions: internal energies of ions formed by low temperature plasma and atmospheric pressure chemical ionization publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-015-1272-1 contributor: fullname: Donald – ident: CR14 – volume: 3 start-page: 43 year: 2010 end-page: 65 ident: CR1 article-title: Ambient ionization mass spectrometry publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev.anchem.111808.073702 contributor: fullname: Shiea – volume: 51 start-page: 132 year: 2016 end-page: 140 ident: CR10 article-title: Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives publication-title: J. Mass Spectrom. doi: 10.1002/jms.3732 contributor: fullname: Yamabe – volume: 27 start-page: 1197 year: 2016 end-page: 1202 ident: CR11 article-title: Direct and sensitive detection of CWA simulants by active capillary plasma ionization coupled to a handheld ion trap mass spectrometer publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-016-1374-4 contributor: fullname: Zenobi – volume: 136 start-page: 2427 year: 2011 end-page: 2440 ident: CR4 article-title: Dielectric barrier discharges in analytical chemistry publication-title: Analyst doi: 10.1039/c0an00994f contributor: fullname: Franzke – volume: 83 start-page: 4508 year: 2011 end-page: 4538 ident: CR2 article-title: Ambient sampling/ionization mass spectrometry: applications and current trends publication-title: Anal. Chem. doi: 10.1021/ac200918u contributor: fullname: Fernández – volume: 46 start-page: 368 year: 2011 end-page: 387 ident: CR5 article-title: Dielectric barrier discharge in analytical spectrometry publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2011.561511 contributor: fullname: Hou – volume: 141 start-page: 3714 year: 2016 end-page: 3721 ident: CR12 article-title: Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures publication-title: Analyst doi: 10.1039/C6AN00178E contributor: fullname: Donald – volume: 135 start-page: 669 year: 2010 end-page: 681 ident: CR3 article-title: Desorption electrospray ionization and other ambient ionization methods: current progress and preview publication-title: Analyst doi: 10.1039/b925257f contributor: fullname: Cooks – volume: 42 start-page: 1079 year: 2007 end-page: 1085 ident: CR6 article-title: Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge publication-title: J. Mass Spectrom. doi: 10.1002/jms.1243 contributor: fullname: Zhang – volume: 231 start-page: 189 year: 2004 end-page: 195 ident: CR16 article-title: Influence of the capillary temperature and the source pressure on the internal energy distribution of electrosprayed ions publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2003.10.010 contributor: fullname: Karas – ident: CR3/citCR3 doi: 10.1039/b925257f – ident: CR7/citCR7 doi: 10.1021/ac801641a – ident: CR4/citCR4 doi: 10.1039/c0an00994f – ident: CR15/citCR15 doi: 10.1021/acs.analchem.5b03538 – ident: CR16/citCR16 doi: 10.1016/j.ijms.2003.10.010 – ident: CR9/citCR9 doi: 10.1002/rcm.6242 – ident: CR2/citCR2 doi: 10.1021/ac200918u – ident: CR10/citCR10 doi: 10.1002/jms.3732 – ident: CR14/citCR14 – ident: CR12/citCR12 doi: 10.1039/C6AN00178E – ident: CR13/citCR13 doi: 10.1021/acs.analchem.6b01507 – ident: CR11/citCR11 doi: 10.1007/s13361-016-1374-4 – ident: CR5/citCR5 doi: 10.1080/05704928.2011.561511 – ident: CR6/citCR6 doi: 10.1002/jms.1243 – ident: CR1/citCR1 doi: 10.1146/annurev.anchem.111808.073702 – ident: CR8/citCR8 doi: 10.1007/s13361-015-1272-1 |
SSID | ssj0017097 |
Score | 2.3203733 |
Snippet | Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules... |
SourceID | osti proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 575 |
SubjectTerms | ABUNDANCE ALTERNATING CURRENT Analytical Chemistry Batteries Bioinformatics Biotechnology CAPILLARIES Capillary waves Chemistry Chemistry and Materials Science COMPARATIVE EVALUATIONS Dielectric barrier discharge DIELECTRIC MATERIALS DIFFUSION BARRIERS ELECTRIC POTENTIAL ENERGY ABSORPTION Energy consumption Focus: Emerging Investigators: Short Communication INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Internal energy ION DETECTION IONIZATION Ions MASS SPECTROMETERS Mass spectrometry MASS SPECTROSCOPY Organic Chemistry PHOSPHONATES Plasma Plasmas Power consumption Proteomics Scientific imaging Spectrometers Spectroscopy WAVE FORMS Waveforms |
Title | Effects of Different Waveforms on the Performance of Active Capillary Dielectric Barrier Discharge Ionization Mass Spectrometry |
URI | https://link.springer.com/article/10.1007/s13361-016-1535-5 https://www.ncbi.nlm.nih.gov/pubmed/27830527 https://www.proquest.com/docview/1968048592 https://search.proquest.com/docview/1839109883 https://www.osti.gov/biblio/22777089 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7YFeKI8W0peMxAlklI3t2D5ut1sVBAipIHqLHGNLFVJS7WYr9cRfZyaPXVDbQznGdizLM7Y_e-zvA3iTShFShc7rtbFc5j5yG8OYm5J4Mf1YRd8eXZzrLxfmZEY0Odnq6KL69X6ISLYT9fqtmxA57XxzjoNUcbUBm7j0KPTtzcns49mnVexAp52kSiolJ3ceYpl3VfLPajSqcVTdhTRvRUnbxed0-3-a_RSe9FCTTTrfeAaPQvUcHk8HhbcX8LujLl6wOrKTXiilYT_cdSAki8kVQ3jIvq7fFlDJSTtDsqm7IsGi-Q3-2mnpXHp27OakgIdJi5aCKbAP9fDSk31GnM5I774higRswQ58P519m57xXpCBexzqDS-tS30ulVcBd1llGYgtX9kohXO2zHMZskiAAj98EC4SmWGW2aixrCm1ELswquoqvAKG7qFi9KWTJkoptcl1-yhX5Nr7EF0CbwfDFFcd70axZlimPi3obhr1aaESOCDTFQgaiPnW0xUh3xRYodapsZg9mLToR-iiwJnH4OylbJbA61U2GoACJq4K9RLLIHocp9YYkcDLzhVWjSGFklRlOoF3g-H_qvy-lu49qPQ-bGWEItqLQgcwaubLcAgbi5_LI9wDTM-Petf_A30N-x4 |
link.rule.ids | 230,315,782,786,887,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7aFceD8CLRiJEyhSNrZj-7hsu3RFWyGxCG6W49oSl6TazVbqib_OTB67oLYHeozjWJZnxvmS8XwfwPtM8JBJdF6vtElF4WNqYhinuiReTD-W0be_Lr6ps5_68IhocvhQC9Oedh9Sku1OvS1247ygT98ixSiVqdyBXWEKga68O5kvPs82yQOVdZoqmRAp-fOQzLxpkH9eR6Maw-omqHktTdq-fWYP7zTvR_CgB5ts0nnHY7gXqiewNx003p7C7468eMXqyA57qZSG_XCXgbAsNlcMASL7uq0uoJ6Tdo9kU3dBkkXLK3y0U9P55dkntyQNPGxatSRMgc3rodaTnSJSZ6R43xBJAs7gGXyfHS2mx2kvyZB6DPYmLY3LfCGklwG_s8oyEF--NFFw50xZFCLkkSAFXvjAXSQ6wzw3UWFfXSrOn8OoqqvwEhg6iIzRl07oKIRQulBtWS4vlPchugQ-DJaxFx3zht1yLNOaWjqdRmtqZQL7ZDuLsIG4bz0dEvKNxQGVyrTB24NNbR-jK4t7j8b9S5o8gXeb22gASpm4KtRr7IP4cZwZrXkCLzpf2EyGNEoymasEPg6G_2vw22b66r96v4W948XpiT2Zn315DfdzwhTtsaF9GDXLdTiAndX5-k0fAX8Apf7-Fg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrQRceD8CBYzECWQ1m9ixfULLPtRCqSoVBDfLcW2JA8lqN4vEib_OTB67IMoBcYztWI49tj9nPN8H8CIVeUglGq9X2nBR-MhNDGOuS-LF9GMZffvr4lydftazOdHkvB5iYdrb7oNLsotpIJamqjlcXsTDXeBbnhd0DC44zljJ5R7sCzzIoKHvT-Zvj062jgSVdvoqqRCcbHtwbF5WyW9b06jGKXYZ7PzDZdruRIub__0Nt-BGD0LZpLOa23AlVHfg2nTQfrsLPzpS4zWrI5v1EioN--S-BcK4mFwxBI7sbBd1QCUn7drJpm5JUkar7_hqp7LzxbM3bkXaeJi0bsmZAjuuhxhQ9h4RPDtftoI8XwO24B58XMw_TI94L9XAPS4CDS-NS30hpJcBz19lGYhHX5oocudMWRQiZJGgBj74kLtINIdZZqLCsrpUeX4fRlVdhYfA0HBkjL50QkchhNKFasN180J5H6JL4OUwSnbZMXLYHfcy9amlW2vUp1YmcEDjaBFOECeup8tDvrFYoVKpNpg9jK_t5-7a4pqkcV2TJkvg-TYbB4BcKa4K9QbLIK4cp0brPIEHnV1sG0PaJanMVAKvBiP4pfK_tfTRP5V-BlfPZgt7cnz67jFczwhqtLeJDmDUrDbhCeytLzZP-8nwE9N5Bug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Different+Waveforms+on+the+Performance+of+Active+Capillary+Dielectric+Barrier+Discharge+Ionization+Mass+Spectrometry&rft.jtitle=Journal+of+the+American+Society+for+Mass+Spectrometry&rft.au=Dumlao%2C+Morphy+C.&rft.au=Xiao%2C+Dan&rft.au=Zhang%2C+Daming&rft.au=Fletcher%2C+John&rft.date=2017-04-01&rft.pub=Springer+US&rft.issn=1044-0305&rft.eissn=1879-1123&rft.volume=28&rft.issue=4&rft.spage=575&rft.epage=578&rft_id=info:doi/10.1007%2Fs13361-016-1535-5&rft.externalDocID=10_1007_s13361_016_1535_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-0305&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-0305&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-0305&client=summon |